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Abstract. The use of implicit evaluations of humans such as electroen-
cephalogram (EEG)-based human feedback is relevant for robot appli-
cations, e.g., robot learning or corrections of robot’s actions. In the pre-
sented study, we implemented a scenario, in which a simulated robot
communicates with its human partner through speech and gestures. The
robot announces its intention verbally and selects the appropriate action
using pointing gestures. The human partner in turn implicitly evalu-
ates whether the robot’s verbal announcement matches the robot’s ac-
tion choice. Error-related potentials (ErrPs) are expressions of this im-
plicit evaluation, which are triggered in case of discrepancies between
the robot’s verbal announcement and the corresponding actions (point-
ing gestures) chosen by the robot. In our scenario, the task takes a long
time. Therefore, asynchronous EEG classifications that continuously seg-
ment EEGs are advantageous or even necessary. However, asynchronous
EEG classifications are challenging due to the large number of false pos-
itives during the long task time of the robot. In this work, we propose an
approach to improve asynchronous classification performance by select-
ing and extracting features that are only relevant for EEG classifications
in the long time series that the robot needs to perform tasks. We achieved
a high classification performance, i.e., a mean balanced accuracy of 91%
across all subjects. However, we also found some differences between sub-
jects in classification performance. In future work, it is useful to extend
the proposed approach of forward and backward sliding windows and
their combinations with individual feature selection adaptation to avoid
the variability of classification performance between subjects.

Keywords: human-robot interaction, error-related potentials (ErrP),
brain-computer interfaces (BCIs), human-machine interaction

? Supported by the Federal Ministry for Economic Affairs and Climate Action
(BMWK) FKZ: FKZ 50RA1701 and Federal Ministry for Education and Research
(BMBF) FKZ: 01IW21002.



2 S.K. Kim et al.

1 Introduction

In recent years, the use of intrinsic human feedback such as electroencephalogram
(EEG)-based human feedback has increased relevance for robot applications,
especially for human-robot interactions (HRIs). In recent studies, EEG-based
human feedback have been applied in HRIs.

In particular, error-related potentials (ErrPs) evoked e.g., when observing
erroneous or unusual actions of robots have been used as intrinsic feedback (i.e.,
implicit evaluations of the correctness of robot behavior) in order to adapt robot
behavior strategies [6, 10]. In fact, the use of implicit evaluations of humans as
intrinsic feedback is advantageous for learning complex behavioral strategies of
robots, because the predefinition of the evaluation criterion (e.g., reward shap-
ing) for robot behavior is not easy for complex robotic tasks.

Moreover, the error-related potential (ErrP) is a well investigated event-
related potential (ERP) component and has been used in several research and
application areas (see, review, [1]). In most applications, ErrPs have been applied
in observation tasks [3–9,12,14].

In the presented study, we implemented a scenario, in which a simulated
robot communicates with its human partner through speech and gestures. The
robot announces its intention verbally (e.g., I will point to the hammer) and
chooses the appropriate action using pointing gestures (Fig. 1). In turn, the
subjects hear the verbal message of the robot and observe the action choice of
the robot. The implicit evaluations of the subjects on the robot’s action choices
are recorded and extracted by using EEG.

Here, we used error-related potentials (ErrPs) as implicit human evaluations
of robot actions. We expect ErrPs in the case of inconsistencies between the
robot’s verbal announcement and the corresponding actions (pointing gestures)
chosen by the robot.

For extraction of implicit human evaluations (ErrPs), online EEG classifi-
cation is required. Additionally, asynchronous EEG classifications are beneficial
in detecting erroneous robot behavior, especially when the robot is performing
complex tasks that take a long time. However, asynchronous EEG classifications
are challenging due to the large number of false positives during the long task
time of the robot(e.g., [12]).

In this work, we propose an approach to improve asynchronous classification
performance by selecting and extracting features that are only relevant for EEG
classifications in the long time series that the robot needs to perform tasks. The
proposed approach uses a combination of forward and backward sliding windows.
We continuously segment EEGs with a given window length (sliding windows)
forward and backward with respect to relevant temporal reference points of the
robot’s action sequences. In this way, we extract only relevant features for ErrP
classifications while observing the continuous actions of the robot.
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2 Methods

2.1 Scenario

Figure 1 shows our scenario, in which the simulated robot announced verbally
its intention (e.g., I will point to the hammer) and performs the correspond-
ing actions (pointing gesture). In turn, the subjects hear the verbal message of
the robot and observe the actions of the robot. The implicit evaluations of the
subjects on the robot’s action choice are recorded by using EEGs. For example,
when the robot’s verbal message and its action selection (pointing gesture) are
congruent, we expect no ErrPs. Otherwise, we expect to detect ErrPs, which are
used as implicit evaluation of the subjects.

Fig. 1. Scenario. The robot announces its intention verbally (e.g., I will point to the
hammer) and chooses the appropriate action using pointing gestures. In turn, the
subjects implicitly evaluate the action choices of the robot. The implicit evaluation of
the subjects are recorded and extracted by using EEGs to recognize incorrect action
choices of the robot.

2.2 Approach

Figure 2A shows a single task of the robot), which takes 15s. In the experiments,
we defined episodes, each lasting from the beginning of the robot’s verbal an-
nouncement until the end of the robot’s action. Each action of the robot consists
of a movement of the arm in the direction of the workbench and a subsequent
gesture lasting approximately 1s indicated by the change in finger configuration.
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All episodes were divided into two different types: correct and incorrect episodes.
Both labels (correct and incorrect episodes) were used to train an EEG classi-
fier (i.e., ErrP decoder) and later to validate the test data (ground truth). We
expected no ErrPs to occur in correct episodes, while ErrPs were expected in
wrong episodes.

As shown in Figure 2B, we divided the robot’s action into two phases in our
application: directional movements and gesture movements (Fig. 2B), since the
human observer can guess the robot’s gesture at the beginning of the robot’s
action (directional movements) but cannot be absolutely sure that the robot’s
actions are correct until the robot performs a pointing gesture (gesture move-
ments). We used the beginning of the robot’s actions (directional movements to
point at an object) and the beginning of the robot’s gestures (change of finger
configuration in the robot hand for a pointing gesture) as temporal reference
points (see Fig. 2B) to extract features for EEG classifier. To this end, we used
these two sent temporal reference points as markers, which sent to the EEG
recording system.

Figure 2B shows our approach of feature selection/extraction using forward
and backward sliding windows. In our scenario, we do not know the exact mo-
ment when the subject realizes that the robot’s actions may or may not be
correct. Therefore, we used asynchronous classifications. Two points in time are
relevant for the detection of ErrPs: the beginning of the robot’s actions (di-
rectional movements) and the beginning of pointing gestures (indicated by the
change in finger configuration). First, the subject recognizes the robot’s direction
of movement and may tend to guess which tool the robot might select early after
the start of an action (directional movements). However, the subject cannot be
absolutely sure that the robot’s action is correct until the robot performs a point-
ing gesture (second time point). Therefore, we defined two temporal reference
points (see Fig. 2B): (a) directional movements towards one of the objects (3s-8s
after verbal announcement) and (b) pointing gestures towards the selected ob-
ject (8s-9s after verbal announcement) to frame the time period during which the
subject makes a decision about the correctness of the robot’s action. For train-
ing an ErrP decoder, we used these two temporal reference points for feature
selection and extraction. As shown in Figure 2B, on the one hand, we contin-
uously segmented the EEGs from the onset of the robot actions (i.e. forward
windowing). On the other hand, we continuously segmented from the onset of
the robot’s gestures in the reverse direction (i.e., backward windowing). In this
way, features are extracted using forward and backward sliding windows.

2.3 EEG recording

Nine subjects (two females, seven males, age: 25.5 ± 3.02 years, right-handed,
normal or corrected-to normal vision) participated in this study. The experi-
mental protocols were approved by the ethics committee of the University of
Bremen. Written informed consent was obtained from all participants. EEGs
were continuously recorded using a 64-channel eego mylab system (ANT Neuro
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Fig. 2. Experiment design. (A) Episode: An episode begins with the start of the robot’s
verbal announcement and ends with the return to the initial position. (B) Concept of
forward and backward sliding windows used for training a classifier: Features are ex-
tracted from the time period between the onset of movement and the onset of gesture
using forward and backward sliding windows. Note that we divided the robot’s action
into different phases (directional movements and gesture movements), but the robot
performs a continuous action to point to one of three objects. (C) Feature selection
during training for correct and incorrect episodes and during continuous testing. Eval-
uation is based on the marked time period.
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GmbH), in which 64 electrodes were arranged in accordance to an extended 10-
20 system with reference at electrode CPz. Impedance was kept below 10 kΩ.
EEG signals were sampled at 2 kHz amplified by one 64 channel amplifiers (ANT
Neuro GmbH). For each subject we recorded nine data sets. For one of the sub-
jects, only eight datasets were recorded. Each dataset contained 36 correct and
18 wrong episodes. In total, we recorded 324 correct episodes and 162 wrong
episodes for each subject except for one subject. Since we only had eight com-
plete data sets for all nine subjects, seven data sets were used to train an ErrP
decoder and one dataset was used for testing to allow a fair comparison between
subjects.

2.4 EEG processing

The EEG data were analyzed using a Python-based framework for signal pro-
cessing and classification [11]. The continuous EEG signal was segmented into
epochs from 0 s to 0.9 s after the start of the robot’s action with the overlap
of 0.05 s (sliding windows). All epochs were normalized to zero mean for each
channel, decimated to 50 Hz, and band pass filtered (0.5 to 10 Hz). The xDAWN
spatial filter [13] was used to enhance the signal to signal-plus-noise ratio and 7
pseudo channels were retained after spatial filtering.

For feature selection and extraction, we divided the robot’s action into differ-
ent phases (directional movements and gesture movements). However, we would
like to point out that the robot performs a continuous action to point at one
of the three objects. As mentioned earlier, the human observer can recognize
the direction of movement and guess the robot’s choice at the beginning of the
robot’s action (directional movements). However, the human observer cannot be
absolutely sure that the robot’s actions are correct until the robot performs a
pointing gesture (gesture movements). Two temporal reference points were rele-
vant for feature selection and extraction: The onset of the robot’s action (i.e., the
onset of directional movements) and the onset of gesture movements (see Fig. 2-
B). Accordingly, we extracted features using forward and backward windowing
based on the two temporal reference points (see Fig. 2-B).

Different strategies of feature selection and extraction were used depending
on the episode type after a systematic investigation of different combinations
of sliding windows across both types of episodes for each subject. We found
different optimal time periods and different optimal combinations of forward
and backward sliding windows for feature selection and extraction depending on
the individual subject. However, to allow a fair comparison between subjects,
we decided to choose the same time period for all subjects. Therefore, we used
the same sliding windows and the same combinations of forward and backward
sliding windows for all subjects to train a classifier.

The final selected time period for correct and incorrect episodes are as follows
(see Fig. 2-C). For incorrect episodes, four windows of 0.9s in length were used,
ending at 0s, −0.05s, −0.1s and −0.15s with respect to the beginning of the
gesture movement (the second temporal reference point). That is, four windows
were segmented from the beginning of the gesture movements in the reverse
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direction. In addition, two windows were used with a length of 0.9s from 2s and
2.5s with respect to the beginning of the directional movement (the first temporal
reference point). For correct episodes, four windows of 0.9s length were likewise
used, ending at 0s, −0.05s, −0.1s and −0.15s with respect to the onset of gesture
movement (the second temporal reference point). However, we did not use the
windows that can be segmented from the first temporal reference point (the
beginning of the directional movement).

For testing, ErrPs are continuously detected every 0.05s with a window length
of 0.9s from the start of the robot action (i.e., asynchronous classification). This
means that ErrPs were continuously detected in the time period between the
start of the robot’s action and the end of the robot’s pointing gesture. For
evaluation, we used the time period between 6s and 8s after the start of the
episode (i.e., from 3s to 5s after the movement onset) as the ground truth (see
Fig. 2-C). This means that the sliding windows that end in this time period were
used to evaluate the trained classifier. During this time period, we can ensure
that the robot’s arm position is unambiguous for the subjects’ evaluation.

The features were normalized and used to train a classifier. The online pas-
sive aggressive algorithm variant 1 (PA1) [2] was used as classifier. The cost
parameter of the PA1 was optimized using a grid search, in which an internal
stratified 5 fold cross validation was performed on the training data (7 training
datasets) and the best value of [100, 10−1, ... , 10−6] was selected. The perfor-
mance metric used was balanced accuracy (bACC), which is an arithmetic mean
of true positive rate (TPR) and true negative rate (TNR).

2.5 Evaluation

The evaluations were performed for each of the ten subjects individually. As men-
tioned in section 2.3. EEG recording, we recorded nine datasets for each subject.
Seven data sets were used to train an ErrP decoder and one dataset was used
for testing. For training an EEG classifier, seven data sets were concatenated.
For performance metric, we used a balanced accuracy, i.e.,the arithmetic mean
of true positive rate (TRP) and true negative rate (TNR). Note that the positive
class stands for incorrect action choices of the robot and negative class stands
for correct action choice of the robot.

3 Results and Discussion

Table 1 shows the classification performance for each subject. We achieved an
average classification performance of 91% across all subjects. However, we found
a high variability between subjects.

The inter-subject variability, i.e., the variability between subjects is not sur-
prising, as we assume that subjects have different strategies to evaluate the
robot’s ongoing actions, i.e., each subject probably evaluates the correctness of
the robot’s action choices at different times. Indeed, the duration of the task
was not short (5s from the beginning of the robot action to the beginning of the
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Table 1. EEG classification performance. The balanced accuracy
(bACC=(TPR+TNR)/2) and standard error of the mean (SEM) are given for
each subject.

subjects balanced accuracy (bACC)

subject 1 0.89

subject 2 0.94

subject 3 0.97

subject 4 0.83

subject 5 0.94

subject 6 0.92

subject 7 0.97

subject 8 0.90

subject 9 0.80

mean and standard deviation 0.91±0.06

robot pointing gestures). One can estimate the direction of the robot’s movement
immediately after the robot starts moving and focus less on the robot’s pointing
gestures. In this case, the pointing gestures can even be overlooked unintention-
ally. Another person may focus only on the robot’s pointing gestures. Of course,
some subjects also focus on the overall action of the robot. In particular, jerky
movements of the robot can affect the accuracy of the correct estimation of the
robot’s direction of movement. In fact, some subjects reported that jerky move-
ments affect the estimation of the robot’s direction of movement. Furthermore,
the evaluation by the subject can be changed during the execution of the action
by the robot. For example, the robot’s action may initially be evaluated as a
correct action after the direction of the arm movement has been detected, but
this evaluation may be changed with the execution of the pointing gesture.

For this reason, we proposed an approach using forward and backward sliding
windows and their combinations. Nevertheless, we did not achieve high classifi-
cation performance for some subjects. The reason for this could be that we used
the same combination of forward and backward sliding windows for all subjects.
As mentioned earlier, we investigated different combinations of sliding windows
across both types of episodes for each subject.

In fact, we found different optimal time periods and the different optimal
combinations of forward and backward sliding windows across both episode types
(correct and incorrect episodes) for each subject. On the one hand, this means
that the optimal time periods relevant for recognizing the correct actions differ
from subject to subject. On the other hand, the optimal time periods that are
relevant for detecting the wrong actions also vary from subject to subject. Fur-
thermore, the combination of the optimal time periods for correct and incorrect
actions also varies between subjects. We nevertheless chose to apply the same
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combination of forward and backward sliding windows to all subjects to allow a
fair comparison between subjects.

Therefore, in the future, it makes sense to extend the proposed approach
of forward and backward sliding windows and their combinations with an in-
dividual adjustment of feature selection so that high inter-subject variability in
classification performance is avoided. With such an individual adjustment of fea-
ture selection, classification performance can be improved if we identify the best
feature combinations for each subject. However, such investigations are time-
consuming. Therefore, developing an automatic selection of best combinations
to customize the feature selection is useful. In the future, it is useful to extend
the proposed approach of feature selection using forward and backward sliding
windows and their combinations for individual adaptions of feature selection, in
which the best individual combinations are automatically computed depending
on different context, e.g., different scenarios and different situations.

Furthermore, although we continuously detected ErrPs online (i.e., asyn-
chronous classification), we did not use the results of online classification for
intrinsic online corrections of the robot’s erroneous actions or for robot learning
(e.g., optimizing learning strategies based on ErrP-based human feedback) in
this scenario, such as in our previous studies [6,9,10]. In this previous work, we
have used ErrP-based human feedback online for intrinsic interactive reinforce-
ment learning in real human-robot interaction to optimize the robot’s learning
strategy in real time, but ErrPs did not need to be classified asynchronously
due to the short task duration of the robot. Therefore, in a next step, we plan
to use ErrP-based human error evaluation for intrinsic interactive reinforcement
learning, where continuous ErrP detections are necessary during continuous and
long-lasting task execution of a robot (e.g. continuous complex robot behavior)
and we therefore expect e.g., more than one type of error during the execution
of a task.
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