
Approximation of Utility Functions

by Learning Similarity Measures

Armin Stahl

University of Kaiserslautern, Computer Science Department
Artificial Intelligence - Knowledge-Based Systems Group

67653 Kaiserslautern, Germany
stahl@informatik.uni-kl.de

Abstract. Expert systems are often considered to be logical systems
producing outputs that can only be correct or incorrect. However, in
many application domains results cannot simply be distinguished in this
restrictive form. Instead to classify a result as correct or incorrect, here
results might be more or less useful for solving a given problem or for
satisfying given user demands, respectively. In such a situation, an expert
system should be able to estimate the utility of possible outputs a-priori
in order to produce reasonable results. In Case-Based Reasoning this is
done by using similarity measures which can be seen as an approximation
of the domain specific, but a-priori unknown utility function. In this ar-
ticle we present an approach how this approximation of utility functions
can be facilitated by employing machine learning techniques.

1 Introduction

When developing knowledge-based systems one must be aware of the fact that
the output of such a system often cannot simply be judged as correct or incorrect.
Instead, the output may be more or less useful for solving a given problem or
for satisfying the users’ demands. Of course, one is interested in maximizing
the utility of the output even if the underlying utility function is (partially)
unknown. Therefore, one must at least be able to estimate the a-priori unknown
utility of possible outputs, for example, by employing heuristics.

Typical examples for knowledge-based systems where we have to deal with
unknown utility functions are Information Retrieval (IR) [12] and Case-Based
Reasoning (CBR) [1, 9] systems. In IR systems one is interested in finding textual
documents that contain information that is useful for satisfying the information
needs of the users. Since CBR systems are used for various application tasks,
here, we have to distinguish different situations. On the one hand, for traditional
application fields like classification, the external output of a CBR system — here
the predicted class membership of some entity — usually can only be correct
or incorrect, of course. However, due to the problem solving paradigm of CBR,
internally a case-based classification system relies on an appropriate estimation



of the utility of cases1 which are used to infer the class prediction. On the other
hand, in more recently addressed application fields, also the external outputs of
CBR systems underlie utility functions. A typical example are product recom-
mendation systems used in e-Commerce [4, 6, 19]. Here, CBR systems are used to
select products (or services) — represented as cases — that fulfill the demands
and wishes of customers as good as possible. Hence, a recommended product
does not represent a correct or incorrect solution, but a more or less suitable
alternative.

In CBR the utility of cases is estimated according the following heuristics:
“Similar problems have similar solutions”. Here, the assumption is that a case
consists of a problem description and the description of a corresponding, already
known solution. When being confronted with a new problem for which a solution
is required, the description of this problem — also called query — has to be
compared with the problem descriptions contained in available cases. If two
problems are similar enough, the probability that also similar solutions can be
applied to both problems should be high. This means, the similarity between
a given problem situation and the problem described in a case can be seen
as a heuristics to estimate the utility of the corresponding known solution for
solving the current problem (see Figure 1). If the found solution cannot directly
be reused to solve the given problem, it has to be adapted so that it fits the
changed requirements.

���
����	�


��
����
��	�����

������� ���������

���� ����

���������	
�


�
�


�

�	�
����	�


�����
��	�����

����

�
�	�
�

Fig. 1. Approximating Utility through Similarity in CBR

In order to be able to calculate the similarity of two problem descriptions,
so-called similarity measures are employed. Basically, a similarity measure can
be characterized as an approximation of an a-priori unknown utility function [3].
The quality of this approximation strongly depends on the amount of domain
specific knowledge one is able to encode into the similarity measure. However,
a manual definition of knowledge-intensive similarity measures leads to the well
known knowledge acquisition bottleneck when developing knowledge-based sys-
1 In CBR cases typically represent experiences about already solved problems or other

information that can be reused to solve a given problem.



tems. In this article we show that machine learning approaches can be applied to
learn similarity measures from a special kind of (user) feedback, leading to better
approximations of the underlying utility functions. A more detailed description
of the presented approach is given by [17].

In Section 2 we first introduce the foundations of similarity measures in gen-
eral and we show how they are represented in practice. In Section 3 we present
our approach to learning similarity measures which is based on a special kind of
feedback and corresponding learning algorithms. To demonstrate the capabili-
ties of our approach, in Section 5 we describe some evaluation experiments and
discuss the corresponding results. Finally, we close with a short summary and
conclusion.

2 Similarity Measures

Basically, the task of a similarity measure is to compare two cases2, or at least
particular parts of two cases, and to compute a numeric value which represents
the degree of similarity. In traditional CBR systems the cases’ parts to be com-
pared are usually descriptions of problem situations, however, in more recent
application domains a clear distinction between problems and solutions is often
not given. Hence, in the following we assume that a similarity measure compares
two case characterizations describing the aspects that are relevant to decide
whether a case might be useful for a given query or not:

Definition 1 (Similarity Measure, General Definition). A similarity
measure is a function Sim : D × D −→ [0, 1], where D denotes the space of
case characterizations.

Depending on the application tasks, case characterizations might be repre-
sented by using very different formalisms. Of course, the used formalism strongly
influences the manner how corresponding similarity measures have to be repre-
sented. Therefore, we first introduce the kind of case representation that we
presume in the following.

2.1 Attribute-Value Based Case Representation

In most application domains attribute-value based case representations are suffi-
cient to represent all information required to reuse cases efficiently. Such a rep-
resentation consists of a set of attributes A1, A2, . . . , An where each attribute Ai

is a tuple (Aname, Arange). Here, Aname represents the name of the attribute
and Arange defines the set of valid values that can be assigned to that at-
tribute. Depending on the value type (numeric or symbolic) of the attribute,
Arange may be defined in form of an interval [vmin, vmax] or in form of an enu-
meration {v1, v2, . . . , vs}. In principle the set of attributes might be divided
into two subsets, one for the case characterization and one for the lesson part,
2 A query to a CBR system can also be seen as a (partially known) case.



which describes the known solution in traditional application tasks. Further,
the set of all attribute definitions, i.e. the names and the ranges, is called the
case model. A case c is then a vector of attribute values (a1, a2, . . . , an) with
ai ∈ Ai.Arange ∪ {undefined}.

An illustration of the described representation formalism is shown in Figure 2.
Here, cases represent descriptions of personal computers, for example, to be used
in a product recommendation system. The lesson part plays only a minor role,
since a clear distinction between problems and solutions is not given in this
application scenario.

�������	�


����������	
�

�
���������������������������������
�����������������

� !���"!���#$%

����������&'

�()�� �*����(��� ��� ��)��&'

��+&���,��������,-����

���

��..

����������

�!�

*�

��(

�,

���

��
���

���������

�����
����

����
���

�����
���

���	�
���

���

���	������� /����0 �������������

����

��������	�
��	�
������������

������������� �������

��������	�
��	�
������

��
�	
��
�
��
��
��

��

��
�	
��
�
��
�	
��

�
��

��
�	
��
�
��
��
��
�
��

���������

���	�������
�

Fig. 2. Example: Attribute-Value Based Case Representation

2.2 Foundations

Although a similarity measure computes a numerical value (cf. Definition 1),
usually one is not really interested in these absolute similarity values, because
their interpretation is often quite difficult. One is rather interested in the partial
order these values induce on the set of cases. Such a partial order can be seen
as a preference relation, i.e. cases that are considered to be more similar to the
query are preferred to being reused during the further processing steps.

Definition 2 (Preference Relation Induced by Similarity Measure).
Given a case characterisation d ∈ D, a similarity measure Sim induces a pref-
erence relation �Sim

d on the case space C by ci �Sim
d cj iff Sim(d, ci) ≤

Sim(d, cj).



In general, we do not assume that similarity measures necessarily have to
fulfill general properties beyond Definition 1. Nevertheless, in the following we
introduce two basic properties that are often fulfilled.

Definition 3 (Reflexivity). A similarity measure is called reflexive if
Sim(x, x) = 1 holds for all x. If it holds additionally Sim(x, y) = 1 → x = y,
Sim is called strong reflexive.

On the one hand, reflexivity is a very common property of similarity mea-
sures. It states that a case characterisation is maximal similar to itself. From
the utility point of view, this means, a case is maximal useful with respect to its
own case characterisation. On the other hand, similarity measures are usually
not strong reflexive, i.e. different cases may be maximal useful regarding a given
query. For example, different solution alternatives contained in different cases
might be equally accurate to solve a given problem.

Definition 4 (Symmetry). A similarity measure is called symmetric, if it
holds Sim(x, y) = Sim(y, x) for all x, y. Otherwise it is called asymmetric.

Symmetry is a property often assumed in traditional interpretations of sim-
ilarity. However, in many application domains it has been emerged that an ac-
curate utility approximation can only be achieved with asymmetric similarity
measures. The reason for this is the assignment of different roles to the case
characterizations being compared during utility assessment. This means, the
case characterisation representing the query has another meaning than the case
characterisation of the case to be rated.

2.3 The Local-Global Principle

Definition 1 still does not define how to represent a similarity measure in prac-
tice. To reduce the complexity, here one usually applies the so-called local-global
principle. According to this principle it is possible to decompose the entire sim-
ilarity computation in a local part only considering local similarities between
single attribute values, and a global part that computes the global similarity
for whole cases based on the local similarity assessments. Such a decomposition
simplifies the modelling of similarity measures significantly and allows to define
well-structured measures even for very complex case representations consisting
of numerous attributes with different value types.

This approach requires the definition of a case representation consisting of
attributes that are independent from each other with respect to the utility judge-
ments. In the case that the utility depends on relations between attributes one
has to introduce additional attributes — so-called virtual attributes — making
these relations explicit. Consider the example that we want to decide whether
a given rectangle is a quadrat or not by applying case-based reasoning. Here,
obviously the ratio between the length and the width of the rectangle is crucial.
Hence, if the original cases are described by these two attributes, an additional



attribute “length-width-ratio” has to be introduced which represents this im-
portant relationship between the two attributes.

Given such a case representation, a similarity measure can be represented by
the following elements:

1. Attribute weights define the importance of each attribute with respect to the
similarity judgement,

2. Local similarity measures. calculate local similarity values for single attributes.
3. An aggregation function calculates the global similarity based on the at-

tribute weights and the computed local similarity values.

With respect to the aggregation function mostly a simple weighted sum is
sufficient. This leads to the following formula for calculating the global similarity
Sim between a query q and a case c:

Sim(q, c) :=
n∑

i=1

wi · simi(qi, ci)

Here, simi represents the local similarity measure for attribute ai and qi,ci

are the corresponding attribute values of the query and the case. In the following,
we describe how local similarity measures can be represented.

2.4 Local Similarity Measures

In general, the representation of a local similarity measure strongly depends on
the value type of the underlying attribute. Basically, we can distinguish between
similarity measures for unordered and ordered data types. The former ones are
typical for symbolic attributes while the latter ones are typical for numeric at-
tributes. Nevertheless, also symbolic values may be associated with an order.

Similarity Tables. When dealing with unordered data types, the only feasible
approach to represent local similarity measures is an explicit enumeration of all
similarity values for each possible value combination. The result is a similarity
table as illustrated in Figure 3 for the attribute ‘casing” in the PC domain.

��� ���

���

���

���

����	
	��
���

�	�	��
���

����
�

� �

���

���

��� ���

���

���

��� ���

���

�	���
���

����
� �	�	��
��� �	
	��
��� �	���
���

���

Fig. 3. Similarity Table

Since similarity measures are usually reflexive (cf. Definition 3), the values of
the main diagonal in such a table are set to 1. When dealing with a symmetric



similarity measure the upper and the lower triangular matrices are symmetric,
which reduces the modelling effort. The shown table represents an asymmetric
measure. For example, the similarity between the casing types “mini-tower” and
“midi-tower” is different depending on which value represents the query and
which the case value.

Difference-Based Similarity Functions. For ordered types which are often
also even infinite, similarity tables are not feasible, of course. Here, similarity
values can be calculated based on the difference between the two values to be
compared. This can be realized with difference-based similarity functions as il-
lustrated in Figure 4. Here, the x-axis represents the difference between the
query and the case value. For numeric types this difference can be calculated
directly, for example with δ(q, c) = c − q. For other ordered non-numeric types
(e.g., ordered symbolic types), the distance may be inferred from the position
of the values within the underlying order, i.e. one might assign an integer value
to each symbolic value according its index. A difference-based similarity func-
tion then assigns every possible distance value a corresponding similarity value
by considering the domain specific requirements. The function shown in Figure
4, for example, might represent the local utility function for an attribute like
“price” typically occurring in product recommendation systems. The semantics
of this function is that lower prices than the demanded price are acceptable and
therefore lead to a similarity of 1. On the other hand, larger prices reduce the
utility of a product and therefore lead to decreased similarities.

������

�	


���� 
������
���� �������

�����������	



δ
δ

�����������	

δ



�
���������	

δ



�
���������	

δ

����	
����δ

���

���

Fig. 4. Difference-Based Similarity Functions

2.5 Defining Similarity Measures

Although today available CBR tools provide comfortable graphical user inter-
faces for defining similarity measures, modelling similarity measures manually
leads to some problems.

The similarity definition process commonly applied nowadays can be charac-
terized as a bottom-up procedure. This means, the entire similarity assessment
is based on the acquisition of numerous single knowledge entities about the in-
fluences on the utility function. These knowledge-entities have to be encoded



separately by using suitable local similarity measures and accurate attribute
weights. Because this knowledge is very specific and detailed (e.g. a local sim-
ilarity measure concerns only one single aspect of the entire domain), it could
also be characterised as low-level knowledge about the underlying utility func-
tion. Of course, to be able to acquire such general domain knowledge, at least a
partial understanding of the domain is mandatory. The basic assumption of this
procedure is that thorough acquisition and modelling of this low-level knowledge
will lead to an accurate approximation of the complete utility function. However,
in certain situations this bottom-up procedure to defining similarity measures
might lead to some crucial drawbacks:

– The procedure is very time-consuming. For example, consider a symbolic at-
tribute with 10 allowed values. This will require the definition of a similarity
table with 100 entries!

– In some application domains a sufficient amount of the described low-level
knowledge might be not available. Possible reasons are, for example, a poorly
understood domain, or the fact that an experienced domain expert who could
provide the knowledge is not available or too expensive.

– Even if an experienced domain expert is available, s/he is usually not fa-
miliar with the similarity representation formalisms of the CBR system. So,
the provided knowledge may only be available in natural language. This in-
formal knowledge then has to be translated into the formal representation
formalisms by an experienced knowledge engineer who possesses the required
skills which leads to additional costs.

– Due to the effort of the representation, even experienced knowledge engineers
often make definition failures by mistake. Unfortunately, the recognition of
such failures is very difficult.

– The bottom-up procedure does not consider the utility of whole cases di-
rectly. Instead, the final utility estimation is completely based on the en-
semble of the individual low-level knowledge entities. Nowadays, the overall
quality of the completely defined similarity measure is mostly not validated
in a systematic way. Existing approaches (e.g. leave-one-out tests and mea-
suring classification accuracy) only measure the overall performance of the
CBR system, that is, of course, also influenced by other aspects, for example,
the quality of the case data. So, one often blindly trusts the correctness of
the global similarity values computed by the defined measure.

– Due to the complexity of the bottom-up procedure its application is usually
restricted to the development phase of the CBR application. This means,
all similarity knowledge is acquired during the development phase and is
assumed to be valid during the entire lifetime of the application. However, in
many domains changing requirements and/or changing environments require
not only maintenance of case knowledge, but also maintenance of general
knowledge [13].

– The knowledge about the actual utility of cases might not be available at all
during the development phase. For example, when applying similarity mea-
sures in an e-Commerce or knowledge management scenario, the knowledge



often can only be provided by the users themselves during the usage of the
system. However, here the bottom-up procedure is not feasible.

– Sometimes the required knowledge about the cases’ utility might already
be available in a formal but quite different representation form. For exam-
ple, when supporting case adaptation, the utility of cases strongly depends
on the provided adaptation possibilities. Hence, to obtain an accurate simi-
larity measure one has to transfer adaptation knowledge into the similarity
measure. When using the bottom-up procedure this is a very time-consuming
task. The adaptation knowledge has to be analysed manually and the knowl-
edge considered to be relevant then has to be encoded into the similarity
measure.

In the following we present an alternative approach for modelling similarity
measures which tries to avoid the mentioned problems by applying machine
learning techniques.

3 Learning Similarity Measures From Utility Feedback

As described in the previous section, one problem of the manual definition of
similarity measures is the necessity to analyse the underlying utility functions
in detail in order to determine the influences on them. Only if the different
influences are known, one is able to consider them in form of appropriate weights
and local similarity measures.

3.1 Utility Feedback

We have proposed an alternative approach to acquire knowledge about the only
partially or informally known utility function [15, 17]. The basic idea of this
approach is the capability of some similarity teacher to give feedback about
the utility of given cases with respect to concrete problem situations or queries,
respectively. Here, the similarity teacher must not be able to explain the reasons
why cases are more or less useful, but he has only to compare cases according
their utility. This means, the utility of a case must not be expressed absolutely,
but only relatively to other cases, for example, by giving statements like ”case c2

is more useful than case c1”. The similarity teacher first might analyze the result
of a similarity-based retrieval, i.e. a given partial order of cases (see Figure 5).
By reordering the cases according to their actual utility for a given query one
obtains an additional partial order which can be characterized as a corrected
retrieval result, also called training example.

In principle, such utility feedback might be provided by different types of
similarity teachers depending on the concrete application scenario:

Human Domain Expert: The most obvious possibility is a human domain
expert who posses implicit knowledge about the unknown domain specific
utility function to be approximated. Due to his/her experiences, a domain
expert should be able to decide which cases are more useful than others for
a given problem situation.



System Users: In application scenarios where the utility of cases strongly de-
pends on the preferences and expectations of the system’s users (e.g. e-
Commerce applications), also the users might play the role of the similarity
teacher.

Software Agents: Generally, the similarity teacher has not necessarily be rep-
resented by a human being. In some application scenarios also software
agents which are able to evaluate retrieval results automatically might be
applied.

Application Environment: If the output of a CBR system is directly applied
in some application environment, also feedback about the cases’ application
success or failure might lead to the required utility feedback.

In the following we assume the existence of some arbitrary similarity teacher
who is able to provide utility feedback containing implicit knowledge about the
unknown utility function. The objective of our approach is to extract this knowl-
edge and to encode it in an explicit form by defining appropriate similarity mea-
sures. This can be achieved by applying machine learning techniques as described
in the following.

3.2 Evaluating Similarity Measures

The foundation of our learning approach is the definition of a special error func-
tion E which compares retrieval results computed according to a given similarity
measure with utility feedback provided by the similarity teacher (see Figure 5).
This means, the basic element of the error function E has to be a measure for
the distinction between two partial orders, namely a retrieval result and utility
feedback with respect to a given query q. The requirement on this measure is
that it should compute an error value of zero, if and only if the two partial orders
are equal. Otherwise it should compute an error value greater zero representing
the degree of distinction. Such an error function then can be used to evaluate
the quality of a given similarity measure, since it is our goal to find a similarity
measure which produces partial orders as defined by the similarity teacher. This
means if we are able to find a similarity measure leading to an error value of
zero, we have found an ideal similarity measure with respect to the given utility
feedback.

In the following we introduce a possible definition of such an error function
E. For better understanding, here, we introduce a simplified version of E. A
more sophisticated one can be found in [17]. Before being able to compare entire
partial orders, we need the following function:

Definition 5 (Elementary Feedback Function). Let q be a query, ci and cj

be two cases, and let Sim be a similarity measure. The function ef defined as

ef(Sim, (ci, cj)) :=
{

1 if sgn(u(q, ci) − u(q, cj)) �= sgn(Sim(q, ci) − Sim(q, cj))
0 otherwise

is called elementary feedback function where u represents the informal utility
feedback provided by some arbitrary similarity teacher.



��������
���������	
���
�

������

������

������ ������

	
���



������

����


�����
��

����
������
�������

������

��������
�����
�

������

������

������

����� 

������ ������ ������

��������

�����
�
��

����
���
����������
�����

��������


�������

Fig. 5. Utility Feedback

The objective of this elementary feedback function is the evaluation of a
given similarity measure Sim regarding the correct ranking for a particular case
pair (ci, cj). This function can now be used to define the mentioned measure for
evaluating retrieval results:

Definition 6 (Index Error). Consider a similarity measure Sim, a query q
and utility feedback for a set of cases {c1, . . . , cn} with respect to q, also called
training example TE(q). We define the index error induced by Sim w.r.t.
to TE(q) as

EI(TE(q), Sim) =
n−1∑
i=1

n∑
j=i+1

ef(Sim, (ci, cj))

.

The index error can be seen as a measure for the quality of a given similarity
measure regarding a particular query and the corresponding training example.
However, we are interested in similarity measures that supply reasonable case
rankings for arbitrary queries or at least for a certain set of queries. This leads
to the following extension of the index error allowing the evaluation of similarity
measures with respect to a set of training examples:

Definition 7 (Average Index Error). Consider a set of training queries
Q = {q1, q2, . . . , qm}, corresponding training data TDu = {TE(q1), TE(q2), . . . ,
TE(qm)} consisting of m training examples, and a similarity measure Sim. We
define the average index error induced by Sim w.r.t. to Q as

ÊI(TD(Q), Sim) =
1
m

·
m∑

i=1

EI(TE(qi), Sim)

3.3 The Learning Task

With the previously introduced error function we are now able to implement a
procedure for learning similarity measures from utility feedback. This learning



procedure can also be characterized as an optimization process controlled by the
error function. In principle, we are interested in finding an optimal similarity
measure leading to a minimal error value, i.e. we want to find a global minimum
of the error function ÊI (see Figure 6). Unfortunately, in general it cannot be
guaranteed that we are able to find actually a global minimum, nevertheless we
are interested to minimize the error value as far as possible. When starting with
some initial similarity measure Siminitial coupled with a corresponding error
value einitial, it should at least be possible to find a measure coupled with an
error value smaller than einitial, e.g. Simsupopt. This measure then hopefully
represents a better approximation of the unknown utility function.

It must be pointed out that the search space, i.e. the set of representable
similarity measures, usually does not contain an ideal similarity measure. Hence,
even an optimal similarity measure is mostly also coupled with an error value
greater zero.

����������

����	


���������	
����	
�



���



�������

Fig. 6. Finding Minima of the Error Function

For implementing the described learning or optimization task, respectively,
different methods, for example, gradient descent approaches, simulated annealing
[2] or evolutionary algorithms [8, 10], have already been developed. In the follow-
ing section we present an approach particularly suited to learn local similarity
measures that is based on evolutionary programs [10]. In contrast to traditional
genetic algorithms where the entities to be optimized are encoded by using bit
strings, our evolutionary algorithm operates on more sophisticated representa-
tions. We restrict the description of our approach on an overview of the most
important aspects, namely the representation of individuals and the definition
of appropriate genetic operators. For more details about the functionality of our
learning algorithm we refer to [18, 17].

4 A Genetic Algorithm for Learning Local Similarity
Measures

When employing a genetic algorithm, the most important issues are the defini-
tion of an appropriate fitness function, an adequate representation of the entities
to be optimized and the determination of corresponding genetic operators. The



average index error ÊI introduced in Definition 7 already represents the required
fitness function. In this section we show how local similarity measures can be
represented so that a genetic algorithm is able to handle them easily. Further,
we introduce corresponding genetic operators needed to realize an evolutionary
process.

4.1 Representation of Individuals

Concerning the representation of local similarity measures as individuals of an
evolutionary process we presume the representation formalisms introduced in
Section 2.4, i.e. difference-based similarity functions and similarity tables.

Representing Difference-Based Similarity Functions. Consider some dif-
ference-based similarity function SimA used as local similarity measure for a nu-
meric attribute A. Since SimA may be continuous in its value range [min(Arange)−
max(Arange), max(Arange)− min(Arange)] it is generally difficult to describe it
exactly with a fixed set of parameters. Thus, we employ an approximation based
on a number of sampling points to describe arbitrary functions:

Definition 8 (Similarity Function Individual, Similarity Vector). An
individual I representing a similarity function SimA for the numeric attribute
A is coded as a vector V I

A of fixed size s. The elements of that similarity vector
are interpreted as sampling points of SimA, between which the similarity function
is linearly interpolated. Accordingly, it holds for all i ∈ {1, . . . , s}: vI

i = (V I
A)i ∈

[0, 1].

The number of sampling points s may be chosen due to the demands of
the application domain: The more elements V I

A contains, the more accurate the
approximation of the corresponding similarity function, but on the other hand,
the higher the computational effort required for optimization. Depending on the
characteristics of the application domain and the particular attribute, different
strategies for distributing sampling points over the value range of the similarity
function might be promising:

Uniform Sampling: The simplest strategy is to distribute sampling points
equidistantly over the entire value range (see Figure 7a).

Center-Focused Sampling: However, when analyzing the structure of dif-
ference-based similarity functions in more detail, it becomes clear that dif-
ferent inputs of the functions will usually occur with different probabilities.
While the maximal and minimal inputs, i.e. the values dmin = (min(Arange)−
max(Arange)) and dmax = (max(Arange)−min(Arange)), can only occur for
one combination of query and case values, inputs corresponding to small
differences can be generated by various of such combinations. Thus, case
data and corresponding training data usually provides much more informa-
tion about the influences of small differences, compared with the information



available about extreme differences. Another aspect is that changes in sim-
ilarity are usually more important for small value differences, since greater
differences usually correspond to very small similarity values. In order to
consider these facts during learning, it might be useful to use more sampling
points around the “center” of the difference-based similarity function like
illustrated in Figure 7b.

Dynamic Sampling: While the center-focused approach is more a heuristics,
it is also possible to analyse the training data in order to determine an
optimal distribution for the sampling points [7]. Then, areas where a lot of
training information is available might be covered with more sampling points
than areas for which no respective information is contained in the training
data.

�������
	
�����
��	���

���������	
�
���
�
�������� �����������
���������
�
���� ������
������	
�
���
�
��������	�������	
�
���
�
��������

�	

�

�
�

���

���

���

���

���

����

���

�
�

�

�

�

�

�

�

	
�� 
��
���
�

�
�

�
�

�
�

�
�

�
�

�
�


�� 
�� ���

�����������	��
	
�����
��	���

���������	
�
���
�
�������� �����������
���������
�
���� ������
������	
�
���
�
��������	�������	
�
���
�
��������

�	

�

�
�

���

���

���

���

���

���

���

�
�

�

�

�

�

�

�

	
�� ����
�

�
�

�
�
�
�
�
�

�
�

�
�

��� ���

����
�

�
�

�
�
�
�
�
�

�
�

�
�

���

�������	
�����
����

��������
��	���������
����

Fig. 7. Representing Similarity Functions as Individuals

Representing Similarity Tables. Similarity tables, as the second type of
local similarity measures of concern, are represented as matrices of floating point
numbers within the interval [0, 1]:

Definition 9 (Similarity Table Individual, Similarity Matrix). An in-
dividual I representing a similarity table for a symbolic attribute A with a list
of allowed values Arange = (d1, d2, . . . , dn) is a n × n-matrix M I

A with entries
mI

ij = (M I
A)ij ∈ [0, 1] for all i, j ∈ {1, . . . , n}.

This definition corresponds to the representation of similarity tables, i.e. the
original representation of this type of local similarity measures is directly used
by the genetic algorithm. So, the definition presented here is only required for
introducing the necessary notation.



4.2 Genetic Operators

Another important issue is the definition of accurate genetic operators used to
perform crossover and mutation operations. When deciding not to use bit strings,
but other data structures for representing individuals, the genetic operators have
to consider the particularly used genome representation. Therefore, in this sec-
tion also some exemplary genetic operators for the previously introduced genome
representation are presented.

The operators we use for learning of local similarity measures are differ-
ent from classical ones since they operate on a different genome representation.
However, because of underlying similarities, we divide them also into the two
standard groups: mutation and crossover operators.

Crossover Operators for Similarity Vectors and Matrices. Applying
crossover operators on the data structures used for representing local similarity
measures, a new individual in the form of a similarity vector or matrix is created
using elements of its parents. Though there are variations of crossover opera-
tors described that exploit an arbitrary number of parents [10], we rely on the
traditional approach using exactly two parental individuals, I1 and I2.

– Simple crossover is defined in the traditional way as used for bit string
representations: A split point for the particular similarity vector or matrix
is chosen. The new individual is assembled by using the first part of parent
I1’s similarity vector or matrix and the second part of parent I2’s.

– Arbitrary crossover represents a kind of multi-split-point crossover with a
random number of split points. Here, for each component of the offspring
individual it is decided randomly whether to use the corresponding vector
or matrix element from parent I1 or I2.

– Arithmetical crossover is defined as the linear combination of both parent
similarity vectors or matrices. In the case of similarity matrices the offspring
is generated according to: (M Inew

A )ij = mInew

ij with mInew

ij = 1
2mI1

ij + 1
2mI2

ij

for all i, j ∈ {1, . . . , d}.
– Line/column crossover is employed for similarity tables, i.e. for symbolic

attributes, only. Lines and columns in a similarity matrix contain coherent
information, since their similarity entries refer to the same query or case
value, respectively. Therefore, cutting a line/column by simple or arbitrary
crossover may lead to less valuable lines/columns for the offspring individual.
We define line crossover as follows: For each line i ∈ {1, . . . , n} we randomly
determine individual I1 or I2 to be the parent individual IP for that line.
Then it holds mInew

ij = mIP

ij for all j ∈ {1, . . . , n}. Column crossover is
defined accordingly.

For each of the described operators a particular probability value has to be
specified. When performing crossover, one of the described operators is then
selected according to this probability.



Mutation Operators for Similarity Vectors and Matrices. Operators of
this class are the same for both kinds of local similarity measures we are dealing
with. They change one or more values of a similarity vector V I

A or matrix M I
A

according to the respective mutation rule. Doing so, the constraint that every
new value has to lie within the interval [0, 1] is met. The second constraint
that needs to be considered concerns the reflexivity of local similarity measures
(cf. Definition 3). As a consequence, the medial sampling point of a similarity
vector should be 1.0 as well as the elements mI

ii of a similarity matrix for all
i ∈ {1, . . . , n}. Since any matrix can be understood as a vector, we describe the
functionality of our mutation operators for similarity vectors only:

– Simple mutation: If V I
A = (vI

1 , . . . , vI
s) is a similarity vector individual, then

each element vI
i has the same probability of undergoing a mutation. The

result of a single application of this operator is a changed similarity vector
(vI

1 , . . . , v̂I
j , . . . , vs), with 1 ≤ j ≤ s and v̂I

j chosen randomly from [0, 1].
– Multivariate non-uniform mutation applies the simple mutation to several

elements of V I
a . Moreover, the alterations introduced to an element of that

vector, become smaller as the age of the population is increasing. The new
value for vI

j is computed after v̂I
j = vI

j ± (1− r(1− t
T )2), where t is the current

age of the population at hand, T its maximal age, and r a random number
from [0, 1]. Hence, this property makes the operator search the space more
uniformly at early stages of the evolutional process (when t is small) and
rather locally at later times. The sign ± indicates, that the alteration is
either additive or subtractive. The decision about that is made randomly as
well.

– In-/decreasing mutation represents a specialisation of the previous operator.
Sometimes it is helpful to modify a number of neighbouring sampling points
uniformly. The operator for in-/decreasing mutation randomly picks two
sampling points vI

j and vI
k and increases or decreases the values for all vI

i

with j ≤ i ≤ k by a fixed increment.

As for crossover operators, mutation operators are applied according to some
probability to be specified a priori.

With the described representation and genetic operators together with the
error function introduced in Definition 7 we are now able to implement a ge-
netic algorithm for learning local similarity measures. For more details about
the general functionality of genetic algorithms see [8, 10].

For the other important part of a global similarity measure, namely the
attribute weights, it is also possible to define a corresponding genetic algorithm.
However, here other learning strategies can usually be applied more efficiently,
for example, gradient descent algorithms [15–17].

5 Experimental Evalutation

In this section we give a short summary of an experimental evaluation that
demonstrates the capabilities of our learning approach in two different applica-
tion scenarios. A more detailed description is given by [17]. In both scenarios a



similarity measure is required to approximate an a-priori unknown utility func-
tion. However, the two scenarios clearly differ in the aspects that determine the
utility of cases.

5.1 Learning Customer Preferences

In our first evaluation scenario we consider a CBR system used to recommend
appropriate used cars with respect to a given requirement specification repre-
sented by the query. Here, we assume that the cars cannot be customized, i.e.
no case adaptation is performed after the similarity-based retrieval. The case
representation we used for our experiment consists of 8 attributes (4 symbolic,
4 numeric) describing important properties of the cars, like “price” or “engine
power”. Concerning the similarity measure, this results in 4 similarity tables, 4
difference-based similarity functions and 8 attribute weights to be optimized by
applying our learning approach.

Since no real customers were available, we have applied a simulation ap-
proach in order to obtain the required utility feedback. The foundation of this
simulation is an additional similarity measure representing virtual preferences
of some class of customers, so to speak the target measure to be learnt by the
learning algorithm. With this additional similarity measure SimU we were able
to generate utility feedback like shown in Figure 8. In order to obtain a single
training example, the following steps are performed automatically:

1. Generating a random query q.
2. Retrieving the 10 most similar cases with respect to q by using an initial

similarity measure SimI .
3. Recalculating the similarity of the 10 retrieved cases by using SimU .
4. Selecting the 3 most similar cases with respect to SimU , however by incor-

porating some noise.

The idea of step four is a realistic simulation of the behaviour of customers.
One the one hand, customers will usually not be willed to give feedback about
the entire retrieval result, however to get feedback about only three cases should
be realistic. Further we have introduced noise in order to simulate inconsistent
behaviour of customers. Hence, the finally obtained training example does not
always come up to the target measure SimU , but may contain minor or major
deviations according to some probability values ρi.

By repeating the described procedure we were able to generate an arbitrary
number of training examples to be used by the learning algorithm. In our ex-
periment we have used a genetic algorithm to learn attribute weights and local
similarity measures (cf. Section 4).

In order to be able to measure the quality of the learned similarity measure
we have generated 200 additional noise free test examples. For a given learned
similarity measure SimL we then counted the percentage of retrievals based on
the 200 queries of the test examples where

– the most similar case was also the most useful one (1-in-1 )



���������	

���
������

�

�
��	

��

��

��������	


�� �� �� �� ���
���

��

�	���	


�� ��

���������	

���
������

�

�
�
��	
�
���������
�


�
���
���������
����
��
�
��	���

�
	��
���

�

����
�	��������
���������������


�� �� ��� �� �	 �
�

���������������
�
��	�������
������

���������
���������������


�
ρ

�
ρ �ρ �������	

�������������

Fig. 8. Learning Customer Preferences: Generation of Training Examples

– the most similar case was at least among the ten most useful ones (1-in-10 )

according to the noise free utility feedback of the test examples. In order to get
an impression of the amount of training data required to get meaningful results,
we have started the learning algorithm for an increasing number of training
examples. Further, we have repeated the entire experiment at least 3 times in
order to achieve average values, even though the number of repetitions is to
small for obtaining statistically significant results, of course.

The results of the described experiment are illustrated in Figure 9. Gener-
ally, one observes clear improvements in both quality measures at least when
providing more then 100 training examples. When using less examples we notice
a decrease of retrieval quality which can be explained by overfitting the pro-
vided training data, so that the quality of the learned similarity measure is bad
with respect to independent test examples. Further, we see that noise seems to
have a significant impact on learning only when providing less then 250 training
examples.

5.2 Learning to Retrieve Adaptable Cases

For our second experiment we suppose again a product recommendation system,
this time used for recommending optimal configurations of personal computers.
Since PCs can easily be customized by adding or replacing components, here we
assume a CBR system that provides adaptation functionality. This means, the



�

�
��
��
��
��
��
��
	�

�
��

���

� �� ��� ��� ��� ����
���������	�
���
���

�

��
�����������
���
��
������������
���
��
������������
���
��
����������
���
��
�����������
���
��
�����������
���

Fig. 9. Learning Customer Preferences: Results

case base contains a set of base PC configurations3 which can be modified by
applying certain adaptation rules [5]. In our example domain PCs are described
by 11 attributes (5 numeric and 6 symbolic) and can be adapted by applying 15
more and less complex adaptation rules.

When providing adaptation functionality, optimal retrieval results can only
be achieved if the similarity measure considers the adaptation possibilities [16,
14, 11]. Since the utility of a case might change clearly after being adapted, it is
not sufficient to estimate the direct utility of cases for a given query. However,
to define a similarity measure that estimates the utility of a case that can be
achieved by adaptation, one has to analyze the available adaptation knowledge in
detail. Further, the knowledge has to be transferred into the similarity measure
by using the given knowledge representations. Because this is a very complex
and time consuming process, we propose to automate it by applying our learning
framework.

Therefore, we assume that a similarity measure SimU which estimates the di-
rect utility of cases without considering adaptation possibilities is already given.
Usually such a measure can be defined much more easily, or it might also be
learned, e.g. like described in Section 5.1. Then, we are able to generate utility
feedback like illustrated in Figure 10:

1. Generating a random query q.
2. Retrieving the 10 most similar cases with respect to q by using the similarity

measure SimU or some other initial measure.
3. Adapting the retrieved cases by applying the adaptation rules.
4. Recalculating the similarity of the 10 adapted cases by using SimU .
5. Constructing a training example by reordering the 10 original cases.

This feedback can be used to learn a new similarity measure SimA which can
be seen as an optimized version of SimU since it tries to approximate the utility
of cases under consideration of adaptation possibilities. The achieved results
3 The case base used for the experiment contained 15 base configurations



���������	

���
������

�

�
��	

��

�
�
�
�

�
�
�
�
�
�

�
��

���

����������
�
���

�����	
��
�	�
�� �����

��
����	�

��
����	��
�����


�
�
�
�

�
�
�
�
�
�

�
��

���

�
�

�
���
�

�
�

�
�
�
�
�
�

�
��

���

���������	

���
������

�

� � � � � �

�
	�
	
���

�����	��
�

�
	�
�
�
�	���

��	������
��	����

��	��	
����	�
�
����
�����

�

Fig. 10. Learning to retrieve Adaptable Cases: Generation of Training Examples

are illustrated in Figure 11. The results shown here represent average values
obtained during 10 repetitions of the experiment. The experimental settings
were similar to the experiment described in Section 5.1. Again we have applied
our learning algorithm by using increasing number of training examples. To
measure the quality of the learned similarity measures we have determined the
corresponding retrieval results for 200 independent test queries. Instead of the
1-in-10 quality measure, here, we have chosen the analogous 1-in-3 version. The
idea of this measure is the assumption that it is computational feasible to adapt
the 3 most similar cases after retrieval in order to select the best resulting case.

For both selected quality measures we notice a clear improvement of the
retrieval quality achieved with the optimized similarity measure when using more
then 20-35 training examples. In this experiment less training examples were
necessary to avoid overfitting because each training example contained more
knowledge (feedback about 10 cases instead 3 cases in the previous scenario).

6 Conclusion

We have discussed that the output of knowledge-based systems cannot always
simply be judged as correct or incorrect as one would expect from a problem-
solving system. In many application domains the output of such systems rather
has to be interpreted by considering certain utility functions. This means the
output might be more or less useful for solving a problem or for satisfying the



�

�
��
��
��
��
��
��
	�

�
��

���

� � �� �� �� �� 	� ���������

���������	�
���
���

�

��
���
��
���

Fig. 11. Learning to retrieve Adaptable Cases: Results

users’ demands. In order to produce maximal useful outputs, a knowledge-based
system should be able to estimate the utility of a possible output a-priori.

In CBR systems, for example, the utility of available knowledge is approxi-
mated by employing similarity measures. The more domain specific knowledge
one is able to encode into a similarity measure the higher should be the proba-
bility that useful knowledge is selected. According to the local-global principle,
particular local similarity measures can be used to encode much domain specific
knowledge about the utility function to be approximated. However, the defi-
nition of such knowledge-intensive similarity measures is a complex and time
consuming process.

In this article we have proposed to facilitate the definition of knowledge-
intensive similarity measures by applying a machine learning approach. The ap-
proach is based on feedback about the actual utility of cases provided by some
similarity teacher. This feedback enables us to evaluate the quality of given sim-
ilarity measures and can be used to guide an search process with the goal to
find an optimal similarity measure. We have described a genetic algorithm for
realising this search or optimization process, respectively. In order to show the
capabilities of our learning approach, finally we have presented the results of
two different evaluation experiments. Here, we have seen that the quality of an
initially given similarity measure can be improved significantly, at least if reason-
able amount of training data is available. However, in both presented scenarios
this should be possible in practice. On the one hand, a product recommenda-
tion system is usually used by numerous customers, which may provide feedback
explicitly or implicitly, e.g. by their buying behaviour. On the other hand, in
our adaptation scenario, the required feedback even can be generated automat-
ically. Here our learning approach allows an optimization of an initial similarity
measure “on a mouse click”.

In order to reduce the risk of overfitting the training data, and thus reduce
the amount of necessary data, the presented learning approach may be extended.
Several possibilities to improve the learning process by incorporating additional
background knowledge are presented in [7].



References

1. A. Aamodt and E. Plaza. Case-based reasoning: Foundational Issues, Methodolog-
ical Variations, and System Approaches. AI Communications, 7(1):39–59, 1994.

2. E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. John Wiley
& Sons, 1989.

3. R. Bergmann, M. Michael Richter, S. Schmitt, A. Stahl, and I. Vollrath. Utility-
Oriented Matching: A New Research Direction for Case-Based Reasoning. In Pro-
fessionelles Wissensmanagement: Erfahrungen und Visionen. Proceedings of the
1st Conference on Professional Knowledge Management. Shaker, 2001.

4. R. Bergmann, S. Schmitt, and A. Stahl. E-Commerce and Intelligent Methods,
chapter Intelligent Customer Support for Product Selection with Case-Based Rea-
soning. Physica-Verlag, 2002.

5. R. Bergmann, W. Wilke, I. Vollrath, and S. Wess. Integrating General Knowledge
with Object-Oriented Case Representation and Reasoning. In Proceedings of the
4th German Workshop on Case-Based Reasoning (GWCBR’96), 1996.

6. R. Burke. The Wasabi Personal Shopper: A Case-Based Recommender System.
In Proceedings of the 11th International Conference on Innovative Applications of
Artificial Intelligence (IAAI’99), 1999.

7. T. Gabel. Learning Similarity Measures: Strategies to Enhance the Optimisation
Process. Master thesis, Kaiserslautern University of Technology, 2003.

8. J.H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, 1975.

9. M. Lenz, B. Bartsch-Spörl, H.D. Burkhard, and S. Wess, editors. Case-Based
Reasoning Technology: From Foundations to Applications. LNAI: State of the Art.
Springer, 1998.

10. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer, 1996.

11. M.M. Richter. Learning Similarities for Informally Defined Objects. In R. Kühn,
R. Menzel, W. Menzel, U. Ratsch, M.M. Richter, and I.-O. Stamatescu, editors,
Adaptivity and Learning. Springer, 2003.

12. C. J. van Rijsbergen. Information Retrieval. Butterworths & Co, 1975.
13. T. Roth-Berghofer. Knowledge Maintenance of Case-Based Reasoning Systems.

Ph.D. Thesis, University of Kaiserslautern, 2002.
14. B. Smyth and M. T. Keane. Retrieving Adaptable Cases: The Role of Adaptation

Knowledge in Case Retrieval. In Proceedings of the 1st European Workshop on
Case-Based Reasoning (EWCBR’93). Springer, 1993.

15. A. Stahl. Learning Feature Weights from Case Order Feedback. In Proceed-
ings of the 4th International Conference on Case-Based Reasoning (ICCBR’2001).
Springer, 2001.

16. A. Stahl. Defining Similarity Measures: Top-Down vs. Bottom-Up. In Proceed-
ings of the 6th European Conference on Case-Based Reasoning (ECCBR’2002).
Springer, 2002.

17. A. Stahl. Learning of Knowledge-Intensive Similarity Measures in Case-Based
Reasoning. Ph.D. thesis, Technical University of Kaiserslautern, 2003.

18. A. Stahl and T. Gabel. Using Evolution Programs to Learn Local Similarity Mea-
sures. In Proceedings of the 5th International Conference on Case-Based Reasoning
(ICCBR’2003). Springer, 2003.

19. W. Wilke, M. Lenz, and S. Wess. Case-Based Reasoning Technology: From Foun-
dations to Applications, chapter Case-Based Reasoning and Electronic Commerce.
Lecture Notes on AI: State of the Art. Springer, 1998.


