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ABSTRACT
Recent advances in Explainable AI (XAI) increased the demand for
deployment of safe and interpretable AI models in various industry
sectors. Despite the latest success of deep neural networks in a
variety of domains, understanding the decision-making process of
such complex models still remains a challenging task for domain
experts. Especially in the financial domain, merely pointing to an
anomaly composed of often hundreds of mixed type columns, has
limited value for experts.

Hence, in this paper, we propose a framework for explaining
anomalies using denoising autoencoders designed for mixed type
tabular data. We specifically focus our technique on anomalies that
are erroneous observations. This is achieved by localizing indi-
vidual sample columns (cells) with potential errors and assigning
corresponding confidence scores. In addition, the model provides
the expected cell value estimates to fix the errors.

We evaluate our approach based on three standard public tabular
datasets (Credit Default, Adult, IEEE Fraud) and one proprietary
dataset (Holdings). We find that denoising autoencoders applied
to this task already outperform other approaches in the cell error
detection rates as well as in the expected value rates. Additionally,
we analyze how a specialized loss designed for cell error detection
can further improve these metrics. Our framework is designed
for a domain expert to understand abnormal characteristics of an
anomaly, as well as to improve in-house data quality management
processes.

CCS CONCEPTS
• Computing methodologies → Anomaly detection; Neural
networks; • Information systems→ Data cleaning.

KEYWORDS
explainable AI, explainable anomaly detection, tabular data, cell
error detection, neural networks, unsupervised
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1 INTRODUCTION
Financial regulatory authorities and supervisory agencies play one
of the most important roles in the financial system of a country. The
main objective of the authorities is to secure the financial and mon-
etary stability, supervision of national credit institutions as well as
the management of payment service mechanisms. To fulfill these
objectives, national statistical offices of the regulatory authorities
need to collect monetary, financial and external sector statistical
data. After the Global Financial Crisis (GFC) of 2008 − 2009 the en-
hancement of the financial framework has become compelling1. In
addition to the stronger oversight of financial firms, the GFC led to
the call for strengthening and extension of the financial statistics2.
Following the above-mentioned initiatives, the demand for high
quality financial microdata has appeared. To monitor the vulnerabil-
ity of the economy to shocks and identify systemic risks, collection
of high-quality microdata plays a vital role. For National Competent
Authorities (NCA), the correctness and completeness of the col-
lected data has to be ensured. Moreover, given the large volumes of
collected data today, NCAs have to develop and deploy efficient data
quality check (QC) procedures. Hence, typically a set of handcrafted
rules are developed as rudimentary hard-coded checks. However,
these are only able to detect already known reported errors and are
not capable of identifying new types of errors. Further, it is crucial
to not only identify an anomalous observation, but also flag the
field(s) that contain reporting error(s). Therefore, explaining which
values caused an irregularity is essential for financial microdata.

Today, a number of deep learning based techniques are intro-
duced for anomaly detection in tabular data [31]. However, in prac-
tice such tools are often insufficient due to the lack of interpretation.
The ability to explain anomaly characteristics is as important as
the quality of the trained model. For a domain expert, it is crucial
to obtain a comprehensive explanation that would build a connec-
tion between a high anomaly score and a set of features affecting
this score. Moreover, an inquiry to the reporting agent about the
erroneous observation can be made and help with the correction.

1https://ec.europa.eu/commission/presscorner/detail/de/MEMO_13_679
2https://www.imf.org/external/np/g20/pdf/102909.pdf
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Therefore, the utilization of the anomaly interpretation features
would significantly improve the applicability of such models in
regulatory practice.

In this work, we propose a practical framework using denoising
autoencoder (DAE) neural networks that not only isolates anoma-
lous data points, but also flags the fields that caused the irregularity.
The framework is designed for financial tabular data with categori-
cal and numerical (mixed) type. Figure 1 illustrates an example of
traditional and explainable anomaly detection on financial tabu-
lar data. Traditional anomaly detection techniques flag the entire
record as an anomaly (step 1) providing only a single score for
each observation. This information is not enough to understand
the cause of irregularity and only answers the question “which
samples are anomalies?”. Our framework extends it to explainable
anomaly detection providing cell error detection mechanism (step
2) which allows answering the question “why is it an anomaly?”.
In addition, the model is capable of estimating the expected values,
that should have been in place of the errors (step 3). This property
allows answering the question “what should have been reported
instead?”. These steps are utilized as the explainability properties of
the model and help the domain expert to understand the anomalous
characteristics of the detected anomalies.

In summary, we present the following contributions:
• Wedemonstrate that denoising autoencoder neural networks
can be utilized to explain the cause of irregularity of a par-
ticular sample for mixed type tabular data.

• We show that such a model can successfully detect reporting
errors on the attribute level (cell) providing corresponding
confidence scores, as well as proposing the expected esti-
mates for fixing the error.

• We propose an extension of the model with an enhanced loss
and illustrate that such technique outperforms traditional
methods based on the selected metrics.

The remainder of this paper is structured as follows: Section 2
provides an overview of the related work. In Section 3 we describe
the autoencoder neural network model with its denoising extension
together with the proposed methodology for detecting the erro-
neous cells. Next, Section 4 and 5 outline the experimental setup
and results. We conclude the paper with a summary and future
research directions in Section 6.

2 RELATEDWORK
The literature survey hereafter focuses on (1) developed row and
cell anomaly detection techniques for financial tabular data, and
(2) existing models designed for explainable anomaly detection.

2.1 Anomaly Detection in Financial Tabular
Data

Anomaly detection has been an active research area in different
domains, with a number of methods developed using deep learning
[31]. Especially, tabular data is becoming more and more attractive
for deep learning techniques [5]. Nowadays, autoencoders have
been widely used not only for representation learning but also for
anomaly detection in variety types of financial data [7]. Recently, a
number of techniques were developed using autoencoders to detect
anomalies in large scale accounting data [39–41], identify traces

of money laundering and fraud [22, 33] or learn behavioral fraud
features [47]. Besides this, Schreyer et al. [38] have demonstrated
successful detection of accounting anomalies in a self-supervised
learning setup together with downstream audit tasks. Moreover,
autoencoders are a popular technique for detecting credit card fraud
schemes [23, 34]. In the context of financial fraud, a number of un-
supervised and semi-supervised techniques are gaining popularity
[18].

Recently, Nazabal et al. [28] proposed a framework to model
variational autoencoders for fitting missing cells in the data. The
technique includes handling not only categorical and numerical
data types but also ordinal, interval and count. Also, similar to our
approach, Eduardo et al. in [12] proposed the robust version of the
VAE for cell-wise outlier detection for mixed type data.

2.2 Explainable Anomaly Detection
The field of “Explainable AI” (XAI) is rapidly developing, enhancing
variety of the models which help the domain experts slightly open
the “black-box” and understand the underlying decision-making
process of the complex algorithms [9]. Recently, there have been a
number of techniques introduced [10, 27] in the area of XAI. Such
model agnostic methods like SHapley Additive exPlanations (SHAP)
[26], Local Interpretable Model-Agnostic Explanations (LIME) [37]
or DeepLIFT [42] showed significant success for their abilities to
explain the output of almost any machine learning model. At the
same time, the usage of shapley values is becoming popular in
explaining anomalies. Antwarg et al. [2] used the kernel SHAP to
explain the anomalies detected by the autoencoder neural network
in an unsupervised scenario. Similarly, Takeshi et al. [43] success-
fully used the power of shapley values in linear models such as PCA.
Nguyen et al. [29] have proposed the combined version of the au-
toencoder and OC-SVM to explain the decision-making process of
detected outliers in unsupervised anomaly detection tasks. Another
unsupervised attempt was made by Chen et al. [8] to localize struc-
tural and non-structural anomalies in computer vision. Previously,
Bergmann et al. [3] proposed the perceptual loss for autoencoders to
identify inter-dependencies between local image regions. Recently,
Amarasinghe et al. [1] developed a framework using deep neural
networks to explain the cause of detected DoS attacks in a super-
vised manner. A gradient-based approach was utilized by Nguyen
et al. [30] to develop a framework for detecting anomalies in a net-
work traffic using variational autoencoder. Another attempts using
attention learning mechanism were proposed by Venkataramanan
et al. [44] and Xu et al. [48]. Also, an explainable recommendation
system using autoencoder was developed by Haghighi et al. [17].
The model was designed to explain the outputs of the recommender.
Kauffmann et al. [21] used a deep Taylor decomposition to explain
various anomaly types. Another practical application to explain
the output of black-box model was described by Ramamurthy et al.
[35]. They build a multilevel explanation tree that characterizes the
local and global explanations of the records. A number of attempts
were also made to model the detection of cell errors in medical
and geoscience domains. Jan et al. [46] have proposed a cell outlier
diagnostics detection technique and evaluated it on three different
medical datasets. Similarly, the importance of multivariate outlier
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1. Row anomaly detection

numerical
attributes

categorical
attributes

Incoming data confidence2. Cell error detection 3. Expected values estimation

Traditional Anomaly Detection Explainable Anomaly Detection

Figure 1: A schematic process overview of explainable anomaly detection (AD) for mixed type tabular data. In comparison
to traditional AD which allows only row anomaly detection (1), explainable AD supplies the detection of cells responsible
for high anomaly score (2) as well as the estimation of expected values for fixing an error (3). The coloring reflects the error
confidence of a particular cell entry.

detection in the field of geosciences was recently demonstrated in
by Filzmoser et al. [13].

According to the systematic review of Riyanul et al. [20] only 2%
of the XIA research papers are focused on the finance domain. The
literature survey above also demonstrated the overall popularity of
XAI techniques, but very limited application of anomaly explana-
tions for financial data, especially in combination with denoising
autoencoder neural networks.

3 METHODOLOGY
In this section, we describe the autoencoder neural network, its
denoising extension with the proposed loss, as well as the specifi-
cation of the framework for explaining anomalies.

3.1 Autoencoder Neural Network
Formally, we denote a set of instances 𝑥1, 𝑥2, ..., 𝑥𝑁 in a tabular
dataset 𝑋 . Every instance encompasses a set of attributes 𝑑 ∈
{1, ..., 𝐷} with either numeric 𝑥𝑑num𝑛 ∈ R or categorical type 𝑥𝑑cat𝑛 ∈
{1, ...,𝐶} where 𝐶 is the total number of unique categories of the
feature 𝑑 .

An autoencoder (AE) neural network is a type of feed-forward
network that aims to perform a lossy data compression into a lower
dimensional feature space and afterwards reconstruct it back to
the original data space with minimal loss. The encoder network 𝑓𝜃
performs the data compression and the decoder network 𝑔𝜓 accom-
plishes the reconstruction. Upon the successful model training with
a set of parameters 𝜃 and𝜓 , the reconstruction error is often used
to quantify the anomaly degree of an instance. The reconstruction
error reflects how good an instance fits into the general patterns of
the data. Hence, an inlier receives a relatively low reconstruction
error, whereas an outlier obtains a higher one, which attests its devi-
ation from the common data structure. The network is trained in an
end-to-end unsupervised fashion by minimizing the reconstruction
loss, formally defined as follows:

argmin
𝜃𝜓

∥𝑋 − 𝑔𝜓 (𝑓𝜃 (𝑋 ))∥ (1)

Due to the mixed type nature of the data, we define the recon-
struction loss of every instance as the sum of two losses. For each
one-hot encoded representation of the categorical attribute the (1)
negative-log-likelihood loss is calculated and (2) the mean-squared
loss used for the numerical attributes, formally expressed by:

L𝜃,𝜓 (𝑥𝑑𝑛 ;𝑥𝑑𝑛 ) =
𝐷cat∑︁
𝑑=1

LNLL
𝜃,𝜓

(𝑥𝑑𝑛 ;𝑥𝑑𝑛 ) +
𝐷num∑︁
𝑑=1

LMSE
𝜃,𝜓

(𝑥𝑑𝑛 ;𝑥𝑑𝑛 ) (2)

where 𝑥𝑑𝑛 denotes the 𝑛 − 𝑡ℎ reconstructed sample and its attribute
𝑑 . We have observed that such loss design suits better for mixed
data type as it leads to a faster overall model convergence.

3.2 Denoising Autoencoder Neural Network
The denoising autoencoder (DAE) is an extension of the traditional
autoencoder neural network with the goal of removing noise from
the signal. Such a model is trained by disrupting the input data
with random noise and reconstructing the clean data. At first, a
corrupted instance 𝑥 is created by adding random noise to the clean
input instance 𝑥 . Next, the encoder network 𝑓𝜃 performs the com-
pression of the corrupted instance 𝑥 , and the decoder network 𝑔𝜓
accomplishes the reconstruction 𝑥 (noise removal). The training
objective function is the same as in the Equation 1. In the infer-
ence phase, the trained model is capable of transforming the noisy
data into noiseless. In addition to the denoising capabilities, such
model modification improves the robustness of the hidden layers
(i.e., latent layer representation) [45] as well as reduces the risk of
overfitting.
Enhanced loss. We have noticed, that the selection of the right
amount of injected noise during training is quite challenging for
mixed type tabular data. Too much noise leads the model to focus
mainly on the noise removal task, and the network fails to recon-
struct clean data sufficiently enough. On the contrary, too little
noise decreases noise removal capabilities, which affects the overall
cell error detection rate. Therefore, we propose an extension to the
loss function of the DAE. Specifically, we introduce a parameter
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Figure 2: A schematic overview of the training and inference phases of DAE for cell error detection and estimation of expected
values. In the corruption phase, random noise is added to a sample. Next, the DAE is trained on the corrupted data with the
goal to reconstruct the clean data. In the inference phase, the cells that failed to reconstruct, are flagged as an error, and the
reconstructed value is used as an estimation of the expected value to fix the error.

𝛼 = [0, 1] that allows us to weigh the noise removal vs. clean data
reconstruction within the batch. In practice, we found that selec-
tion of a fixed 𝛼 is challenging. Therefore, we propose to sample
it from the Beta(0.5, 0.5) distribution. The random sampling of 𝛼
can be understood as a regularization technique (somewhat similar
to dropout) to optimize both of our goals (noise removal and re-
construction of clean data). The alternating nature of 𝛼 (i.e., being
sampled close to the extremes of 0 or 1) seems to be beneficial to
training in many cases. The final loss has the following formulation:

L𝜃,𝜓 (𝑥𝑑𝑛 ;𝑥𝑑𝑛 ) = 𝛼 m⊙L𝜃,𝜓 (𝑥𝑑𝑛 ;𝑥𝑑𝑛 )+(1−𝛼) m̄⊙L𝜃,𝜓 (𝑥𝑑𝑛 ;𝑥𝑑𝑛 ) (3)

where m is a binary mask vector m ∈ {0, 1}𝑑 that yields 1 at the
entry with noise or 0 otherwise, m̄ is its complement, and ⊙ is the
element-wise multiplication.

3.3 Anomaly Explainer
To explain the cause of an anomaly, we utilize the properties of
the reconstruction error of each separate attribute of the trained
DAE. Such an approach is also quite common in practice using
traditional AE. Although this typically yields good performance on
the detection of row anomalies, it becomes less precise in identifying
the exact cells that contain errors. Hence, the goal of the proposed
framework is to answer three questions by supplying the domain
expert with the following information:

• Which samples are anomalies? Row Anomalies: identify
a subset of 𝐾 row anomalies with the highest reconstruction
errors.

• Why is it an anomaly? Cell Errors: for every cell in 𝐾 se-
lected anomalies, compute the confidence 𝜋𝑑𝑛 that the value
𝑥𝑑𝑛 contains an error.

• What should have been reported instead? Expected Val-
ues: for every cell in 𝐾 selected anomalies, collect the recon-
structed value 𝑥𝑑𝑛 .

Training. As depicted in Figure 2 the DAE is trained to reconstruct
a clean (noiseless) instance 𝑥𝑛 from its corrupted counterpart 𝑥𝑛 .
During the training, the reconstruction error between the clean
instance 𝑥𝑛 and its reconstruction 𝑥𝑛 is minimized.

Inference. Once the DAE is trained, the reconstruction error 𝑥𝑑𝑛
of each attribute value of the test (unseen) data is calculated. De-
pending on the attribute type (either categorical or numerical) two
different functions are applied to obtain the error confidence 𝜋𝑑𝑛 of
this cell. For categorical attributes, we compute the complement of
the normalized reconstruction category 𝑐 as the following:

Cell: 𝜋𝑑cat𝑛 = 1 − 𝑎𝑑𝑐𝑛 (4)

where 𝑎(·) is the softmax function 𝑎𝑑𝑐𝑛 = softmax(𝑥𝑑𝑛 )𝑐 calculated
on the reconstructed representation of the attribute 𝑑 . The super-
script 𝑐 identifies a particular category in that attribute. For nu-
merical attributes, we compute the complement of the negative
exponential function between the input value 𝑥𝑑𝑛 and its reconstruc-
tion 𝑥𝑑𝑛 as the following:

Cell: 𝜋𝑑num𝑛 = 1 − 𝑒−(𝑥
𝑑
𝑛−𝑥𝑑𝑛 )2 (5)

Correspondingly, the row anomaly score is computed as the sum
of all categorical and numerical cell scores 𝜋𝑑𝑛 :

Row: 𝜋𝑛 =

𝐷∑︁
𝑑=1

𝜋𝑑𝑛 (6)

The expected values are obtained by collecting the reconstructed
values 𝑥𝑑𝑛 . For categorical attributes, we use the highest probability
category argmax𝑐 𝑎𝑑𝑐𝑛 of the softmax transformation 𝑎𝑑𝑛 .

4 EXPERIMENTAL SETUP
In this section, we describe the details of the conducted experiments.
We describe the datasets as well as the noise injection procedure
that was applied to these datasets, together with the metrics used to
evaluate the performance of the results. For training and evaluation
of the neural network models, the PyTorch v1.10.2 [32] framework
was used.

4.1 Datasets
We benchmark the developed technique with open-source and real
world datasets. Three public datasets and one proprietary dataset
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were selected to evaluate the performance of the proposed frame-
work. Below, we provide the description of each dataset:

• Credit Default3: The dataset is taken from the UCI machine
learning repository [11] and contains information on bill
statements of credit card clients, their default payments,
history of payment as well as the demographic factors of the
clients in Taiwan during the period April 2005 to September
2005 [49].

• IEEE Fraud4: The dataset consists of the electronic transac-
tions from the e-commerce service provider Vesta Corpora-
tion. The dataset was published to improve the efficiency of
the fraud detection alert system.

• Adult5: The dataset is taken from the UCI machine learn-
ing repository [11] and consists of personal income records,
where the task is to predict whether an income exceeds $50k
per year.

• Holdings6: This proprietary dataset consists of the individ-
ual holdings of the investment funds issued by investment
companies [4]. Each record reflects the asset or liability value
submitted by the reporting entity at the end of the month.

All datasets have mixed attribute types as described in Table 1.
In the data preprocessing step, all categorical attributes are encoded
using the one-hot encoding technique. Numerical attributes are
standardized to have 0 mean and standard deviation 1. Afterwards,
the one-hot encoded representation is combined with standardized
numerical attributes. The final number of encoded attributes is
reflected in the last column (“Encoded”) of the Table 1.

Table 1: Descriptive statistics of the selected datasets

Data Rows Columns
Categ. Num. Encoded

Credit Default 30,000 10 13 160
IEEE Fraud 569,877 14 380 502
Adult 32,561 8 5 126
Holdings 118,569 7 129 203

4.2 Corruption process
To the best of our knowledge, there is no publicly available dataset
with labeled cell errors. Therefore, it is a standard practice to artifi-
cially generate anomalies by randomly corrupting the clean data
[25, 36]. In our approach, we also follow a similar strategy and
turn 3% of the inliers into the outliers by randomly corrupting
attribute values in both training and test sets. Selection of the at-
tributes for data corruption is also done at random. We corrupt at
most 50% of the features which are selected uniformly at random
as following: 𝑐 = Unif(1, 𝑐𝑚𝑎𝑥

2 ), where 𝑐𝑚𝑎𝑥 is the total number

3The dataset is publicly available via: https://archive.ics.uci.edu/ml/datasets/default+
of+credit+card+clients
4The dataset is publicly available via https://www.kaggle.com/c/ieee-fraud-detection/
overview
5The dataset is publicly available via https://archive.ics.uci.edu/ml/datasets/adult
6In compliance with strict data privacy regulations, neither content nor the descriptive
statistics of the dataset can be made publicly available.

of features. Dataset Holdings already contains the real-world cell
errors together with its clean value.

To artificially corrupt the samples, we applied different tech-
niques for both categorical and numerical features.
Numerical features. The injection of noise for a numerical feature
is performed using an additive noise process, with the corrupted
value obtained as: 𝑥𝑑𝑛 = 𝑥𝑑𝑛 + 𝛿 . Here 𝛿 is randomly sampled from
one of the Gaussian, Laplace, or Log-Normal distributions with
𝜇 = 0 and 𝜎 = 𝜎𝑑𝛾 . Selection of 𝛾 follows uniform distribution
𝛾 = Unif(3, 5) and 𝜎𝑑 is the standard deviation of the original
attribute. The selection of the distribution at the corruption phase
is also done uniformly at random.
Categorical features. Two alternatives are used to inject a noise
into categorical attributes. With the first alternative, the original
entry is replaced by picking a categorical entry uniformly at random
from the distinct values of this attribute. The second option creates
a new categorical entry by performing character manipulations
(insertion, flipping or deletion) with the original categorical entry
and ensuring a completely new entry is created. Such technique
in practice imitates a typo that can often appear during the data
insertion process.

4.3 Evaluation metrics
To assess the quality of the proposed technique, we utilize the
following three metrics and measure the detection rate.
Precision at K (P@K). We utilized this metric for the traditional
row anomaly detection to assess overall model capabilities to detect
anomalies. Hence, this metric is referred to our first question, “which
samples are anomalies?”. The metric is popular in recommendation
system evaluation tasks, where the user is interested only in the
top 𝐾 predictions. Similarly, in a regulatory reporting environment,
it is important that top 𝐾 retrieved anomalies are indeed relevant,
hence reducing the false positive rate as well as human effort.

P@K(𝑦,𝑦) = TP@K(𝑦,𝑦)
𝐾

(7)

where TP@K is the total number of true anomalies in the top 𝐾
retrieved anomalies given the vectors 𝑦 and 𝑦 of true anomalies
and row-wise reconstruction errors correspondingly. The value of
𝐾 in our case is selected as the total number of true anomalies in
the test set.
Mean Average Precision (mAP). This metric reflects the perfor-
mance of the model in answering the second question, “why is it
an anomaly?”. Thus, it estimates the quality of cell error detection
across all attributes. The confidence of the cell error 𝜋𝑑 , described
in Section 3.3, is used as the input to the function for computing
the Average Precision (AP). The positive labels in this case are the
cells with noise. Formally, it is defined as:

AP(𝜋𝑑 ) =
𝑁∑︁
𝑖=1

(𝑅𝑖 − 𝑅𝑖−1)𝑃𝑖 (8)

where 𝑅𝑖 (𝜋𝑑 ) = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ) denotes the detection recall and
𝑃𝑖 (𝜋𝑑 ) = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ) denotes the detection precision of the
𝑖 − 𝑡ℎ anomaly score threshold. The mean Average Precision (mAP)
is computed as the average of the AP scores across all attributes
𝑚𝐴𝑃 = 1

𝐷

∑𝐷
𝑑=1𝐴𝑃 (𝜋

𝑑 ).

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://www.kaggle.com/c/ieee-fraud-detection/overview
https://www.kaggle.com/c/ieee-fraud-detection/overview
https://archive.ics.uci.edu/ml/datasets/adult
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Mean Expected Value (mEV). With this metric, we evaluate the
ability of the model to answer the third question, “what should
have been reported instead?”. In order to assess the correctness of
the expected (or fixed) values, we compute the Standardized Mean
Squared Error (SMSE) between the original ground truth and its
reconstruction.

For numerical attributes, it is additionally normalized by the
empirical variance of this attribute and has the following form:

𝐸𝑉 (𝑥𝑑num ) = 1
�̂�

�̂�∑︁
𝑛=1

(𝑥𝑑𝑛𝑜 − 𝑥𝑑𝑛 )2

𝜎2
(9)

where 𝜎 is the standard deviation and �̂� is the total number of
corrupted cells in the attribute 𝑥𝑑 . The subscript 𝑜 in 𝑥𝑑𝑛𝑜 denotes
the ground truth original value (i.e., without error).

For categorical features, we utilize the Brier score [6] between
the one-hot representation of the ground truth value and the re-
constructed softmax representation of this category and has the
following form:

𝐸𝑉 (𝑥𝑑cat ) = 1
2�̂�

�̂�∑︁
𝑛=1

𝐶∑︁
𝑐=1

(𝑥𝑑𝑐𝑛𝑜 − 𝑥𝑑𝑐𝑛 )2 (10)

where 𝑥𝑑𝑐𝑛𝑜 is the one-hot encoded value of the category 𝑐 . The factor
1
2 is used to normalize the score to the range [0, 1].
The mean Expected Value (mEV) is computed as the average of

Expected Values (EV)𝑚𝐸𝑉 = 1
𝐷

∑𝐷
𝑑=1 𝐸𝑉 (𝑥𝑑 ) across all attributes.

4.4 Model training setup
We split every dataset into training and test sets by a fraction of 70
and 30 correspondingly. According to the anomaly injection process
described in Section 3 the test set (and if necessary, train set) is
populated with noise. Once the model is trained, all evaluation
metrics are collected on the test set. The exact network architecture
used for each dataset is described in Table 2.

Table 2: Selected architecture setup of the (denoising) au-
toencoder neural network used for each dataset

Dataset Neurons per hidden layer

Credit Default 160-128-64-128-160
Adult 126-128-64-128-126
IEEE Fraud 502-512-256-512-502
Holdings 203-256-128-256-203

We train every model for a maximum of 5000 epochs with a mini-
batch of size 128 and use the Adam optimizer [24] with 𝛽1 = 0.9,
𝛽2 = 0.999 in combination with a cosine learning rate scheduler.
The parameters of the encoder and decoder are randomly initiated
as described in [15].
Baseline models. To illustrate the practical applicability of the
proposed technique, we compare its performance against several
methods where cell error detection is feasible. Therefore, we se-
lect PCA [14], Marginal Distribution and traditional AE [19]. For
Marginal Distribution,we follow the same approach described by Ed-
uardo et al. [12] and fit a Gaussian mixture model on every numeric

attribute separately, using the negative log-likelihood as the cell
error. For categorical attributes, a normalized category frequency is
used for expected value estimation. For the AE, we evaluate two sce-
narios: the training set contains anomalies (AE with anomalies) and
the training set does not contain anomalies (AE no anomalies). The
first scenario imitates the case in industry when the AE is trained
from scratch every time new data arrives, without any knowledge
about the historical data. The second scenario imitates the case
when the historical data with cell errors and their corrected values
is available. Here it is possible to train the model on a pure “clean”
version of the historical data and evaluate on the unseen data with
anomalies.

5 EXPERIMENTAL RESULTS
In this section, we describe the results of the conducted experiments.
We demonstrate the practical applicability with qualitative assess-
ment as well as the efficiency of the proposed technique, providing
the quantitative results.

5.1 Qualitative evaluation
To explain the cause of irregularity of a potential anomaly, the
framework arms the domain expert with a powerful visual inspec-
tion tool. Every potential anomaly can be quickly screened and
the question “why is it an anomaly?” can be answered. This is
achieved by flagging individual cells with detected errors. Figure 3
depicts the interface of the cell error detection framework. Here,
the height of the bars reflects the model’s confidence about the
reported errors of a new sample. Next, to allow the domain expert
to answer the question “what should have been reported instead?”,
the framework proposes the expected sample. It gives an estima-
tion of the expected values to be reported. In addition to the cell
scores, five similar data samples picked from the original dataset
are shown under the screened sample. This allows the domain ex-
pert to compare certain entries of the screened sample with the
entries of its closest neighbors. Selection of such samples is compu-
tationally inexpensive, since the pairwise distances are computed
on the transformed representation of the bottleneck layer of the
DAE. With this tool, the domain expert can pick any data sample,
produce such a graphic to quickly assess the nature of the reported
errors and execute necessary steps, if required. Such a compact
form (1) provides more explanation capabilities about the anomaly
nature, (2) saves the screening time, and (3) reduces the human
error during the quality checks.
Latent space. Sampling of the anomalies for screening can also be
done using latent data representation produced by themodel. This is
another powerful property of the framework that allows the domain
expert to visually inspect the groups of observations. AEs possess
this capability as they are able to learn expressive low dimensional
representations of the data in the latent space. Albeit tree based
models have the ability to plot the decision tree hierarchy, which
makes them indeed preferable tool in industry, they lack the ability
to provide the learned data representation with relative similarities
between the observations. An example of such data representation
is depicted on Figure 4. Here we plot the latent representation of
the trained DAE and AE. The former provides a better isolation of
anomalies from the regular data points by grouping them into a
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SEX EDUC MARRI AGE PAY0 PAY2 PAY3 PAY4 PAY5 PAY6 BILL1 BILL2 BILL3 BILL4 BILL5 BILL6 AMT1 AMT2 AMT3 AMT4 AMT5 AMT6 LIMIT
new sample 1 1 2 40 -1 -1 -1 -1 6 -1 3457 1997 5115 3295 222. -142 2020 3635 3295 222. -114 2129 3600
expected sample 1 1 2 40 -1 -1 -1 -1 -1 -1 1149 1212 2186 9009 -417 -125 7310 2011 4741 -148 3611 3531 3259
1st closest neighbor 1 2 1 41 0 4 8 0 0 0 2167 7142 2371 2412 2468 2522 3400 2640 2792 1100 1100 1103 7000
2nd closest neighbor 1 2 2 35 1 -2 -1 0 0 -1 0.0 0.0 8167 4617 3308 2912 0.0 2202 7308 0.0 2912 0.0 2200
3rd closest neighbor 1 2 2 28 0 0 0 0 0 6 3910 4014 7314 7560 4301 4386 -17. 1675 1655 1710 1719 1616 9945
4th closest neighbor 1 1 1 38 0 0 0 0 0 0 8242 -142 1536 1553 1552 1608 5526 2259 5504 5655 9471 5269 4700
5th closest neighbor 2 2 1 41 -2 -1 -1 -1 -2 -2 852. 1738 1866 5517 2660 1480 1746 1874 5517 2660 1480 0.0 2400
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Anomaly Explainer: Cell error detection and estimation of the expected values

Figure 3: Anomaly explainer dashboard that illustrates the outcome yield by the model trained on the Credit Default dataset.
A random anomaly (“new sample”) is picked from the test set. Potential cell errors are colored with red gradient and cor-
responding confidence is reflected in bar graphs. The red arrows point to the position of the true errors. The second row
contains the expected values estimated by the model, and the remaining rows are the 5 closest original data instances based
on the transformed low dimensional latent representation.

Figure 4: UMAP embedding of the latent representation 𝑧 between the denoising autoencoder (left) and autoencoder (right)
neural networks. The embedding is done on the Credit Default dataset and is projected from 64 to 2 dimensional space of the
converged model after 5000 training epochs.

single cluster. In addition, the DAE seems to provide amore compact
form of grouping the regular data points with similar characteristics.
In contrast, the AE yields a sparse form of the data representation
and anomalies also scattered across the whole latent space. Such
representation becomes less valuable for the domain expert who
expects to have more compact data representation with more or
less clear group separations. This property is especially important
in industry because it allows to “walk in the data” and quickly
sample the data for screening. The domain expert can sample any
data point and produce the anomaly explainer dashboard like on
Figure 3. This gives an opportunity to quickly audit (financial)
entities with similar underlying characteristics (1) as well as the
entities that change their cluster assignment (2) which could lead
to behavioral changes.

5.2 Quantitative evaluation
We are interested in the precise localization of errors in cells, as
this explains the characteristics of an anomaly. As described earlier,
we assess the quality of the proposed technique using different
metrics, datasets and baseline models. Table 3 contains the scores
collected from the conducted experiments. Based on these, the DAE
outperforms the baseline AEs on almost all metrics and datasets.
We believe that this is due to the fact that the traditional AE yields
high reconstruction errors not only on the corrupted cells, but
on other (neighboring) cells as well, which produces lots of false
positives. Instead, the DAE due to its training nature, reconstructs
each cell more precisely and hence, produces less false positives. In
the cases where it concedes (mAP of numerical attributes of Adult
and IEEE Fraud), we believe the reason lies in the uninformativeness
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Dataset Model P@K ↑ mAP ↑ mEV ↓
categorical numerical categorical numerical (log)

Credit Default

PCA 0.584 ± 0.004 0.709 ± 0.013 0.211 ± 0.001 0.446 ± 0.001 2.750 ± 0.001
Marginals 0.577 ± 0.013 0.539 ± 0.000 0.444 ± 0.002 0.343 ± 0.000 1.975 ± 0.022
AE with anomalies 0.651 ± 0.022 0.350 ± 0.029 0.238 ± 0.012 0.821 ± 0.011 2.846 ± 0.016
AE no anomalies 0.814 ± 0.008 0.615 ± 0.034 0.476 ± 0.009 0.633 ± 0.024 2.177 ± 0.028
DAE 0.826 ± 0.005 0.818 ± 0.007 0.617 ± 0.005 0.245 ± 0.004 0.428 ± 0.037
DAE∗ 0.835 ± 0.007 0.821 ± 0.006 0.635 ± 0.015 0.243 ± 0.004 0.415 ± 0.035

Adult

PCA 0.328 ± 0.000 0.135 ± 0.001 0.228 ± 0.001 0.422 ± 0.000 2.069 ± 0.001
Marginals 0.620 ± 0.004 0.192 ± 0.000 0.626 ± 0.008 0.299 ± 0.000 1.988 ± 0.061
AE with anomalies 0.478 ± 0.007 0.144 ± 0.013 0.294 ± 0.011 0.953 ± 0.005 2.966 ± 0.012
AE no anomalies 0.634 ± 0.014 0.262 ± 0.009 0.493 ± 0.006 0.867 ± 0.012 2.536 ± 0.005
DAE 0.636 ± 0.015 0.544 ± 0.013 0.528 ± 0.013 0.451 ± 0.020 1.572 ± 0.043
DAE∗ 0.638 ± 0.003 0.532 ± 0.010 0.538 ± 0.007 0.440 ± 0.006 1.725 ± 0.035

IEEE Fraud

PCA 0.906 ± 0.001 0.622 ± 0.006 0.352 ± 0.001 0.487 ± 0.001 4.554 ± 0.001
Marginals 0.972 ± 0.001 0.325 ± 0.000 0.819 ± 0.001 0.293 ± 0.000 4.474 ± 0.001
AE with anomalies 0.802 ± 0.008 0.531 ± 0.005 0.265 ± 0.006 0.787 ± 0.012 4.587 ± 0.032
AE no anomalies 0.975 ± 0.001 0.445 ± 0.014 0.510 ± 0.008 0.555 ± 0.021 4.412 ± 0.102
DAE 0.975 ± 0.004 0.766 ± 0.020 0.784 ± 0.011 0.228 ± 0.004 4.005 ± 0.003
DAE∗ 0.974 ± 0.001 0.765 ± 0.014 0.786 ± 0.006 0.227 ± 0.006 4.015 ± 0.125

Holdings

PCA 0.200 ± 0.007 0.005 ± 0.001 0.042 ± 0.003 0.500 ± 0.001 13.325 ± 0.001
Marginals 0.092 ± 0.002 0.001 ± 0.000 0.083 ± 0.001 0.535 ± 0.000 11.610 ± 0.001
AE with anomalies 0.163 ± 0.017 0.010 ± 0.010 0.040 ± 0.004 0.974 ± 0.028 13.177 ± 0.100
AE no anomalies 0.157 ± 0.019 0.012 ± 0.006 0.039 ± 0.003 0.942 ± 0.077 13.169 ± 0.115
DAE 0.206 ± 0.005 0.045 ± 0.010 0.098 ± 0.009 0.736 ± 0.035 11.576 ± 0.018
DAE∗ 0.201 ± 0.007 0.030 ± 0.002 0.081 ± 0.006 0.709 ± 0.066 11.632 ± 0.034

Table 3: Comparative performance evaluation of the proposed model against the baselines on all datasets using three metrics.
Themodelmarkedwith asteriskwas trained using the enhanced loss described in Section 3.2. Every score reflects themean and
standard deviation from 5 experiments with varying initialization seeds. We can see that DAE outperforms its counterparts
on average by 5%-30%.

of certain attributes [16]. We have noticed, that for such scenarios,
the Marginal model yields better results.

In addition, the AE trained only on clean data (AE no anomalies)
almost always outperforms its counterpart trained on the data with
anomalies (AE with anomalies). We believe, that this happens be-
cause the AE trained with anomalies at some point during training
shifts its focus towards learning the anomalies since they are re-
sponsible for the highest reconstruction errors. As a result, in the
inference phase, the anomalies are getting lower reconstruction
errors. That implies that in practice it’s better to deploy the model
trained on the “clean” data (if available) rather than to retrain an AE
on new (potentially noisy) data from scratch. Even more efficient is
to use the historical anomalies and let the model learn from this.

The results on the real world dataset Holdings attest this. Since
the dataset Holdings contained the clean and noise versions, we
were also able to compare the performance of the DAE with various
noise types. Three models were trained using only artificial noise
(1), only real world noise (2) and real world + artificial noise (3).
Based on the collected scores, using both (3) boosts the performance
notably. This is expected, as it allows the DAE (unlike the AE) to
also learn from the distribution of real world noise during training.

6 CONCLUSION AND FUTUREWORK
In this work, we proposed a framework for explaining detected
anomalies using denoising autoencoder neural networks for mixed
type tabular data. To explain the cause of an anomaly, the frame-
work produces confidence scores of potential errors for every cell
entry, as well as proposes corresponding estimated values to fix the
errors. In addition, we propose the enhanced extension using the
extended loss specifically designed for cell error detection.

We evaluated the proposed approach on three publicly available
datasets and one proprietary financial dataset with mixed type
attributes. The produced results are compared against the baseline
and underpin the practical applicability of the proposed technique.

We believe that such a framework can become a helpful toolbox
for data quality experts in their daily tasks and can be easily inte-
grated into the corresponding procedural pipeline. We believe the
technique can also be applied in a variety of other domains outside
the financial field in the future.
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