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Abstract: In this paper, we propose the fusion of event streams and point clouds for scene flow estimation. Bio-inspired
event cameras offer significantly lower latency and higher dynamic ranges than regular RGB cameras, and are
therefore appropriate for recording high-speed motions. However, events do not provide depth information,
which makes them unsuitable for scene flow (3D) estimation. On the other hand, LiDAR-based approaches are
well suited to scene flow estimation due to the high precision of LiDAR measurements for outdoor scenes (e.g.
autonomous vehicle applications) but they fail in the presence of unstructured regions (e.g. ground surface,
grass, walls, etc.). We propose our EvLiDAR-Flow, a neural network architecture equipped with an attention
module for bi-directional feature fusion between an event (2D) branch and a point cloud (3D) branch. This
kind of fusion helps to overcome the lack of depth information in events while enabling the LiDAR-based
scene flow branch to benefit from the rich motion information encoded by events. We validate the proposed
EvLiDAR-Flow by showing that it performs significantly better and is robust to the presence of ground points,
in comparison to a state-of-the-art LiDAR-only scene flow estimation method.

1 INTRODUCTION

Scene flow estimation is one of the most important
steps towards a robust understanding of scene dynam-
ics. It involves constructing a 3D motion field of the
scene and can be used in several applications related
to navigation and autonomous driving systems.

Until very recently, RGB image-based vision sys-
tems (where the input is often a pair of stereo RGB
images) have been widely used for scene flow estima-
tion (Ma et al., 2019; Menze and Geiger, 2015; Sax-
ena et al., 2019; Schuster et al., 2018). However, these
systems perform poorly in excessively dim or bright
environments due to the low dynamic range of RGB
sensors. Moreover, the low frame rate typically sup-
ported by RGB cameras makes them prone to motion
blur when attempting to capture high-speed motions.

On the contrary, event-based cameras are designed
to provide high dynamic ranges and low temporal res-
olutions (Gehrig et al., 2021b; Low et al., 2020; Zhu
et al., 2018) suitable for capturing high speed motions
even under poor light conditions where RGB cameras
suffer. Event cameras detect pixel-level brightness
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changes and record them as events. However, these
cameras do not capture depth information, and there-
fore, do not provide sufficient information for scene
flow estimation. Additionally, event data often suf-
fers from noise and conventional methods often have
to resort to possibly sub-optimal, hand-crafted noise
removal techniques (Low et al., 2020).

Unlike event cameras, LiDAR sensors provide a
highly accurate representation of the scene geome-
try in the form of point clouds. Although LiDAR-
based approaches have achieved impressive results on
scene flow estimation (Gu et al., 2019; Kittenplon
et al., 2021; Liu et al., 2019), most of these meth-
ods operate under ideal settings and their accuracy
is badly affected in the presence of large planar ar-
eas (e.g. the ground surface, grass, etc.). While scene
flow estimation for these areas is not useful in prac-
tice, the mere presence of these areas can significantly
worsen the performance of such models on other parts
of the scene. For this reason, current LiDAR-based
approaches remove the ground surface, often by ap-
plying a naı̈ve threshold (Gu et al., 2019; Kittenplon
et al., 2021; Puy et al., 2020; Wei et al., 2021; Wu
et al., 2020). This threshold is not trivial to generalize
and can mistakenly omit some important parts in the
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(a) Both models trained without (w/o) ground.

(b) Both models trained with (w/) ground.

Figure 1: Qualitative results on an example from DSEC
(Gehrig et al., 2021a), a real-world data set; source points,
target points and source points warped by the predicted
scene flow have been color-coded as green, blue and red,
respectively. Our EvLiDAR-Flow trained without ground
points in the inputs, performs better than the state-of-the-
art LiDAR only approach FlowStep3D (Kittenplon et al.,
2021) (top right and top left, respectively). Even after train-
ing both models with ground points, FlowStep3D does not
perform well, while our model continues to produce accu-
rate flow estimates (bottom left and bottom right, respec-
tively). The fusion of events and point clouds makes our
model robust to the presence of such points in the scene.

scene (e.g. if the ground surface has an incline). Even
with the successful removal of ground points, most
real world scenes still contain other problematic areas
like grass, buildings and walls.

In order to exploit the properties of events for
scene flow estimation and to overcome the aforemen-
tioned drawbacks of LiDAR-based approaches, we in-
troduce EvLiDAR-Flow, a neural network architec-
ture which, using a learnable attention mechanism,
enables the event and point cloud modalities to com-
plement each other towards successful scene flow es-
timation especially in the presence of large planar ar-
eas (e.g. the ground surface). As illustrated in Fig-
ure 1, the proposed EvLiDAR-Flow is largely unaf-
fected by the presence of such areas.

Previous works using sensor fusion for scene
flow estimation have largely used either RGB-D (e.g.
Kinect) or RGB images with LiDAR point clouds in
different modes of fusion (Battrawy et al., 2019; Liu
et al., 2022; Rishav et al., 2020; Teed and Deng,
2021). To the best of our knowledge, ours is the first

work to fuse events and point clouds in the context of
scene flow.

In this work, we make the following key contribu-
tions:

1. We propose EvLiDAR-Flow – a deep neural net-
work architecture which fuses events and point
clouds for jointly estimating scene flow from the
point cloud (3D) branch and optical flow from the
event (2D) branch.

2. The proposed EvLiDAR-Flow uses a fully learn-
able attention-based fusion module which forces
feature sets from both modalities to pay attention
to specific parts of each other. Through an abla-
tion study, we demonstrate the superiority of our
bi-directional fusion module over uni-directional
fusion.

3. We demonstrate with the help of quantitative and
qualitative results, that our proposed EvLiDAR-
Flow outperforms the state-of-the-art LiDAR-
only scene flow model FlowStep3D (Kittenplon
et al., 2021) on the real-world data set DSEC
(Gehrig et al., 2021a). Moreover, EvLiDAR-Flow
is robust to the presence of ground points which
are otherwise detrimental to the performance of
FlowStep3D.

2 RELATED WORK

Before 3D scene flow, research in scene understand-
ing was restricted to optical flow, i.e. estimating the
motion field only on a two-dimensional plane using
image-based vision systems (Dosovitskiy et al., 2015;
Hui et al., 2018; Ilg et al., 2017; Sun et al., 2018; Teed
and Deng, 2020; Weinzaepfel et al., 2013; Xu et al.,
2017).

Event-based Optical Flow: Eliminating the lim-
itations of frame-based images (e.g. motion blur, low
dynamic range, etc.), event streams (Gallego et al.,
2020) are quickly gaining traction in the field of opti-
cal flow estimation (Hu et al., 2022; Lee et al., 2021;
Low et al., 2021; Low et al., 2020). Notable exam-
ples in deep learning based optical flow estimation are
Spike-FlowNet (Lee et al., 2020), EV-FlowNet (Zhu
et al., 2018) and E-RAFT (Gehrig et al., 2021b). E-
RAFT (Gehrig et al., 2021b) has recently established
state-of-the-art on the DSEC (Gehrig et al., 2021a)
data set. However, events often contain considerable
noise (Gallego et al., 2020) and provide only 2D in-
formation. Hence, unlike previous approaches, we
use events in fusion with another modality of vision
for robustly estimating 3D scene flow instead of 2D
optical flow.
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Figure 2: Model Architecture of the Proposed EvLiDAR-Flow.

LiDAR-based Scene Flow: LiDAR-based ap-
proaches have recently been shown to be superior in
comparison to other modalities (e.g. stereo and RGB-
D) for capturing 3D motion fields. FlowNet3D (Liu
et al., 2019) is the first LiDAR-based scene flow ap-
proach which applies deep learning directly on point
clouds (based on PointNet++ (Qi et al., 2017)) to
compute scene flow in conjunction with a correla-
tion volume. HPLFlowNet (Gu et al., 2019) further
enhances the correlation layer by computing corre-
lations at multiple scales (based on SPLATNet (Su
et al., 2018)) and using sparse bilateral convolutional
networks on a high-dimensional lattice. PointPWC-
Net (Wu et al., 2020) further introduces hierarchical
scene flow estimation based on PointConv (Wu et al.,
2019). FLOT (Puy et al., 2020) poses scene flow es-
timation as the task of finding soft correspondences
between consecutive point clouds. FlowStep3D (Kit-
tenplon et al., 2021) follows RAFT (Teed and Deng,
2020) and applies an unrolling technique, for itera-
tively refining the scene flow estimate and achieves
state-of-the-art results. PV-RAFT (Wei et al., 2021)
follows the same approach but introduces point-voxel
correlation fields. Although these LiDAR-based ap-
proaches have achieved impressive results, they still
suffer in the presence of planar regions (e.g. ground
surface for autonomous vehicles) where no rich 3D
information is present. The presence of such areas
can negatively impact the performance of the model
on other, more important parts of the scene. To this
end, we take the advantage of event streams for more
robustly estimating scene flow even in the presence of
unstructured regions.

Fusion for Scene Flow: Prior works have made
use of fusion between two modalities for enhanc-

ing scene flow estimation (Battrawy et al., 2019; Liu
et al., 2022; Rishav et al., 2020). LiDAR-Flow (Bat-
trawy et al., 2019) fuses stereo images with point
clouds. DeepLiDARFlow (Rishav et al., 2020) fuses
sparse LiDAR points with only a monocular image
instead of a pair of stereo images. CamLiFlow (Liu
et al., 2022) further introduces multi-level fusion with
a learnable interpolation module.

Unlike these approaches which fuse frame-based
images and point clouds, we propose to fuse event
streams and point clouds in a bi-directional man-
ner. Through the fusion mechanism used in our
EvLiDAR-Flow, we aim to use the richness in the in-
formation encoded by event streams in conjunction
with the precision of LiDAR data for robust scene
flow estimation.

3 EvLiDAR-Flow

Our architecture simultaneously operates on two con-
secutive LiDAR point clouds PC(t1) and PC(t2) cap-
tured at timestamps t1 and t2 respectively, and two
consecutive event streams EV (t0,t1) and EV (t1,t2) for
the time intervals [t0, t1] and [t1, t2] respectively, where
t2 > t1 > t0. Additionally, in order to approximately
synchronize the two modalities, t2− t1 = t1− t0 ≈ τ,
where τ is also the time interval between two con-
secutive scans of the LiDAR sensor. EvLiDAR-Flow
simultaneously estimates optical flow (2D) and scene
flow (3D) between timestamps t1 and t2, where t1 is
the reference timestamp. Our architecture consists of
an event (2D) branch, a point cloud (3D) branch and
our bi-directional attentive Fusion Module (cf. Fig-
ure 2).
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Figure 3: Local Update Unit (2D Branch).

3.1 Event (2D) Branch

The event branch of our model is inspired from E-
RAFT (Gehrig et al., 2021b). The two event streams
EV (t0,t1) and EV (t1,t2) are first encoded into voxelized
representations V (t0,t1) and V (t1,t2), respectively, by
discretizing the temporal dimension as described in
(Zhu et al., 2019). The resulting event volumes are of
the shape B×H×W where H and W are the height
and width of the frame, respectively, and B is the num-
ber of bins into which the time interval of the event
stream has been divided. Each bin accumulates event
information from its corresponding slice of the inter-
val. The event volumes thus obtained are further en-
coded into local features G(t0,t1)

ev and G(t1,t2)
ev , respec-

tively, using a shared encoder. Both local feature
volumes are shaped D2×Hl ×Wl , where Hl = H/8,
Wl = W/8 and D2 is the number of channels. Our
attention module (cf. Section 3.3.2) then fuses these
local event features with local point features (cf. Sec-
tion 3.2), generating G

′(t1, t2)
ev and G

′(t1, t2)
ev , respec-

tively. The point-aware local event features are fur-
ther used to construct a 4D correlation volume Cev.
The second event volume V (t1,t2) is also encoded into
context feature maps using an encoder with an archi-
tecture identical to that of the local feature encoder,
but with different weights. The rest of the computa-
tion is handled by the Local Update Unit (cf. Figure 3)
which first produces an initial flow estimate and then
iteratively updates the same, for a number of refine-
ment steps. The Local Update Unit includes a Gated
Recurrent Unit (GRU), which at each refinement step,
accepts: (1) the context features, (2) the local corre-
lation features, and (3) the flow estimate F̂k−1

2D from
the previous refinement step k− 1. The GRU then
outputs a refined flow estimate F̂k

2D which is used to
warp and thereby update the local correlation features
of all pixel positions for feeding as inputs in the next
refinement step k+ 1. With each refinement, the ob-
jective of the GRU is to incrementally reduce the gap
between the ground truth optical flow and the esti-
mated flow F̂k

2D.
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Figure 4: Local Update Unit (3D Branch).

3.2 Point Cloud (3D) Branch

Our scene flow estimation branch exploits concepts
used in FlowStep3D (Kittenplon et al., 2021), a recent
state-of-the-art neural network architecture which di-
rectly operates on point clouds. Both the source point
cloud PC(t1) and the target point cloud PC(t2) are en-
coded into local feature sets G(t1)

pc and G(t2)
pc , respec-

tively, using the set abstraction layer described in
FlowNet3D (Liu et al., 2019). The encoders for the
source and target point clouds share their weights.
Our attention module (cf. Section 3.3.2), then fuses
these local point features G(t1)

pc and G(t2)
pc with local

event features from the 2D branch (cf. Section 3.1),
generating G

′(t1)
pc and G

′(t2)
pc , respectively.

The event-aware local point features are used to
compute the global correlation volume Cpc which, in
turn, is used to produce an initial estimate of scene
flow across the consecutive LiDAR scans. The scene
flow is further iteratively updated by the Local Update
Unit (cf. Figure 4). At each refinement step k, the Lo-
cal Update Unit accepts: (1) the hidden state hk−1

pc , (2)
the flow estimate F̂k−1

3D from the previous step, (3) the
features of the previous flow estimate, (4) the local
features of the source point cloud warped by the pre-
vious flow estimate, i.e., PC(t1) + F̂k−1

3D , and finally,
(5) the local flow embedding between the warped
source PC(t1) + F̂k−1

3D and the target PC(t2). These
inputs are concatenated together and passed into a
Gated Recurrent Unit (GRU). With each step, the ob-
jective is to reduce the gap between the warped source
PC(t1)+ F̂k−1

3D and the target PC(t2), i.e. by generating
more and more accurate estimates.

3.3 Fusion Module

3.3.1 Motivation

We wish to fuse the local features of the source point
cloud PC(t1) with the local features of the first event
volume V (t0,t1) and a similar operation for the features
of the target point cloud PC(t2) and the second event
volume V (t1,t2).



An event volume (Zhu et al., 2019) is generated
from an event stream and therefore contains informa-
tion from a time interval rather than a single times-
tamp. For instance, each channel in V (t0,t1) roughly
resembles what the scene must have looked like for
the corresponding slice of the time interval [t0, t1].
Consider an object U in the field of view of the
event and LiDAR sensors, and a point p ∈ PC(t1), be-
longing to object U . The object U (and along with
it, the point p) might have undergone considerable
motion and overlapped with several pixel positions
(x1,y1),(x2,y2), ...,(xn,yn) in the 2D space during the
interval [t0, t1], thereby scattering its features through-
out the length and breadth of the event volume. Simi-
larly, given a pixel location (x,y) in the event volume,
there could be several objects U1,U2, ...,UK which
would have overlapped with (x,y) at some point of
time during the interval [t0, t1]. Hence, each pixel lo-
cation in the 2D space contains features from poten-
tially multiple objects.

Thus, our objective is to match parts of objects
in the 3D space with their counterparts in a sequence
of snapshots of the 2D space. Further, this matching
needs to account for the possibility of many-to-many
correspondences between points in the 3D space and
pixel locations in the 2D space. These correspon-
dences can possibly vary in strength, and we seek to
make weighted decisions when fusing features from
the 2D space into any point p, or when fusing features
from the 3D space into any pixel location (x,y). We
delegate the task of finding and quantifying the cor-
respondences to a learnable attention module, called
Bi-AttFuse (cf. Figure 5), details of which will be de-
scribed next.

3.3.2 Bi-Directional Attentive Fusion Module

Query Encoder: The event features of shape D2×
Hl ×Wl are encoded into query vectors Qev. This is
accomplished using a 2D convolution module which
accepts the original D2 channels and outputs D′ chan-
nels. The resulting query encoding is of the shape
D′×Hl ×Wl , which is subsequently flattened along
the last two dimensions to D′×N2 where N2 is the
product of Hl and Wl .

Key Encoder: Point features of shape D1×N1 are
encoded into key vectors Kpc. Here, a 1D convolution
is used for representing the information in the origi-
nal D1 channels using D′ channels. The resulting key
encodings have the shape D′×N1.

Attention: Given queries Qev of shape D′ ×N2
and keys Kpc of shape D′×N1, we calculate the atten-
tion map as a matrix multiplication:

A = QT
ev Kpc (1)
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Figure 5: Our Bi-Directional Attentive Fusion Module (re-
ferred to as Bi-AttFuse in Figure 2).

Both the queries and the keys can be thought of as
hidden encodings for the objects. Over time, queries
and keys coming from the same object must learn to
find each other using guidance from the attention map
A. Given point features Gpc of shape N1 ×D1 and
event features Gev of shape N2×D2 (after the requisite
re-shaping and transpose operations), we perform the
following computations:

G′ev = M2D

([
s(A) Gpc, Gev

])
(2)

G′pc = M1D

([
s(AT ) Gev, Gpc

])
(3)

where s stands for the Softmax function over the last
dimension, M2D, M1D refer respectively to a 2D and a
1D convolution, and [A,B] stands for a concatenation
operation between matrices A and B. The resulting
features G′ev and G′pc have the same shapes as Gev and
Gpc, respectively. Hence, using the two branches of
our fusion module described above, we compute point
features which are aware of their corresponding event
features, and vice versa.

3.4 Losses

In order to help the 2D and 3D branches of our model
to learn through mutual enhancement, we formulate
a loss which simultaneously sends supervisory feed-
back to both branches of the architecture. The losses
have been developed considering n iterations of the
Gated Recurrent Unit (GRU) for both branches.

2D Branch: Given optical flow estimates F̂1
2D,

F̂2
2D, ..., F̂n

2D, the loss L2D for the 2D branch is a super-
vised loss, defined as

L2D =
n

∑
k=1

wk||F̂k
2D−F2D||1 (4)

where w1,w2, ...,wn are hyperparameters.
3D Branch: Due to the unavailability of scene

flow ground truth in DSEC (Gehrig et al., 2021a), we



follow FlowStep3D (Kittenplon et al., 2021) and use
the Chamfer Loss, a self-supervised loss which at-
tempts to minimize the distance between the source
point cloud warped by the estimated scene flow, and
the target point cloud. Given a source point cloud S
(also referred to as PC(t1) in the rest of this section)
and flow estimates F̂1

3D, F̂2
3D, ..., F̂n

3D, the Chamfer loss
can be defined as:

L3D =
n

∑
k=1

wk

(
∑
p∈S

min
q∈Tk
||p−q||22+ ∑

q∈Tk

min
p∈S
||q− p||22

)
(5)

where
Tk = S+ F̂k

3D (6)

Total Loss: The total loss is a weighted sum of
the 3D and 2D losses:

L = β2DL2D +β3DL3D (7)

where β2D and β3D are hyperparameters.

4 EXPERIMENTS AND RESULTS

4.1 Data Set

DSEC (Gehrig et al., 2021a) is a newly released real-
world data set (unlike popular scene flow data sets
like FlyingThings3D (Mayer et al., 2016), which are
synthetic) and contains driving scenes under different
illumination conditions and at varying levels of dif-
ficulty. To the best of our knowledge, it is the only
existing data set which provides event streams along
with LiDAR scans. However, DSEC lacks scene flow
labels and only provides optical flow ground truth.
For evaluation purposes, we use camera intrinsics to
project the estimated scene flow vectors into their re-
spective 2D (optical flow) counterparts. Since the lat-
ter is an algebraic transformation of the former, we
posit that the accuracy of the optical flow estimations
is contingent upon that of the scene flow estimations.

Although DSEC has a total of 53 scenes, the train-
ing split contains only 18 scenes for which the ground
truth optical flow has been made available; out of
these, we use 11 scenes (5357 examples) for train-
ing, 2 scenes (457 examples) for validation and the
remaining 5 scenes (2356 examples) are held out for
testing our trained models.

Pre-processing and post-processing: In all our
experiments, we sample 8192 points from each point
cloud. Following FlowStep3D (Kittenplon et al.,
2021), we do not consider points with depth greater
than 35 m for evaluation. We train and evaluate our
models under two modes: with ground points (w/

ground) and without ground points (w/o ground),
wherein we include / exclude the ground points from
the input point clouds, respectively. In both cases, we
eventually exclude the ground points during evalua-
tion. The motivation for this approach is to clearly
observe how the ground points affect the overall scene
flow estimation accuracy for other, more important
parts of the scene, while ignoring the quality of the
flow estimates for the less important ground points
themselves. In other words, the ground points are
either fed into the model (w/ ground) or not (w/o
ground), but after obtaining the predictions of the
model, all ground points are always removed before
computing the evaluation metrics. However, as an im-
portant exception, we do not remove the ground while
evaluating the results of the 2D branch of our model.

4.2 Evaluation Metrics

Since the data set of DSEC (Gehrig et al., 2021a) used
by us contains only optical flow ground truth, scene
flow predictions are always projected into optical flow
predictions for quantitative evaluation against the op-
tical flow ground truth values for the corresponding
pixel locations. We use the following metrics:

• End Point Error (EPE): Average across all points
(or pixels) of the L2 norm of the difference be-
tween the predicted and ground truth optical flow
values.

• Outliers (OUT): Percentage of points (or pixels)
for which the absolute EPE is greater than 3 pixels
and the relative EPE is greater than 5%.

• Accuracy (ACC): Percentage of points (or pixels)
for which the absolute EPE is less than 3 pixels or
the relative EPE is less than 10%.

4.3 Implementation Details

The learning rate is set to 10−4, and is multiplied with
0.3 at epochs 50 and 70. We use 4 refinement steps
of the Gated Recurrent Unit (GRU) in both branches
and set the loss weights (cf. Section 3.4) as w1 = 0.1,
w2 = 0.2, w3 = 0.3, and w4 = 0.4. Further, we set
both the hyperparameters β3D and β2D to 0.5. All
models have been trained on the entire training set
for 90 epochs (both with ground and without ground).
As an exception, E-RAFT (Gehrig et al., 2021b) has

Table 1: Evaluation Results on DSEC (Gehrig et al., 2021a)
(2D Branch); trained and evaluated with ground.

Model EPE ↓ OUT ↓ ACC ↑
[px] [%] [%]

E-RAFT 1.149 5.75 94.69
Ours (2D) 1.179 6.16 94.33
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Figure 6: Qualitative Results on five examples selected from DSEC (Gehrig et al., 2021a). In each column, the first row is
the RGB frame (solely for reference purposes; not fed into the model), the second row is the event stream represented as
an image, the third and fourth rows are the optical flow estimation error maps for E-RAFT (Gehrig et al., 2021b) and our
EvLiDAR-Flow, respectively. The errors have been color coded; the color scale for this coding has been provided above.
Black pixels in the error maps denote locations where valid optical flow ground truth was unavailable. Our model performs
largely on par with E-RAFT, while eliminating extremely high error values (reddish regions in the error maps of E-RAFT).

been trained (with ground) for 40 epochs, following
the original paper E-RAFT. The threshold for remov-
ing the ground points, wherever applicable, is set to
0.4.

4.4 Results

E-RAFT (Gehrig et al., 2021b) and FlowStep3D (Kit-
tenplon et al., 2021) are state-of-the-art works in the
optical flow and scene flow domains, respectively. We
demonstrate that our fusion module acts as a bridge
for sharing information between the optical flow and
scene flow branches based on these two works, and
thereby enhances the quality of the corresponding
flow predictions in comparison to the individual ar-
chitectures (without fusion).

4.4.1 2D Branch

For fair comparison, we train E-RAFT (Gehrig et al.,
2021b) on the same training set used for training our
EvLiDAR-Flow. As can be seen in Table 1, our model
performs at par with E-RAFT on the quantitative eval-
uation metrics. This indicates that the optical flow

branch might need more data in order to take full ad-
vantage of the attention module and outperform E-
RAFT. In general, attention-based models are trained
on relatively huge data sets (Caron et al., 2021; Gird-
har et al., 2019). With the limited number of training
examples and variability available to us in this work,
it is possible that the attention module could not gen-
eralize enough for enhancing the optical flow branch,
which operates on noisy event data. We present some
qualitative results in Figure 6.

4.4.2 3D Branch

First, we establish a baseline by testing the pre-
trained model of FlowStep3D* (Kittenplon et al.,
2021) (trained on FlyingThings3D (Mayer et al.,
2016)). Subsequently, for fair comparison, we also
train both FlowStep3D and our EvLiDAR-Flow on
DSEC (Gehrig et al., 2021a), under two different set-
tings each. The quantitative results have been pre-
sented in Table 2.

Training both models w/o ground: We observe
that the performance of both FlowStep3D and our
EvLiDAR-Flow deteriorates across all metrics upon
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Figure 7: A qualitative evaluation of our model on two examples taken from the DSEC (Gehrig et al., 2021a) data set.
The points are color-coded: source points are colored green, target points are colored blue and source points warped by
the predicted scene flow are colored red. The pre-trained model of FlowStep3D* (first column) produces some impressive
estimates, because of being trained on the extensive FlyingThings3D (FT3D) (Mayer et al., 2016) data set. However, this
model fails for planar regions (Example 1). Trained and evaluated on the DSEC (Gehrig et al., 2021a) data set, FlowStep3D
(Kittenplon et al., 2021) produces poor predictions, which worsen further with the introduction of the ground points in the
input (second and fourth columns, respectively). In comparison, our EvLiDAR-Flow produces highly accurate scene flow
estimates, both without and with ground points in the inputs (third and fifth columns, respectively).

Table 2: Evaluation Results on DSEC (Gehrig et al., 2021a) (3D Branch). The third column specifies whether ground
points were included or excluded during training. Each model has been evaluated once without feeding ground points (w/o
ground) into the model (fourth, fifth and sixth columns), and then with ground points (w/ ground) fed into the model (seventh,
eighth and ninth columns). However, ground points have never been considered during the evaluation itself. The first
row refers to the pre-trained FlowStep3D* (Kittenplon et al., 2021) architecture (trained on FlyingThings3D (Mayer et al.,
2016)).

Model Input
Ground
Surface

[Training]

Input w/o Ground Input w/ Ground
EPE ↓ OUT ↓ ACC ↑ EPE ↓ OUT ↓ ACC ↑
[px] [%] [%] [px] [%] [%]

FlowStep3D* Points - 8.357 45.64 54.45 8.299 53.40 46.67
FlowStep3D Points w/o ground 7.977 62.98 37.11 8.012 68.57 31.50
Ours (3D) Points + Events w/o ground 5.869 41.76 58.38 5.930 44.69 55.41
FlowStep3D Points w/ ground 8.141 64.76 35.32 7.438 63.51 36.58
Ours (3D) Points + Events w/ ground 5.433 45.58 54.49 5.136 43.26 56.84

re-introducing the ground points into the input. It is
worth noting that while for FlowStep3D, the outliers
increase by 5.59 %, for our model, they only increase
by 2.93 % (second and third rows, respectively) with
the introduction of the ground points. Moreover, un-
der all settings, the absolute values of the metrics are
significantly better for our architecture in comparison
to FlowStep3D.

Training both models w/ ground: We posit that
models trained with ground points will learn to es-
timate relatively accurate flow in the presence of
ground points. Our EvLiDAR-Flow continues to sig-
nificantly outperform FlowStep3D in this setting.

The best EPE that our model achieves is 5.136
when trained with ground, while the corresponding
EPE for FlowStep3D is 7.438. This gap between the
two models is clear when we consider that our model

makes use of rich event information in parallel with
point clouds, and is therefore significantly more ro-
bust to the presence of unstructured areas. It is note-
worthy that the attention mechanism could bring this
improvement despite the small size of the training set.
Through the qualitative results in Figure 7 and the
corresponding caption, we further validate the perfor-
mance of our fusion module.

4.5 Ablation Studies

Through ablation experiments (cf. Table 3), we val-
idate the superiority of bi-directional fusion over
uni-directional fusion. For the 2D → 3D setting,
we only fuse event features into point features (cf.
Equation (3)) and the original event features (with-
out fusion) are used for the event branch. For



Table 3: Ablation Experiments.

Fusion
2D Branch 3D Branch

EPE ↓ OUT ↓ ACC ↑ EPE ↓ OUT ↓ ACC ↑
[px] [%] [%] [px] [%] [%]

Attention (2D→ 3D) 1.270 7.01 93.76 6.860 58.47 41.64
Attention (2D← 3D) 1.284 7.24 93.59 8.450 70.60 29.49
Attention (2D↔ 3D) 1.179 6.16 94.33 5.136 43.26 56.84

the 3D → 2D setting, we only fuse point features
into event features (cf. Equation (2)) and the origi-
nal point features (without fusion) are used for the
point branch. All models were trained with ground
and tested with ground, excluding ground points
from consideration during evaluation of the 3D
branch, and using identical loss functions (cf. Sec-
tion 3.4). Bi-directional fusion significantly improves
both branches in comparison to uni-directional fusion
in either direction, hence suggesting that both modal-
ities significantly enhance each other when they are
both ”aware” of each other.

5 CONCLUSION

In this paper, we propose, for the first time accord-
ing to our knowledge, the fusion of events and point
clouds for scene flow estimation using our deep neu-
ral network architecture EvLiDAR-Flow. In order to
facilitate this fusion, we propose a learnable atten-
tion module. Our model takes the advantage of rich
event information to overcome the difficulty of ro-
bustly estimating accurate scene flow in the presence
of unstructured areas in the scene, where LiDAR-
only methods often suffer. Provided that a larger data
set can be developed in the future, there exist some
promising possibilities for future work in the area of
fusion between point clouds and event streams (e.g.
multiple levels of fusion for even more robust estima-
tion).
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