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Abstract

In strictly pseudoconvex domains with smooth boundary, we prove a commutator rela-
tionship between admissible integral operators, as introduced by Lieb and Range, and smooth
vector fields which are tangential at boundary points. This makes it possible to gain estimates
for admissible operators in function spaces which involve tangential derivatives. Examples
are given under with circumstances these can be transformed into genuine Sobolev- and Ck-
estimates.
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1 Introduction

In qualitative studies of the ∂-equation, the ∂-Neumann operator and many other topics of complex
analysis explicit integral operators play an essential role. By proving uniform boundedness of their
kernels in different norms, it is possible to obtain regularity results for the corresponding operators,
like Hölder- or L∞-estimates, which usually are unavailable to the abstract L2-theory,
While in general the analysis of integral operators involves rather delicate calculations and often
the neccessity to deal with many error terms, the calculus of admissible kernels by Lieb and
Range makes it possible to read off many regularity properties directly from a representation of
the kernel, just by calculating its type. When studying the behaviour of admissible operators under
differentiation, Lieb and Range were also able to prove Sobolev- and Ck-estimates for a subclass
of kernels. Kernels which belong to this class were called admissible of commutator type, because
they fulfill a commutator relationship with smooth vector fields which are tangential at boundary
points. The purpose of this paper is to show that a similar commutator relationship in fact holds
for all admissible kernels.
For simplicity, the calculations are only done for operators acting on functions and for domains
in Cn. It is however clear that the methods carry over to operators acting on forms of arbitrary
degree and domains in complex manifolds. Further generalization are discussed in the last chapter.

2 Definitions and Notation

Let D be a strictly pseudoconvex bounded domain in Cn with smooth boundary bD, given by a
C∞-differentiable strictly plurisubharmonic function ρ(ζ) with dρ != 0 on bD as D = {ζ ∈ Cn :
ρ(ζ) < 0}. In the product domain D × D, we use coordinates (ζ, z), write ηi := ζi − zi and
η := ζ − z and denote derivatives of ρ by indices, i. e. ρi := ∂

∂ζi ρ, etc. To fix notation we will
shortly repeat the definition of isotropic and admissible kernels. For an extensive introduction see
[17].
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Definition 1 (Isotropic kernels). Let ds2 =
∑n

j,k=1 gjkdζjdζ̄k be an underlying smooth her-
mitian metric on Cn. Then by

R2(ζ, z) =
n∑

j,k=1

gjk(ζj−zj)(ζ̄k−z̄k)

we denote its square norm function. A smooth double differential form E(ζ, z) on D×D is called
isotropic kernel of order m if there is a universal constant M on D ×D such that

|E(ζ, z)| ≤ MRm(ζ, z).

Although it is not strictly necessary for our results, we will assume ds2 to be a normalized Levi-
metric in order to be compatible with [17], i. e. gjk = f(ζ) ∂2r

∂ζj∂ζ̄k for some strictly plurisubharmonic
defining function r of D, and a smooth function f chosen such that |∂r| ≡ 1 on bD.

Definition 2 (Extended Levi polynomial). Let

F (ζ, z) :=
n∑

j=1

ρj(ζ) (ζj−zj)− 1
2

n∑

j,k=1

ρjk(ζ) (ζj−zj)(ζk−zk).

be the Levi polynomial of ρ. Using a smooth patching function φ(ζ, z) such that, for ε > 0
sufficiently small, φ ≡ 1 for R2(ζ, z) < 1

3ε and φ ≡ 0 for R2(ζ, z) > 2
3ε we then obtain the

extended Levi polynomial

v(ζ, z) := [−ρ(ζ) + F (ζ, z)]φ(ζ, z) + [1− φ(ζ, z)]R2(ζ, z).

v inherits the property of being a holomorphic polynomial in z of degree at most 2 in a neighbour-
hood of the diagonal ∆ := {(z, z) : z ∈ D}, but in contrast to F , v has no zeros inside of D ×D
except on the boundary diagonal Λ := {(z, z) : z ∈ bD}. In addition, from a Taylor expansion of
ρ it follows that v is almost selfadjoint, which for us means that v∗ − v = E3 where we write v∗

for the adjoint of v, i. e. v∗(ζ, z) := v(z, ζ).

Definition 3 (Admissible kernels). A double differential form A(ζ, z) on D × D is called
admissible kernel, if

• A(ζ, z) is smooth on D ×D − Λ, and

• any point in Λ has a neighbourhood in which A can be given by a local representation

A(ζ, z) = (−r)γ(−ρ)αP−t0vt1 v̄t2v∗t3 v̄∗t4Em (1)

with r := ρ(z) and P (ζ, z) = R2(ζ, z) + 2ρ(ζ)r(z). Em is isotropic of order ≥ m for a non-
negative integer m and all exponents are integers, α, γ, t0, t ≥ 0, where t := −(t1+t2+t3+t4).

A kernel is also called admissible, if it is a finite sum of kernels described above.

The admissible kernels are divided into subclasses of similar regularity by their type:

Definition 4 (Type). The type λ of the a representation as (1) is calculated as

λ = 2n + m + min(2, t− α− γ)− 2(t0 + t− α− γ)

and we call a kernel of type λ, if it has local representations of type at least λ everywhere.

We fix the relation between integral kernels and the corresponding operators by
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Definition 5 (Admissible operators). We call an operator A admissible of a certain type, if
there is an admissible kernel A of this type such that

Af(z) =
∫

D
f(ζ) ∧ ∗A(ζ, z)

where ∗ denotes the Hodge star with respect to ζ as induced by ds2. Since the integration
corresponds to the L2-scalar product, we also write this as

= (f,A).

We will always use bold A for explicitly given admissible kernels and bold A for the corresponding
operators. Lower indices indicate their types. Furthermore, we write Aλ (resp. Aλ) generically for
a finite sum of several admissible kernels (resp. operators) of type λ, and Em for general isotropic
expressions of order m. For simplicity, we only study operators acting on functions and not on
forms of arbitrary degree. General statements can then be achieved by localizing and applying
the results compenentwise.
The following elementary properties of admissible operators are well known:

Lemma 1. Any admissible operator Aλ of type λ ≥ 1 is a bounded linear operator

Aλ : Lp(D) → Ls(D) for 1 ≤ p, s ≤ ∞ and
1
s

>
1
p
− 1

2n + 2
,

Aλ : C0(D) → C0(D),

Aλ : L2(D) → W 1/2(D),

where W 1/2(D) := W
1
2 ,2(D) is the L2-Sobolev space of order 1

2 .

Proof. This follows from classical non-isotropic estimates of the admissible kernels, see [17].

Admissible operators of type 0 or less are still defined –in the sense that the occuring integrals
exist– but their image can contain forms of lower integrability which we will not study here.

3 Behaviour of admissible operators under differentiation

To control derivatives of admissible operators, estimates of the kernels themselves are not sufficient.
Instead we need to study the action of vector fields on the operators’ kernels. For this we introduce
the following notation:
We only study vectors fields with smooth coefficients on D. For any such vector field acting in
the variable z we write Xz. By Xζ we denote the same field acting in ζ. If the action is either in
z or ζ, we use X without subscript.
To express that boundary values of a vector field are contained in the (complexified real) tangent
space at bD, we call it T . Since we assumed the gradient of ρ not to vanish on bD, this implies
Tζρ = E0ρ. For a vector field which at bD is in the complex tangent space we write W , resp.
W for its conjugate. Also for tangential and complex tangential vector fields we use the index
convention introduced before.

Because all components of admissible kernels are smooth except at Λ, it follows that:

Lemma 2.

XAλ = Aλ−2.

3



In particular, derivatives of admissible operators are again admissible operators, but of lower type.
Therefore, admissible operators of high type act ”smoothing” in the sense that any Aλ with λ > 2k
for k ∈ N maps Lp(D) → W k,p(D) and C0(D) → Ck(D).
However, the operators most frequently occuring are only of type 1 or 2, so in order to control
higher derivatives one has to find a method to utilize the differentiabilty of the argument, e. g. by
establishing a commutator relationship between the operator and the derivative acting on it. For
tangential vector fields acting in the integration variable this obviously is possible:

Lemma 3. For any Aλ there is an A′
λ such that

(f, TζAλ) = −Aλ T ζf + A′
λf

for all f ∈ W 1,p(D), 1 ≤ p ≤ ∞.

Proof. Because f has boundary values in the Sobolev sense, we can integrate by parts and obtain

(f, TζAλ) = −(T ζf,Aλ) + (f,E0Aλ).

Since E0Aλ is admissible of type λ again, the claim follows.

However, to study regularity of Aλf , we need to apply vectorfields acting in z. Our main result
is:

Theorem 1. Let Aλ be admissible of type λ ≥ 1, let T be a smooth tangential vector field. Then
there is a commutator relationship

TzAλf = AλT ζf + A0
λf +

N∑

i=1

Ai
λ+1X

i
ζf (2)

for all f ∈ W 1,p(D), 1 ≤ p ≤ ∞, where the operators A0
λ and Ai

λ, i = 1, . . . , N for some N ∈ N
are admissible of indicated type. The vector fields Xi

ζ acting on f may be non-tangential.

The proof will be the contents of the following two sections: First we show that we only have to
study so-called basic kernels, then we prove the result for them by explicit calculation.

4 Admissible kernels with mixed singularity

An even slightly better commutator relationship than theorem 1 was first proved by Lieb and
Range for admissible kernels of so-called commutator type, see [18]. Therefore, we do not treat
those here. Instead, we first concentrate on the class of kernels for which the result is new:

Definition 6 (Kernels with mixed singularity). Let A(ζ, z) be an admissible kernel given
in its standard representation (1). We call A with mixed singularity, if t1t3 ≥ 0, t2t4 ≥ 0 and
(t1 + t3)(t2 + t4) > 0. If in addition t3 = t4 = 0, we call A basic.

Being of commutator type and to have mixed singularity are mutually exclusive, because the
former contains the condition (t1 + t3)(t2 + t4) ≤ 0. The conditions on t1t3 and t2t4 are in fact
only technical:

Lemma 4. Let A be admissible of type λ and given in a local representation with t1t3 < 0 (resp.
t2t4 < 0). Then A also has a representation with t1t3 = 0 (resp. t2t4 = 0).

Proof. Because of t1t3 < 0, exactly one of the factors is positive and the other is negative. Let
first be t1 < 0 and t3 > 0. Due to v∗ = v + E3, any such product vt1v∗t3 can be decomposed as

vt1v∗t3 =
t3∑

j=0

E3j vt1+t3−j
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so we obtain a representation without a power of v∗ and with leading term vt1+t3 , because all
terms in the sum with j != 0 are even of higher type. If instead t1 > 0, t3 < 0, we use the same
relation with the roles of v and v∗ exchanged to obtain a representation without v. The case of
t2t4 < 0 is handled analogously, using v̄∗ = v̄ + E3.

Thus, we only have to study representations with all ti ≤ 0, which we write more intuitively as

A(ζ, z) =
(−ρ)α(−r)γEm

P t0vj v̄kv∗lv̄∗i
. (3)

In order to obtain a commutator relationship, we now study Xz +Xζ , the combination of X’s
action in the z variable and its action in the ζ variable. Compared to the action of X alone, where
we just know the elementary XEm = Em−1 and Xv = E0, we then obtain the better

Lemma 5.

i. (Xz+Xζ)Em = Em,

ii. (Xz+Xζ)F = E1,

iii. (Tz+Tζ)v = E1 + E0ρ,

iv. (Tz+Tζ)(v + v̄) = E2 + E0ρ + E0r,

v. (Xz+Xζ)P = E2 + E0ρ + E0r.

Proof. i) follows from a Taylor expansion of the Em term and the fact that (Xz +Xζ)η = E1,
because ∂

∂zi
η = − ∂

∂ζi
η. ii) is a direct consequence, because F is of class E1.

For iii) we first observe that due to the presence of E1 on the right hand side, we only have to
work close to the diagonal, and since (−ρ) is bounded from below by a positive constant in any
relatively compact subset of D, even only the behaviour near the boundary diagonal matters. So,
let z0 be an arbitrary boundary point and U = U(z0) be a sufficiently small neighbourhood such
that for (z, ζ) ∈ U × U ∩D ×D we have v = −ρ + F . Then it is simple to check that

(Tz+Tζ)v = −(Tz+Tζ)ρ + (Tz+Tζ)F = E0ρ + E1

using the tangentiality of T and part ii.
For iv we first establish the same local situation as for equation iii. Then, from F + F

∗ =∑
j(ρj−rj)ηj + E2 = E2, we see that v + v̄∗ = ρ + r + E2, and using v̄ = v̄∗ + E3 we obtain

(Tz+Tζ)(v + v̄) = (Tz+Tζ)(v + v̄∗ + E3) = (Tz+Tζ)(ρ + r + E2)
= E0ρ + E0r + E2.

v again just follows from i, since (Xz+Xζ)P = (Xz+Xζ)E2 + 2rXζρ + 2ρXzr.

From this we can derive an improved version of lemma 2:

Lemma 6.

(Tz+Tζ)Aλ = Aλ−1.

Proof. Explicit differentiation yields:

(Tz+Tζ)A(ζ, z) = (Tz+Tζ)
[
(−ρ)α(−r)γEm

P t0vj v̄kv∗lv̄∗m

]

= −αTζρ · (−ρ)α−1(−r)γEm

P t0vj v̄kv∗lv̄∗i
− γTzr · (−ρ)α(−r)γ−1Em

P t0vj v̄kv∗lv̄∗i

+
(−ρ)α(−r)γ (Tz+Tζ)Em

P t0vj v̄kv∗lv̄∗i
− t0(Tz+Tζ)P · (−ρ)α(−r)γEm

P t0+1vj v̄kv∗lv̄∗i
(4)

− j(Tz+Tζ)v · (−ρ)α(−r)γEm

P t0vj+1v̄kv∗lv̄∗i
− k(Tz+Tζ)v̄ · (−ρ)α(−r)γEm

P t0vj v̄k+1v∗lv̄∗i

− l(Tz+Tζ)v∗ ·
(−ρ)α(−r)γEm

P t0vj v̄kv∗l+1v̄∗i
− i(Tz+Tζ)v̄∗ ·

(−ρ)α(−r)γEm

P t0vj v̄kv∗lv̄∗i+1
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The first four terms are in fact of type λ because Tζ and Tz are tangential, resp. because of
lemma 5 i and v. The other terms are all at least of type λ− 1, because of lemma 5 iii, so in total
we have

= Aλ−1.

On the level of operators this means:

Lemma 7. For any f ∈ W 1,p(D) and λ ≥ 1 we have

TzAλf = AλT ζf + Aλ−1f.

Proof. Integrating lemma 6 against f we obtain

(f, (Tz+Tζ)Aλ) = Aλ−1f.

By applying lemma 3 we can transfer the action of Tζ onto f instead of A, and by moving Tz out
of the integral, we obtain

TzAλf −AλT ζf = Aλ−1f

from which the claim follows.

Thus, when studying derivatives of operators Aλ, all terms of type λ+1 or higher can be considered
as error terms and neglected, because we can control their derivatives using lemma 6 and the loss
of 1 in type is acceptable. From the following lemma we then see that it is sufficient to study basic
operators:

Lemma 8. Let Aλ be admissible with mixed singulariy, then there exists a basic admissible A′
λ

with

Aλ = A′
λ + Aλ+1.

Proof. Because of v = v∗ + E3 we have for k ≥ 1 and any a = a(ζ, z):

a

vjv∗l
=

v a

vj+1v∗l
=

a

vj+1v∗l−1
+

E3 a

vj+1v∗l

and

a

v̄kv̄∗i
=

v̄ a

v̄k+1v̄∗i
=

a

v̄k+1v̄∗i−1
+

E3 a

v̄k+1v̄∗i

where in both cases the last term is of type 1 higher than the others. For Aλ in form (3) we can
apply this repeatedly in v and v̄ and obtain:

Aλ =
(−r)γ(−ρ)αEm

vj v̄kv∗lv̄∗iP t0
=

(−r)γ(−ρ)αEm

vj+lv̄k+iP t0
+ Aλ+1

5 Regularity of operators with mixed singularity

For basic admissible kernels with mixed singularity we now establish the commutator relationship
without a loss in type. First we prove

Lemma 9. Let
(−r)γ(−ρ)αEm

P t0vj v̄k
be a basic kernel of type λ ≥ 1 and f ∈ W 1,p(D), 1 ≤ p ≤ ∞.

Then there are admissible operators Aλ+1 and Aλ+2 such that

i.
∫

D

(−r)γ(−ρ)αEmfdλ

P t0vj v̄k
=

−j

α + 1

∫

D

(−r)γ(−ρ)α+1Emfdλ

P t0vj+1v̄k
+ Aλ+1f + Aλ+2∂f ,
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ii.
∫

D

(−r)γ(−ρ)αEmfdλ

P t0vj v̄k
=

−k

α + 1

∫

D

(−r)γ(−ρ)α+1Emfdλ

P t0vj v̄k+1
+ Aλ+1f + Aλ+2∂f .

Since we restricted ourselves to operators acting on functions, the expressions Aλ+2∂f and Aλ+2∂f
are to be read as short-hands for a sum of operators acting on the first holomorphic resp. anti-
holomorphic partial derivatives of f .

Proof. Set β := i∂∂ρ and define E′
m by the relation E′

m∂v̄ ∧ ∂v ∧ βn−1 := Emdλ. Then E′
m is

indeed of class Em, because ∂v ∧ ∂v̄ has no zeros for ζ close to z and because βn is equivalent to
the Lebesgue measure dλ := ∗1. We can therefore rewrite the left hand side of i) as
∫

D

(−r)γ(−ρ)αEmfdλ

P t0vj v̄k
=

∫

D

(−r)γ(−ρ)αE′
mf ∂v̄ ∧ ∂v ∧ βn−1

P t0vj v̄k

and, since ∂(v + ρ) = E1, this is

= −
∫

D

(−r)γ(−ρ)αE′
mf∂v̄ ∧ ∂ρ ∧ βn−1

P t0vj v̄k
+ Aλ+1f.

Except for f , the integrand is smooth with respect to ζ ∈ D for any fixed z ∈ D. Since f ∈ W 1,p,
we can integrate by parts, using a Stokes-like theorem for forms with Sobolev coefficients (see [12])
and obtain

=
−j

α + 1

∫

D

(−r)γ(−ρ)α+1E′
mf∂v̄ ∧ ∂v ∧ βn−1

P t0vj+1v̄k
+

1
α + 1

∫

D

(−r)γ(−ρ)α+1E′
m∂v̄ ∧ ∂f ∧ βn−1

P t0vj v̄k

+
1

α + 1

∫

D

(−r)γ(−ρ)α+1f∂v̄ ∧ ∂E′
m ∧ βn−1

P t0vj v̄k
− k

α + 1

∫

D

(−r)γ(−ρ)α+1E′
mf∂v̄ ∧ ∂v̄ ∧ βn−1

P t0vj v̄k+1

+
1

α + 1

∫

D

(−r)γ(−ρ)α+1E′
mf∂∂v̄ ∧ βn−1

P t0vj v̄k
− t0

α + 1

∫

D

(−r)γ(−ρ)α+1E′
mf∂v̄ ∧ ∂P ∧ βn−1

P t0+1vj v̄k

+ Aλ+1f

An additional boundary integral does not occur, because the integrand would vanish identically
due to a factor (−ρ)α+1. The last four integrals are now easily identified as of type λ+1 or better
(using that ∂v̄ = E2 and ∂P = E1 + E0r). The term involving ∂f is always at least of type λ + 2:

=
−j

α + 1

∫

D

(−r)γ(−ρ)α+1fE′
m∂v̄ ∧ ∂v ∧ βn−1

P t0vj+1v̄k
+ Aλ+1f + Aλ+2∂f.

Remembering the definition of E′
m, part i of the lemma follows. Part ii is obtained from this by

complex conjugation.

With Lemma 5 and 9 as tools, we are able to prove theorem 1:

Proof. of theorem 1, for basic kernels. Let f be in W 1,p(D) and A basic admissible of type λ ≥ 1.
We only have to work in a neighbourhood of Λ since A itself is smooth everywhere else. We can

assume A =
(−r)γ(−ρ)αEm

P t0vj v̄k
in local representation and study the action of Tz +Tζ on it. The

corresponding calculation was already done in lemma 6, equation (4), so we already know that all
terms where ρ, r, Em or P are differentiated are of type λ or higher. What remains are the terms
where the differentiation falls on v or v̄:

(Tz+Tζ)A = −j
(−r)γ(−ρ)αEm(Tz+Tζ)v

P t0vj+1v̄k
− k

(−r)γ(−ρ)αEm(Tz+Tζ)v̄
P t0vj v̄k+1

+ Aλ.
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We denote the two explicit kernels on the right hand side by B1(ζ, z) and B2(ζ, z) and their
corresponding operators by B1 and B2. They are both admissible of type λ − 1 because of
lemma 5 iii. But in addition

B1f = −j

∫
(−r)γ(−ρ)α Em (Tz+Tζ)v

vj+1v̄k
fdλ

=
j k

α

∫
(−r)γ(−ρ)α+1 Em (Tz+Tζ)v

vj+1v̄k+1
fdλ + Aλf + Aλ+1∂f.

because of lemma 9 ii) and similarily

B2f = −k

∫
(−r)γ(−ρ)α Em(Tz+Tζ)v̄

vj v̄k+1
fdλ

=
j k

α

∫
(−r)γ(−ρ)α+1 Em (Tz+Tζ)v̄

vj+1v̄k+1
fdλ + Aλf + Aλ+1∂f.

because of lemma 9 i). Combining these two we get

B1f + B2f =
j k

α

∫
(−r)γ(−ρ)α+1 Em (Tz+Tζ)(v + v̄)

vj+1v̄k+1
fdλ + Aλf + Aλ+1df

where we used df for all terms in which f is differentiated. Since (Tz+Tζ)(v + v̄) = E2 +E0ρ+E0r
due to lemma 5 iv, the integrand is in fact admissible of type λ as well:

= Aλf + Aλ+1df.

So we now know that

(f, (Tz+Tζ)A) = Aλf + Aλ+1df,

and in the same way as for lemma 7 we obtain from this

TzAf = AT ζf + Aλf + Aλ+1df,

which in our short-hand notation is just equation (2).

As a corresponding regularity result we obtain:

Corollary 1. Let A be an admissible operator of type λ ≥ 1. Let T 1, . . . , T k be tangential vector
fields. Then T 1. . . T kA is a bounded operator from W k,p(D) to Lp(D) for 1 ≤ p ≤ ∞ and from
Ck(D) to C0(D).

Proof. This follows by iterated use of the theorem. All k-th derivatives of f are in Lp(D) (resp.
C0(D)) and admissible operators of positive type map Lp(D) → Lp(D) and C0(D) → C0(D)
boundedly. Since it is well know that all admissible operators of strictly positive type act even
smoothing in Sobolev and Lipschitz sense, the formulation of corollary 1 is by far not sharp.

6 Conclusion and further results

We have proved that admissible operators essentially commute with tangential vectorfields in the
sense that was formulated in theorem 1. Formerly, this was only known for admissible operators
of commutator type.
Our presentation was aligned with the definitions of [17]. However, the same commutator rela-
tionship holds in a wider context, including kernels with non-integer exponents and type. The
condition λ ≥ 1 can then be replaced by the more general λ > 0. Also, the metric doesn’t have
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to be normalized Levi. Corresponding definitions and calculations can be found in [14], where
the results are used to study the Neumann problem in domains with a weighted Bergman met-
rics. Since all calculations are done locally, the results also easily transfer to admissible kernels in
complex manifolds.
At first sight, it seems that our results cannot be applied to the more frequently used class of
weighted Koppelman kernels as introducted by Berndtsson and Andersson in [4], because those
are not admissible due to their singularity on the whole diagonal of D ×D instead of just on the
boundary diagonal. However, when restricting to boundary values, there is no such distinction
and it is indeed often possible to treat the boundary values of Berndtsson-Andersson-kernels by
the method presented here, interpreting them as boundary values of admissible kernels. Some of
the following applications are also based on this.
Further generalizations seem possible: from the proofs of the helping lemmas it becomes clear that
the strict pseudoconvexity of D only enters into the definition of the extended Levi polynomial v
which then becomes a part of the definition of admissible kernels. The actual calculation which
leads to the commutator relationship would in fact be possible under much weaker assumptions,
like only v∗ = v + E2 instead of v∗ = v + E3. It is therefore reasonable to conjecture that by a
similar calculation it will be possible to prove tangential regularity for other classes of integral
kernels and also in related geometrical situations where the theory of integral operators plays a
role, like strictly pseudoconvex domains with only piecewise smooth boundaries ([19], [21]), convex
domains of finite type ([7],[10],[11]) or q-convex and q-concave domains ([16],[20]).

7 Applications

We demonstrate the generality of the tangential regularity result, we present some applications
from different situations, partly new, partly explaining previously known facts in a simpler manner:

• Let Ab be the tangential boundary values of an admissible operator A of type λ ≥ 1,
obtained by restricting the kernel to bD (see [12]). Then Ab maps Ck

0q(D) → Ck
0q′(bD) for

k ∈ N ∪ {∞} since all derivatives on bD are tangential.
We can apply this for example to Cumenge’s and Schuldenzucker’s results about solutions
to the ∂-equation with boundary values in Lp(bD) ([6], [22]). Since their proofs are based
on admissible integral operators, it directly follows that these boundary operators preserve
Ck-smoothness without the need to establish an elliptic estimate in the interior.

• Assume that the image of an admissible operator A of type ≥ 1 is contained in dom∂ ∩
dom∂

∗ ⊂ L2
0q(D), where ∂

∗
denotes the Hilbert-adjoint operator of ∂. Define Ab as above.

Then Ab also maps W k
0q(D) → W k

0q′(bD).

This is due to the fact that T 1. . . T kAf is equal to AT 1. . . T kf up to error terms for any
tangential vector fields T 1, . . . , T k. So, by lemma 1, all terms occuring are in W 1/2

0q (D). By
the assumptions on the image of A, this suffices for having an Sobolev trace in L2(bD), see
[9] for the classical case of harmonic functions, or [8] for the general case.

• Assume A’s domain of definition to be smooth forms in the Hartogs domain D′ := {(z, w) ∈
Cn × C : |w|2 < r(z)} over the base D and define the boundary values Ab : C∞

0q (D′) →
C∞

0q′(bD′) as above. If Ab is invariant under rotations in w, then Ab induces an operator
A′ : C∞

0q (D) → C∞
0q′(D) using the method of going up and down in dimension. A description

of this in more detail can be found in [15].
Integral kernels which derive from such a Hartogs situation were e. g. used by Andersson
and Carlsson to solve the ∂∂-equation. So, in addition to the L1-estimates which they prove
in [3], their solution operators also preserve C∞-smoothness. The same method also gives
rise to formulas for the canonical solution operators to ∂ in weighted L2-spaces, see [1], [2].
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If additional information about derivatives are present, there are certain methods to deduce genuine
Ck- or Sobolev-estimates from the tangential ones.

• Assume that we have control over all antiholomorphic derivatives ∂
∂z̄j

, j = 1, . . . , n of A

by some other method. Then we have control over all ∂
∂zj

A as well, because A essentially
commutes with Y =

∑
j r̄

∂
∂zj

−
∑

j rj
∂

∂z̄j
, see e. g. [5].

• Assume that A solves an elliptic PDE like e. g. the Neumann operator does. Then from
combining the ellipticity with regularity in all tangential directions we can deduce regularity
in the remaining non-tangential direction, see [13]. In some cases it is possible to iterate this
procedure and obtain estimates in Ck(D)-norm, see [17] for the ∂-Neumann-operator itself.
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[11] Hefer, T. Hölder and Lp estimates for ∂ on convex domains of finite type depending on Catlin’s
multitype. Math. Z. 242 (2002), 367–398

[12] Hefer, T. On boundary values of integral operator. Math. Nach. 261–262, (2003), 85–104

[13] Kohn, J. J., Nirenberg, L. Noncoercive boundary value problems. Comm. Pure Appl. Math 18
(1965), 443-492

[14] Lampert, C. H. Der Neumannoperator in streng pseudokonvexen Gebieten mit gewichteter
Bergmanmetrik. Bonner Mathematische Schriften 356, Mathematisches Institut der Univer-
sität Bonn (2003)

[15] Lampert, C. H. Going up-and-down in dimension and induced operators. preprint, Bonn
(2003)

10
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