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Abstract
We present a novel method for unsupervised
cognate/borrowing identification from mono-
lingual corpora designed for low and extremely
low resource scenarios, based on combining
noisy semantic signals from joint bilingual
spaces with orthographic cues modelling sound
change. We apply our method to the North
Indian dialect continuum, containing several
dozens of dialects and languages spoken by
more than 100 million people. Many of these
languages are zero-resource and therefore nat-
ural language processing for them is non-
existent. We first collect monolingual data for
26 Indic languages, 16 of which were previ-
ously zero-resource, and perform exploratory
character, lexical and subword cross-lingual
alignment experiments for the first time at this
scale on this dialect continuum. We create bilin-
gual evaluation lexicons against Hindi for 20 of
the languages. We then apply our cognate iden-
tification method on the data, and show that our
method outperforms both traditional orthogra-
phy baselines as well as EM-style learnt edit
distance matrices. To the best of our knowl-
edge, this is the first work to combine tradi-
tional orthographic cues with noisy bilingual
embeddings to tackle unsupervised cognate de-
tection in a (truly) low-resource setup, showing
that even noisy bilingual embeddings can act as
good guides for this task. We release our mul-
tilingual dialect corpus, called HinDialect, as
well as our scripts for evaluation data collection
and cognate induction.2

1 Introduction

Hindi is listed as one of the 22 official languages
of India, with the latest census showing 43.63% of
Indians as having Hindi as their mother tongue.3

*This work was done at Charles University and Saarland
University as a Masters’ Thesis.

2See http://hdl.handle.net/11234/1-4839
and https://github.com/niyatibafna/
north-indian-dialect-modelling, respectively.

3https://en.wikipedia.org/wiki/2011_Census_of_
India

However, this figure counts speakers of the lan-
guages of the whole Indic/Indo-Aryan (IA) dialect
continuum, the “Hindi Belt”, that stretches from
Rajasthan in the West to Bihar and Jharkhand in the
East, and of which modern standard Hindi is only
a part.4 This continuum, spread out over North
and Central India, contains a wide variety of lan-
guages/dialects that may even be mutually incom-
prehensible, and form subfamilies of their own, e.g.
the Rajasthani, Bihari, or Pahari subfamilies.5

Natural language processing (NLP) resources
for these languages are sorely lacking; most of
these languages, despite having millions of speak-
ers, have little or no monolingual data, no linguistic
resources such as lexicons, grammars, taggers, let
alone more elaborate resources such as parallel data
or pretrained embeddings.

We focus on 26 languages of the Hindi Belt writ-
ten in the Devanagari script and make the following
contributions: (i) we collect the first monolingual
resources for many of these languages, and (ii) we
develop a novel strategy for cognate lexicon induc-
tion in asymmetric truly low-resource scenarios,
tackling this problem for the first time with the
under-researched Indic dialect continuum. Cog-
nate induction is an important first step towards
obtaining bilingual lexicons, one of the most ba-
sic and all-purpose bilingual resources a language
can have. Bilingual lexicons are especially useful
in low-resource scenarios, e.g. for word-by-word
translation, bilingual transfer, and as seeds for a
variety of tasks; they also have applications in his-
torical linguistics. Finally, in the case of severely
under-supported languages, they are crucial for
building dictionaries for speakers and language
learners. In this work, we perform cognate induc-
tion for each language against Hindi, since Hindi

4We also see a shallower north-south dimension to the
continuum, i.e. from Haryana to northern Maharashtra.

5See https://glottolog.org/resource/languoid/
id/indo1321 for the full language tree.
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is the most well-studied and resource-rich of this
set, and therefore the most logical language from
which bilingual transfer may be attempted.

We crawl monolingual data for the continuum,
forming the largest collection (in number of lan-
guages) of a dialect continuum as far as we know.
This also introduces the first monolingual data for
16 zero-resource IA languages to the NLP commu-
nity. Such a corpus has wide applications for work
in transfer, historical linguistics, dialect continua,
and building language support for these communi-
ties. We probe the resulting multilingual collection
at a character, subword and lexical level, finding
a general link between relatedness and genealogi-
cally and geographically proximal languages.

Secondly, we use the corpus for cog-
nate/borrowing induction (CI) for each target
language with Hindi:6 identifying cognates from
monolingual corpora containing fully inflected
word forms in a completely unsupervised manner.7

We work in an asymmetric data scarcity situation:
we have abundant monolingual resources for
Hindi, but only a few thousands/ten thousands of
monolingual tokens for target languages. These
constraints set this task apart from most of the
previous literature on cognate identification (List,
2014; Fourrier et al., 2021; List, 2019; Artetxe
et al., 2018); however, this setting is realistic when
attempting to build resources for truly low-resource
languages. We present two simple but novel
strategies for cognate identification, evaluating
on synthetically created test sets. We experiment
with iteratively learning substitution probabilities
within an edit distance paradigm, as well as
combining noisy semantic signals from a subword
embedding space with orthographic distance
measures, reporting qualitative improvements over
the baseline.

2 Related Work

Data and Resources. Languages in the contin-
uum differ in the amount of resources available.
For the highest resourced languages (this corre-
sponds to Band 1 in Section 5) one can find raw
and annotated corpora, pretrained embeddings, and
evaluation resources (Kunchukuttan et al., 2020;

6Henceforth, we use the term “cognate” as including bor-
rowings.

7While we do have lexical resources for Band 1 and 2
languages including WordNets for some Band 1 languages
(see Table 1 for bands), we simulate low-resource scenarios
consistent with the truly low-resource Band 3 languages

Bojar et al., 2014; Nivre et al., 2016). For medium-
resourced languages (Band 2), we have some col-
lection efforts,8 mostly monolingual (Ojha, 2019;
Ojha et al., 2020; Goldhahn et al., 2012) but in-
cluding some parallel data. Zampieri et al. (2018)
presented a shared task for language identification
for Awadhi, Braj, Bhojpuri, Magahi, and Hindi pro-
viding 15k sentences for each language. Mundotiya
et al. (2021) collect monolingual corpora for Bho-
jpuri, Magahi, and Maithili, as well as POS-tagged
annotated corpora and WordNets9 aligned with
the larger IndoWordNet effort (Sinha et al., 2006)
Mundotiya et al. (2022) presents NER-annotated
corpora and trained NER models for the same 3
languages. The least resourced languages (Band
3) lack any kind of systematic resource and are the
main focus of our work.

Bi/Multilingual Lexicon Induction Much previ-
ous work has been based on non-neural methods.
Batsuren et al. (2019) use semantic relationships
from the Universal Knowledge Core (Giunchiglia
et al., 2018) which is built from existing Word-
Nets,10 gold annotations as well as geographical-
orthographic similarity measures for cognate iden-
tification. Çöltekin (2019) compares linear and
neural models to predict the next edit-distance
based action to perform crosslingual morphologi-
cal inflection. In earlier works, Scherrer and Sagot
(2014), inspired by Koehn and Knight (2002), in-
duced cognate sets in a completely unsupervised
manner using a character-based alignment algo-
rithm, as well as co-occurrence-based context vec-
tors. List (2012) induce cognate sets over aligned
word lists of languages in a language family by it-
eratively learning phonological rules; this is imple-
mented in the software LingPy (List, 2014). Hall
and Klein (2010) work with unaligned word lists
for languages in the same family, modelling trans-
fer within a tree-based framework and learning edit-
distance based transformation matrices for each
vertical edge. Although the idea of learning edit
distance matrices is quite old (Bilenko and Mooney,
2003), it has not been used in combination with
modern embeddings-based methods for cognate
identification as far as we know.

Recently, neural and embeddings-based meth-
ods have been gaining importance. Conneau et al.
(2018) is one of the earliest works to link bilingual

8See www.ldcil.org/resourcesTextCorp.aspx
9Not publicly available yet

10CogNet contains only Band 1 Indic languages
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lexicon induction (BLI) with bilingual embedding
spaces, or the alignment of monolingual embed-
dings. This idea has been explored by other works
that seek to adapt it to low-resource settings or relax
its strong isometry assumption (Dou et al., 2018;
Patra et al., 2019), sometimes using a bootstrapping
strategy for embedding alignment and bilingual lex-
icon induction (Artetxe et al., 2018; Cao and Zhao,
2021). Fourrier et al. (2021) frame cognate induc-
tion as a machine translation problem, finding that
SMT beats NMT over smaller datasets; Kanojia
et al. (2019) identify cognate sets for (Band 1) In-
dian languages using the IndoWordNet combined
with lexical similarity measures, training neural
models over the resulting data.

3 Orthographic Distance for Cognate
Induction

3.1 Baseline Approach

A straightforward approach for CI involves using
orthographic distance as a stand-in for phonolog-
ical distance, motivated by the fact that Devana-
gari is orthographically shallow, that is, spellings
closely represent associated pronunciations. We
consider source words from Hindi; the best cog-
nate candidate in the other language is chosen by
minimizing orthographic distance. We use two dis-
tances: normalized edit distance (NED), that is, the
edit distance normalized by the maximum of the 2
word lengths, thus scaling to 0-1; and Jaro-Winkler
(JW) distance (Winkler, 1990), which weights dif-
ferences higher in the beginnings of strings.

For all approaches, we use a minimum source
frequency of 5, maximum lexicon size of 5000, and
we collect 5 best candidates per source word; this
ensures identical recall over all approaches given a
fixed source language corpus and test lexicon.

3.2 Expectation-Maximisation Approach

A limiting theoretical deficiency in the baseline
approach is that it treats substitutions of any two
characters equally (similarly for insertions and dele-
tions). By contrast, the expectation-maximisation
(EM) approach optimises substitution probabili-
ties iteratively while simultaneously learning cog-
nate pairs, given two lexicons, in an expectation-
maximization style algorithm. We call it EMT,
EM for “Transform probabilities".

Setup. Given two word lists (that may overlap)
WLs and WLt, let the set of all characters of the

source and target side be χs and χt respectively.
We use a scoring function S(ci, cj), that contains
a “score” for replacing any character ci ∈ χs with
cj ∈ χt;11 for a given character in a source word,
S is modelled as a transformation probability dis-
tribution over χt. S is initialized by giving high
probability (in practice, 0.5) to self-transforms and
distributing the remaining probability mass equally
over other characters.

Given that C(a, b) is the number of times we
have seen a→ b, and T (a) is the total number of
times we have seen a on the source side, our score
is the conditional probability:

S(ci, cj) =
C(ci, cj)

T (ci)
(1)

We maintain a list of cognates found over all
EM loops, so that we only update model parameters
once per cognate pair. Note that a word may appear
in many different cognate pairs in this setup.

The EMT Algorithm is composed of two steps.
1) Expectation step. Given a candidate source

and target pair (s, t), we can find Ops(s, t), which
is the minimal list of the operations we need to per-
form to get from s to t. Each member in Ops
is of the type (ci, cj). In addition to “insert”/
“delete”/“replace” operations, we also use a “retain”
operation, for characters that remain the same; we
also want to estimate S(a, a) ∀ a.

The score for the pair (s, t) is computed as

ζ(s, t) = −
∑

(a,b)∈Ops
log10(S(a, b)), (2)

where the lower the ζ the more probable a pair
is a cognate. For a given s, we can then always
find the word that is the most probable cognate as
t = minti ̸=s(ζ(s, ti)).

Note that in the training phase, we disallow s =
t, to mitigate exploding self-transform probabilities.
Finally, we choose the best K of all cognate pairs
i.e. those with the highest confidence, equivalent
to the lowest ζ values.

2) Maximisation step. We update the model pa-
rameters based on the newly identified cognates in
the previous step. This is done by increasing the
counts of all observed edit distance operations:

C(a, b) := C(a, b) + 1 ∀(a, b) ∈ Ops(s, t)

11We model insertion and deletion as special cases of re-
placement, by introducing a null character.
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T (a) := T (a) + 1 ∀(a, b) ∈ Ops(s, t)

Inference is performed by choosing the K best
target candidates that minimise ζ(s, t) as described
above, now allowing self-matches.

4 Semantic Similarity for Cognate
Induction

Orthographic matching, even with tailored and
learnt substitution matrices for a given pair of lan-
guages, may be inherently inadequate, as it pays no
heed to the shared semantics of cognates. We use
bilingual subword embeddings (BE) to address this
problem in the following way: we use the semantic
space to narrow down possible candidates, and then
apply orthographic matching in order to select the
top K candidates. This is a two-stage approach
that relies mainly on two separate metrics: first, the
quality of semantic similarity judgments provided
by a semantic embedding space, and second, or-
thographic similarity judgments provided by the
distance/similarity metric we choose to use.

SEM_JW: BE+JW In this approach, we re-
trieve K nearest neighbours of each source word.
These candidates are scored by an interpolation of
semantic similarity and orthographic distance, with
equal weighting. We use cosine similarity for the
former, and JW for the latter. All words that are
not within the K nearest neighbours (50 in our ex-
periments) are discarded from consideration. The
idea is to mitigate the effect of chance orthographic
similarities.

For candidates, if E(s) is the embedding vector
for string s, we minimize:

D(a, b) = 1− scos(E(a), E(b)) · J(a, b), (3)

where scos(v1, v2) captures the cosine similarity
(scaled to [0, 1]) between vectors v1 and v2, and
J(a, b) is the JW similarity.

SEM_EMT: BE+EMT We seek to combine
the benefits of iteratively learning transformation
probabilities with those of semantic spaces. This
approach is almost identical to that in Section 3.2,
except for the fact that only K = 50 nearest neigh-
bours of a source word in the semantic space are
used as its potential cognate candidates, both dur-
ing training and inference.

5 Data Collection

We apply the methods described above to the Indic
dialect continuum. Since these languages cover a

range of resource situations, we divide them into
three categories, Band 1, 2 and 3, based on amount
of resources, with Band 1 containing the best re-
sourced languages, and Band 3 containing (previ-
ously) zero-resource languages. See Table 1 for a
description of the languages under consideration.

5.1 Monolingual Corpora Crawl
Digital presence of Band 3 languages is low to non-
existent; automatic crawling for content faces the
primary problems of scarcity, script handling, and
automatic language identification between closely
related variants.

Kavita Kosh,12 translating roughly to “poetry
collection”, is an online collection of folksongs
and poems in 31 languages from the IA continuum.
Content is manually curated by the organization;
the poetry consists of works by early contempo-
rary writers, mostly from the late twentieth century.
All content is in Devanagari (transliterated in case
of e.g. Bengali content). The website categorizes
pieces by type, language, author/theme, and possi-
bly additional labels such as anthology. We collect
data for a total of 31 languages, of which we have
folksong data for 26 languages, and poetry data for
18 languages.13,14 We leave out 5 languages for
cognate induction: Bangla, Gujarati, Punjabi (writ-
ten primarily in a different script), Sanskrit and
Pali (extinct languages). The data is cleaned at a
character-level, we filter out words with any charac-
ter not within a specified UTF-8 code-point range
and tokenization is performed by white-space split-
ting. See total counts in tokens in Table 1. Poem
and token counts are reported in Appendix A.15

5.2 Evaluation Data for Cognate Induction
Band 3 languages lack standardized gold bilingual
lexicons that may be used for supervision. After a
survey of possible digital resources for this purpose
(see Appendix B for a listing), we choose to use
Languages Home, an online language learning web-
site,16 containing translations of 80–90 artificially
simple English sentences (e.g. “He ate an apple”,

12http://kavitakosh.org/kk/
13We also include Korku as an outlier datapoint; it is not an

Indic language and therefore lacks the genealogical similari-
ties of the others.

14We preserve the distinction made by the website between
Khadi Boli and Hindi; the former is the closest to what we
consider modern Hindi.

15We have been authorized by the organization to make
the folksongs data available but not the poetry. However, our
crawler is publicly available to use.

16https://www.languageshome.com
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Language Primary Regions Language
(Sub-)Family

Data
(Tok.)

Collected
(Tok.)

# native
speakers

BAND 1

Hindi Uttar Pradesh*, Bi-
har*, Rajasthan*,
13 others

IA Central, Western Hindi 1.86B1 7127997 250M†

Marathi Maharastra*, Goa* IA Southern, Marathic 551M1 3327 73M
Nepali Nepal*, West Ben-

gal*
IA Northern, Eastern Pa-
hari

14M2 692657 16M

Sindhi Sindh*, Pakistan,
Rajasthan, Gujarat

IA Northwestern, Sindhi-
Lahnda

61M5 51458 25M

BAND 2

Bhojpuri Bihar, Jharkhand* IA, Bihari 259K3 197639 40M
Awadhi Bihar IA, Bihari 123K3 500079 38M
Magahi Bihar, Jharkand* IA, Bihari 234K3 84754 40M
Maithili Bihar*, Jharkhand* IA, Bihari 300K4 218339 14M
Brajbhasha Uttar Pradesh IA Central, Western Hindi 249K3 160039 1M

BAND 3

Rajasthani Rajasthan IA Central, Gujarati-
Rajasthani

- 187724 50M

Hariyanvi Haryana, Rajasthan IA Central, Western Hindi - 233003 13M
Bhili Rajasthan, Gujarati,

Madhya Pradesh
IA Central, Bhil - 27326 3M

Korku Madhya Pradesh,
Maharashtra

Austro-Asiatic, North
Munda

- 15509 0.7M

Baiga Chattisgarh IA Central, Chattisgarhi - 13848 UNK
Nimaadi Rajasthan, Madhya

Pradesh
IA Central, Bhil - 14056 2M

Malwi Rajasthan, Madhya
Pradesh

IA Central, Bhil - 9626 5M

Bhadavari Jammu Kashmir IA Northern, Western Pa-
hari

- 990 0.1M

Himachali Himachal Pradesh IA Northern, Himachali - 466 2M
Garwali Uttarakhand IA Northern, Central Pa-

hari
- 92668 6M

Kumaoni Uttarakhand IA Northern, Central Pa-
hari

- 1028 2M

Kannauji Uttar Pradesh IA Central, Western Hindi - 327 9.5M
Bundeli Madhya Pradesh,

Uttar Pradesh
IA Central, Western Hindi - 26928 5.6M

Chattisgarhi Chattisgarh* IA Central, Eastern Hindi - 83226 18M
Bajjika Bihar IA, Bihari - 7414 12M
Angika Bihar, Jharkhand* IA, Bihari - 1265146 15M
Khadi Boli Delhi IA Central, Western Hindi - 4507 UNK

Table 1: Language bands. Note that Band 1 languages may have much more data available from other sources such
as Wikipedia; for Band 2 languages, we may have other sources with the same order of magnitude of data. “Primary
Regions” only mentions places in the Indian subcontinent; * indicates official status. Corpora from which data
counts are taken: 1(Kakwani et al., 2020), 2(Yadava et al., 2008), 3(Zampieri et al., 2018), 4(Goldhahn et al., 2012)
5(Conneau et al., 2020). Speaker counts taken from (latest) 2011 census if available. †: probably inflated
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“He will come”) into 76 Indian languages (includ-
ing some Dravidian languages and IA languages
for which we do not have data). This resource has
the best coverage as well as consistency over Band
3 languages. Of these, 20 languages are of our
interest, including 12 Band 3 languages. This data
is considerably noisy, with problems including the
fact that it is written in “casual” Roman translit-
eration, inconsistent parenthetic explanations, and
code-switching.

We develop a pipeline to extract the aligned lexi-
cons. The pipeline consists of cleaning, transliter-
ation of the Indic side into Devanagari with indic-
trans (Bhat et al., 2015), parallelizing with Hindi
instead of English,17 and finally extracting word-
alignments over the given Hindi-parallel data with
FAST-ALIGN (Dyer et al., 2013).

The resulting lexicons have an average size of
153.6 elements, a minimum size of 118, and a max-
imum of 177. We manually evaluate the Hindi-
Marathi lexicon, finding that 73.5% of 130 source
words contain at least one correct target.18 De-
spite clear problems of noise, and acknowledging
that these lexicons should be post-edited by native
speakers, this is the best possible evaluation data
that we can use, given its coverage and uniform
format; however, we consider it as a relative rather
than absolute indicator of performance.

6 Experiments and Results

6.1 Probing the Monolingual Corpora

We seek to capture a high-level picture of the data
on the character, subword, and lexical level, com-
paring observations with language-specific char-
acteristics from prior knowledge as well as with
expected cross-lingual relationships. For this, we
perform 3 types of experiments.

Character-level. We inspect the symmetric KL-
Divergence19 over characters as well as char-gram
distributions of the languages. For the latter, the
final metric is simply the average over divergence
values for each char-gram length. Since IA lan-
guages are orthographically shallow, inspecting
such distributions of a language may give us a fairly

17Word alignment of Indic languages with Hindi sentences
as compared to English sentences is likelier to be accurate.

18Note that a word equivalent used here may not be a cog-
nate even if a cognate does exist in the language.

19Specifically, for probability distributions P and Q, we
calculate the symmetric quantity DKL(P ||Q)+DKL(Q||P )

good idea of the general usage of consonants and
vowels in the language.

Lexical Overlap. If Li and Lj are the filtered
lexicons of two languages i and j, we calculate

Oij =
|Li ∩ Lj |

min(|Li|, |Lj |)
(4)

for all pairs. We apply a corpus-dependent fre-
quency threshold to the data: we discard all words
in a corpus with size NL that occur with a fre-
quency less than T (NL) = log100(NL) − 1. The
exponent 100 and the constant −1 were chosen
such that the threshold does not grow too quickly,
and that datasets with less than 1000 tokens are
fully retained.

Subword-level. We calculate pairwise subword-
level overlap measures, captured by character
grams of length 2–4,20 thinking of subwords as
approximating morphemic units of the language.
Let’s define Lic as the inventory/lexicon of c-length
char-grams for language i, then the c-char-gram
overlap Oijc for languages i and j is calculated
identically to lexical overlap in Eqn 4.

We would like to weight Oijc according to c,
capturing the idea that it is more of a similarity
signal for two languages to share c-char-grams for
a higher c. For this purpose, we calculate the “uni-
verse of possibilities” for each c; i.e. the total num-
ber Uc of unique c-char-grams that occur in the
entire corpus. Since we want normalizing weights
that are inversely related to the probability of an
accidentally shared c-char-gram, we calculate sub-
word similarity as follows:

Oij =
∑

c

(
Oijc ·

Uc∑
c Uc

)
(5)

Finally, we also calculate pairwise symmetric
KL-Divergence over subword distributions.

Results. Figure 1 is generally representative of
our results across character, subword and lexical re-
sults, both overlap-based and information-theoretic
(see Appendix A for related heatmaps). The fol-
lowing general observations emerge from all the
above experiments. The Purvanchal and eastern
languages from Kannuaji to Angika (represented
in the bottom right), show the highest similar-
ity/overlap within themselves over all calculated
measures. This is expected and confirms that the

20Different ranges yield the same trend.
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Figure 1: Overlap-based similarity over i-char-grams.

corpus represents the close genealogical and cul-
tural ties between these languages.

We see that Hindi has high lexical/subword-level
similarities with almost every language. This could
be the result of the widespread use of Hindi, or its
large dataset, including noise even after filtering.
We also notice that some languages have consis-
tently low lexical similarities with others. In the
case of Korku, this is expected, given that Korku is
a genealogical outlier. In other cases, such as with
Malwi and Himachali, this is probably because the
collected dataset is too small to be representative of
the vocabulary of these languages. In general, and
as expected, the eastern cluster as well as the west-
ern cluster of languages show close relationships
with each other.

6.2 Bilingual Embeddings

We use FASTTEXT (Bojanowski et al., 2017) for
training bilingual embeddings in a simple joint
manner, with minimum corpus frequency accord-
ing to the corpus-dependent threshold T (NL), de-
scribed in Section 6.1; we hope to leverage its us-
age of subword information, given that that we
are dealing with data-scarce morphologically rich
languages.

Visualizations reveal that low-resource target
language words often cluster around each other,
whereas Hindi words and words belonging to both
languages are more meaningfully distributed. (See
Figure 2, Appendix C for other language plots.) A
possible diagnosis is an effect pointed out by Gong
et al. (2018) who show that low-frequency words
tend to cluster together regardless of their seman-
tics. This, along with the fact that we are unfairly

Figure 2: t-SNE visualization (Van der Maaten and
Hinton, 2008). Bhojpuri words cluster together.

applying the same minimum frequency threshold
(better suited for the high-resource anchor) for both
languages by mixing the data, may explain the poor
quality of the target language embeddings. In order
to mitigate the problem, we upsample the target
language data to bring it to the same order of mag-
nitude as the Hindi data.

Results We use the Nepali WordNet to extract a
Hindi–Nepali bilingual lexicon, and we calculated
Recall@50 (given 50 nearest neighbours). We also
use basic visualizations and a crosslingual integra-
tion metric cl_integ, which measures the fraction
of nearest neighbours per word that belong to the
other language, to compare the two sets of embed-
dings, on average. That is, if νE(w,K) is the set
of K nearest neighbours of w in the embedding
space E and ψn(L) is a sample of n words from a
language with lexicon L, then

cl_integ12 =
1

n ·K




∑

w∈
ψn(L1)

∑

w′∈
νE(w,K)

I(w′ ∈ L2)




We report scores as a percentage, with n = 500
and K = 10.

The UPSAMPLE Nepali model has better
Recall@50 for the Hindi–Nepali gold lexicon (33%
vs. 29%).21 Representing cl_integ scores as a pair
of integration values in either direction, i.e. (target-
Hindi, Hindi-target), we find that the UPSAMPLE

21We also evaluated differently sized subsets of Nepali data
for over the WordNet lexicon, which yielded consistent results;
see Appendix C for details and more visualizations.
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Figure 3: Hindi source word: /k@ha:/ (said). SEM_JW
approach performs the best, resulting in Bhojpuri equiv-
alents (except the third prediction) and inflections.
SEM_EMT also results in semantically correct out-
puts (for all but the fourth prediction). The NED/JW
approaches produce orthographically close words that
are semantically unrelated, e.g. /k@hã:/ (where).

models show scores of (43%, 27%), and the JOINT

models show (91%, 14%), averaged over all lan-
guages. We see that the UPSAMPLE models show
less skew by direction, and higher scores for the
latter direction (which is what we use).

Finally, visualizations for different languages
(see Appendix C.1 for an example) show the tar-
get language words to be better distributed in the
UPSAMPLE approach, with more meaningful col-
locations. All of these are good indications that
upsampling did indeed improve the quality of the
bilingual embedding space. We use these for the
subsequent approaches.

6.3 Cognate Induction

Our main results are presented in Table 2. There is
no clear quantitative winner; SEM_JW performs
slightly better than the other approaches on aver-
age. Cognate identification methods usually work
at a much higher accuracy (Beinborn et al., 2013;
Fourrier et al., 2021), 70–90%. The low accuracies
that we record are due to a number of factors: a
much lower resource range, lack of aligned word
lists, lemmatizers, or supervision and evaluation, as
well as noise in the evaluation data. While most lit-
erature assumes lemmatized word lists as input for
this task, we do not have lemmatizers for these lan-
guages and work with fully inflected word forms;
this is a further challenge for our CI strategies.

Qualitatively, we observe significant differences
across models. See Figure 3 for example outputs.

NED/JW: The NED/JW approaches are often
able to capture the correct answer for longer words,

because the closest candidate in edit distance is
likely to be in the ballpark for closely related lan-
guages. However, we also often get outputs (es-
pecially the second or third prediction) that are
entirely off, as is expected from this naive idea.

EMT: Taking a look into the substitution dis-
tributions learnt by EMT, we see that it learns
some expected relationships e.g. the relationship
between /i/ and /i:/, shifts between other vowels,
or the fact that some rarely used characters are
likely to be deleted. However, the approach is not
able to produce good final outputs. We attribute this
to a bad seed; this approach basically depends on
the seed obtained from simple NED to get started,
and if it meanders down a mistaken path, that error
tends to magnify itself due to the iterative nature of
the algorithm, sometimes resulting in even worse
final outputs than simple NED/JW.

SEM_*: The SEM_* approaches are intended
to address the fundamental inadequacy in the above
approaches: the fact that they do not exploit the
shared semantics of cognates. SEM_JW is accord-
ingly better at producing outputs that are semanti-
cally related, besides the required cognates. Top
predictions tend to be similar to those of NED/JW,
but SEM_JW produces a better collection of out-
puts, from the perspective of bilingual lexicons, es-
pecially since it is less biased against a higher num-
ber of substitutions. However, for many words, the
method produces rather Hindi-like outputs, proba-
bly as a result of the persisting problem of language-
wise clustering in the spaces.22 SEM_EMT still
suffers from the same problems as before; we see
therefore that a stronger orthographic distance met-
ric such as JW is better able to spot the cognate
from semantically related words.

7 Discussion and Conclusion

We analyse the performance of the approaches with
respect to the different facets of cognacy.

Variant inflectional endings: Learning the cor-
respondences between inflections in a dialect pair
is a crucial task when it comes to cognate identifi-
cation for fully inflected word forms. In terms of
producing the right answer, we see an intuitive split
between common and rare words when it comes to
other approaches. For common words, SEM_JW

22This problem may be mitigated with a higher target fre-
quency threshold.
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Total Found NED JWM EMT SEM_JW SEM_EMT

Kumaoni 138.0 118.0 5.1 4.2 5.1 5.1 4.2
Marathi 138.0 116.0 7.8 5.2 4.3 1.7 3.4
Bajjika 149.0 123.0 13.8 15.4 13.8 14.6 11.4
Malwi 153.0 125.0 24.8 22.4 20.0 20.0 15.2
Koraku 140.0 116.0 1.7 0.9 1.7 1.7 0.9
Bundeli 139.0 117.0 26.5 25.6 25.6 30.8 26.5
Bhil 156.0 128.0 19.5 21.1 17.2 18.8 18.0
Sindhi 134.0 114.0 10.5 13.2 7.9 10.5 9.6
Magahi 159.0 129.0 17.8 20.9 18.6 20.9 17.1
Chattisgarhi 136.0 115.0 25.2 26.1 24.3 28.7 26.1
Garwali 143.0 120.0 15.8 15.8 15.0 15.8 14.2
Brajbhasha 155.0 127.0 33.9 34.6 32.3 33.9 32.3
Rajasthani 144.0 120.0 30.8 29.2 27.5 31.7 30.0
Bhojpuri 139.0 115.0 31.3 28.7 32.2 30.4 29.6
Maithili 140.0 117.0 17.9 17.1 16.2 18.8 20.5
Hariyanvi 153.0 126.0 38.1 41.3 37.3 43.7 42.9
Awadhi 148.0 123.0 28.5 26.8 22.0 26.0 25.2
Nepali 105.0 95.0 12.6 12.6 9.5 9.5 7.4
Angika 141.0 116.0 21.6 20.7 21.6 22.4 21.6

Average 142.6 118.9 20.1 20.2 18.5 20.3 18.7

Table 2: Results for CI, precision (%) over bilingual lexicons presented in Section 5.2. A precision point is calculated
per source word such that any predicted target exists in the evaluation target set.

is likely to perform better than the other approaches
because the word is well embedded and the correct
word form is likely to be nearby in the semantic
space, and subsequently selected by JW. In these
cases, especially for short words, NED/JW are
likely to be derailed by irrelevant words.

Correct semantics: We would like to have se-
mantically sensible outputs even if the predicted
words are not cognates. Naturally, this is per-
formed best by the SEM_* approaches, although
the NED/JW approaches do better than expected.

Sound changes: Sound change is one of the fun-
damental phenomena of cognacy, and can be un-
derstood in the case of borrowing in the sense of
changed pronunciations. Unfortunately, we do not
have the theoretical data of attested sound changes
across these dialects in order to be best able to
check which approach performs best in this respect.

The SEM_JW produces overall the most re-
spectable outputs, although this is more true for
common words. The main inadequacy of all these
approaches is their inability to capture language-
pair specific correspondences. An extension of this
work could focus on refining something akin to
the SEM_EMT, which has the most theoretical
potential in this direction. Improvements could in-
clude searching the hyperparameter space for better
priors. An investigation into better bi/multilingual
spaces is crucial to generalize good performance

over rare words; future work can look into using
orthographic similarities explicitly while training
the space itself, as well as the utility of zero-shot
multilingual contextual embeddings for this task.

We have presented a new approach to unsuper-
vised cognate identification from monolingual cor-
pora under conditions of asymmetric data scarcity.
We collected monolingual data for 26 Indian lan-
guages of the Indic dialect continuum, 16 of which
previously zero-resource, as well as synthetic eval-
uation data. Our experiments show the benefits
of combining weak semantic signals from static
bilingual embeddings with orthographic cues.
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Figure 4: Character-level symmetric KL-Divergence for
all languages

A Data Collection and Probing

We record counts of tokens from the folksongs and
poetry in Table 3.

A.1 Character-level probes
We inspect a table of character distributions over
the language data after it has been cleaned. As
expected, the commonest and most widely used
consonants and vowels in the IA family form the
bulk of the distributions of most languages, e.g.
/t/, /D/, /a/, /e/. We see some conspicuously low
numbers, e.g. /S/, /v/, and /ï/, fairly common
consonants in the rest of the languages, seem to
be very little used (in this corpus) from Kannauji.
This is in part corroborated by Dwivedi and Kar
(2016), who say that the first two are not native to
Kannuaji but borrowed from Hindi.

We also see spikes in more endemic consonants
as expected, for example /í/ only shows reasonable
percentages in Marathi and Nimaadi. Finally, the
“avagraha” symbol /s/, used in Sanskrit to denote
the deletion of the inherent vowel of the previous
consonant, has only been inherited into the scripts
of certain languages like Nepali and Magahi; in
Hindi, it is sometimes used to denote the elonga-
tion of the previous vowel especially in lyrical texts.
See Figure 4 for a heatmap over pairwise symmet-
ric KL-divergence for character distributions.

A.2 Lexical measures
See Figure 6 for a depiction of pairwise lexical
overlap. We also take a “close-up” look at sections
of the pairwise results for language clusters that
we expect to have closer relationships within the

Figure 5: Pairwise KL-Divergence over distributions of
i-char-grams. Lower is better.

cluster. See Figures 7a,7b,7c. There are 3 such geo-
graphically motivated bands that we are interested
in.

Firstly, we observe the “north” band, includ-
ing Sindhi, Haryanvi, Punjabi, and the Pahari lan-
guages. Then we have the “north-central” band,
which follows the heartland of the Gangetic plains,
from Rajasthan (Rajasthani) across Delhi (Khadi
Boli), Uttar Pradesh (Awadhi, Kannauji), Chattis-
garh (Chattisgarhi), and Bihar (Bhojpuri, Magahi,
Angika). Finally, we have the “central” band across
southern Rajasthan (Bhili), Madhya Pradesh (Ni-
maadi, Malwi) and Maharashtra (Marathi).

We see that the “north-central” band indeed has
the highest inter-similarities with some pairs (even
excluding Hindi) showing similarities at around
70% (Bundeli-Angika, Kannauji-Awadhi). The
“north” band follows; we see that Haryanvi and
Nepali generally have high overlap with surround-
ing languages. Finally, the “central” band shows
Rajasthani as having high lexical similarity with
languages spoken in nearby regions, e.g. Bhili
and Nimaadi; this makes sense, since Rajasthani
is a catch-all for many related languages with high
influence over nearby languages. Baiga shows gen-
erally low similarities except with Chattisgarhi, of
which it is supposed to be a variant.23

Also see a dendrogram induced from lexical sim-
ilarity measures in Figure 8. We see that some
languages expected to be similar are grouped in
the same subtrees e.g. Haryanvi and Rajasthani,
{Awadhi, Angika, Bhojpuri}, as well as {Nimaadi,

23https://glottolog.org/resource/languoid/id/
baig1238

121

https://glottolog.org/resource/languoid/id/baig1238
https://glottolog.org/resource/languoid/id/baig1238


Language Band Folksongs Poetry Folksongs
tokens

Poetry
tokens

Total
Pieces

Total
tokens

Rajasthani 3 67 1790 7404 180320 1857 187724
Gujarati 1 14 624 1795 73363 638 75158
Himachali 3 3 0 466 0 3 466
Hindi-Urdu 1 1 54408 100 7127897 54409 7127997
Magahi 2 340 376 37587 47167 716 84754
Awadhi 2 47 1333 4942 495137 1380 500079
Punjabi 1 754 0 69595 0 754 69595
Koraku 3 177 0 15509 0 177 15509
Baiga 3 35 0 13848 0 35 13848
Nimaadi 3 157 0 14056 0 157 14056
Khadi Boli 3 42 0 4507 0 42 4507
Bhojpuri 2 131 1275 20350 177289 1406 197639
Garwali 3 128 449 33380 59288 577 92668
Chattisgarhi 3 92 378 33504 49722 470 83226
Brajbhasha 2 83 1441 8883 151156 1524 160039
Bhil 3 155 0 27326 0 155 27326
Sanskrit 3 2 248 184 95450 250 95634
Angika 3 96 6773 21419 1243727 6869 1265146
Hariyanvi 3 554 930 49122 183881 1484 233003
Kannauji 3 6 0 327 0 6 327
Bundeli 3 326 0 26928 0 326 26928
Bangla 1 12 0 838 0 12 838
Malwi 3 129 0 9626 0 129 9626
Marathi 1 5 30 1412 1915 35 3327
Kumaoni 3 9 0 1028 0 9 1028
Bhadavari 3 8 0 990 0 8 990
Nepali 1 0 4753 0 692657 4753 692657
Maithili 2 0 1552 0 218339 1552 218339
Pali 3 0 27 0 5859 27 5859
Bajjika 3 0 71 0 7414 71 7414
Sindhi 1 0 500 0 51458 500 51458

Table 3: Showing crawled corpus counts for all collected languages.
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Malwi, Bhili, and Baiga}. More distantly related
languages like Gujarati, Pali, Bangla and Sanskrit
are placed on the outer parts of the tree. However,
we would have also expected to see Khadi Boli
closer to Haryanvi, and Bajjika closer to Angika
and Bhojpuri.

Figure 6: Lexical Overlap, all languages

A.3 Subword-level
See Figure 5 for a heatmap capturing pairwise sym-
metric KL-Divergence over subword distributions.
Trends are similar to those seen in overlap-based
measures; however, we see that the similarities
against Hindi are lower, suggesting lower influence
of corpus size on the measure.

B Evaluation Data

B.1 Existing resources
For some Band 1 languages (specifically, Hindi,
Nepali, and Marathi), we have WordNets from the
IndoWordNet project (Sinha et al., 2006; Debasri
et al., 2002), from which we can extract equivalents
across languages. We are not concerned, therefore,
with searching for multilingual lexical resources
for Band 1 languages. For some Band 2 languages
(Bhojpuri, Magahi, and Maithili), WordNets are
under way (Mundotiya et al., 2021) but as yet un-
available.

For Band 3, as discussed, we do not have any pre-
existing bilingual or multilingual lexical resources
in a convenient format. We therefore look for bilin-
gual lexicons in the “wild”; that is, blogs, websites,
scanned dictionaries, etc. We list all such raw ma-
terial that we found that could be potentially useful
for this purpose in Table 4. The names of these
resources are listed separately in Table 5.

We exclude a few other resources we found due
to too small a length (< 30 word pairs), or too
unstructured a format; these are unlikely to be of
much help to the NLP community.

B.2 Overview of existing resources

The listed resources cover 4 Band 2 languages and
7 Band 3 languages: this is counting “Bihari” as
the same as Bhojpuri, and Rajasthani the same as
Marwari. Note that these resources may cover more
languages; we have only listed the ones relevant
to this project in the “Languages” column. These
resources have widely different domains, content
types, and formats.

Four of the listed websites disable copying and
webpage inspection, discouraging crawling or re-
using their data; this means that 3 Band 3 languages
are once more resource-less.

Content-wise, we see that many resources have
explanations on the target side (Hindi or English),
rather than equivalents. For this project, that means
that the resource is not really ready-to-use as a
bilingual lexicon, but will require further work in
terms of extracting equivalents from the explana-
tions for the target side, or recasting it as a lexicon
of similar words on the target side, etc. R11 for Ra-
jasthani also requires transliteration for the source
side before it is useful. Finally, we note that even
the resources listed as containing equivalents in
Table 4 usually contain a mixture of equivalents,
explanations, and examples. That is, each resource
would require considerable processing, possibly
manual, to yield a relatively noiseless bilingual
lexicon.

As we discussed, for the purposes of this project,
we would like to have not only bilingual lexicons
per language with an anchor (preferably Hindi),
but also considerable intersections between the lex-
icons to allow the potential of testing multilingual
interactions beyond Hindi-lang tasks. This too,
unfortunately, is likely to be a problem when gath-
ering resources from different sources with rather
small lists, although we can hope to find some com-
mon words.

Given the above problems, including potential
extensive manual efforts to the above individual
resources usable, probable multilingual mismatch,
and low coverage of Band 3 languages despite it all,
we decided not to attempt garnering lexicons from
these different resources for individual languages
with the intention of putting them together.
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(a) Lexical Overlap, “North central” cluster of languages

(b) Lexical Overlap, “Central” cluster of languages

(c) Lexical Overlap, “Northern” cluster of languages

Figure 7: Pairwise lexical overlap for different subsets of languages
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Re-
source

Languages Anchor
language

Content notes Format Approx.
length

R1 Rajasthanir Eng.r Explanations in En-
glish

Simple list >500

R2 Rajasthanid Hind, Engr Hindi equivalents,
English explanation

Webpages by initial
letter

> 500

R3 Angikad Hind, Engr Explanations Each word on diff.
page, disabled
copying

102

R4 Bundelid Hind Equivalents Simple listing, dis-
abled copying

Few 100s

R5 Haryanvid Hind Equivalents Simple list < 100
R6 Chattisgarhid Hind Explanations Webpage per word,

disabled copying
< 100

R7 Chattisgarhid Hind Equivalents List, disabled copy-
ing

Few 100s

R8 Kumaonid r Hind, Engr Equivalents, catego-
rized by themes

Simple list < 100

R9 Brajbhashad Hind Equivalents/ expla-
nations

Mixture of para-
graphs and lists,
rather disorganized

Few 100s

R10 Bhojpurid Hind Mostly equivalents,
also Hindi syn-
onyms

Simple list 400

R11 Hindir,
Marathii,
Nepalii,
“Bihari”i,
Magahid,i,
Marwarii

- Cognates Swadesh list 207

R12 {Bhojpuri, Gar-
wali, Hindi,
Marathi,
Nepali, Ma-
gahi, Maithili,
Sindhi}d,i

Engr Short phrase trans-
lations

Simple list 45 phrases
(on avg.)

Table 4: Raw resources found for different languages. The superscripts d, r and i indicate that the script used for the
language is Devanagari, Roman or IPA respectively. The lexicon length given is an approximation because some of
these formats make it difficult to get the exact number of entries.
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Figure 8: Dendrogram based on lexical overlap.

R11 is naturally exactly what we would have
liked to find, although, again, it may require translit-
eration from IPA from most languages to be useful
(and for Hindi, from a “casual” Roman script). The
main problem, however, is that it deals with 3 Band
1 languages (for which we already have lexicons),
2 Band 2 languages, and only 1 Band 3 language,
making it a low-coverage resource for our situation.

R12 is another interesting multilingual resource,
highly similar to the resource that we finally de-
cided to use, discussed in Section 5.2.

Note that a couple of these resources are valuable
on their own, e.g. R10 for Bhojpuri is extensive,
simply formatted, and relatively neat and consis-
tent; it will not require too much manual work to
convert it into a usable resource for linguists. Sim-
ilarly, R1 and R2 in Rajasthani provide the raw
material for good bilingual lexicons, although they
will first require a good quality transliteration into

Devanagari for the Rajasthani side.

B.3 Collected data

Example of parallel sentence from “Languages
Home”:

English: Will you give me your pen?
Hindi: Kya tum mujhe apna pen doge?

We see that the word “pen” is code-switched in
Hindi, rather than using the Hindi word “kalam”.
However, in other languages such as Bagheli, we
see the word “kalam” used instead.24 Therefore, al-
though the word “kalam” exists in both languages,
this relationship is not obscured because the trans-

24By itself, this difference is not a bad thing given that the
purpose of this website is language learning. In Hindi, the
given parallel sentence is absolutely natural-sounding - people
do often code-switch the word “pen”. Code-switching with
English may be less common in less urban languages such
as Bagheli; thus accounting for the use of the native word
“kalam”.
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Resource Name

R1 Rajasthani Language Dictionary | Rangrasiya
R2 Glossary of Rajasthani Language - Jatland Wiki
R3 Angika Shabdkosh
R4 Bundeli Shabdkosh
R5 (Blog post) Learn Harayanvi Language

Through Hindi Language
R6 Chattisgarhi-Hindi online dictionary
R7 (Post) HS MiXX Entertainment
R8 Kumaoni Boli
R9 (Blog post) Learn Brajbhasha Vocabulary
R10 (Blog post) Bhojpuri dictionary
R11 (Blog post) Swadesh Word List of Indo-

European languages
R12 Omniglot

Table 5: Resource websites: indexed according to Table 4

lator chose to use a different equivalent instead (in
this case, code-switched, but not necessarily so in
other sentences).

We report per-language statistics of the Hindi-
parallel transliterated data in Table 6.

C CI: Using semantic similarity

C.1 Training embeddings: Visualizations

We use t-SNE (Van der Maaten and Hinton, 2008)
to obtain the following visualizations; we per-
formed these for joint models of Bhojpuri, Ra-
jasthani, Hariyanvi, Magahi, and Korku (with
Hindi-Urdu). See Figure 10 for Bhojpuri (the oth-
ers are similar).

The main observations we can make for this
type of model, common to all the languages, is that
the low-resource target language words seem to be
clustered around each other, whereas Hindi words
and words belonging to both languages are better
situated according to their semantics.

For the UPSAMPLE models, we visualize the
same words for these languages; we present a rep-
resentative (Bhojpuri) plot in Figure 10 (lower fig-
ure). While it is not clear from the visualization that
the JOINT_UPSAMPLED models are less language-
wise clustered than the JOINT, the target language
words seem at least much better distributed, and we
see more meaningful collocations (both monolin-
gual in the target language, and cross-lingual) that
we did not see before, such as “we”, “our” (cross-
lingual) in the Bhojpuri. However, it is difficult to
say from such visualizations which space is better

Figure 9: Recall@K for the bilingual FASTTEXT Nepali
embeddings.

embedded.

C.2 Evaluating embeddings

C.2.1 Measuring Integration: cl_integ
See Table 7 for the evaluation for JOINT as well as
UPSAMPLE embeddings for all languages over the
cl_integ metric.

C.2.2 Evaluating embeddings: Nepali
WordNet

As mentioned before, we do in fact have Word-
Nets from the IndoWordNet project (Kakwani et al.,
2020) for Nepali and Marathi, from which bilin-
gual lexicons can easily be extracted. While the
Marathi dataset in our current collection is not very
representative as previously discussed, we eval-
uate the Nepali-Hindi bilingual space using the
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Language Total in
corpus

Unique in
corpus

Total in
test

Unique in
test

Common
in corpus

and test

Frac.
covered

in
corpus1

Frac.
covered
in test2

Brajbhasha 156986 30194 299 161 93 0.12 0.65
Angika 1253545 91757 310 165 102 0.09 0.60
Maithili 218491 41434 273 147 81 0.09 0.54
Magahi 79405 16942 326 172 81 0.11 0.64
Hindi-Urdu 7100394 197355 336 171 165 0.25 0.98
Awadhi 490877 53103 281 145 109 0.05 0.82
Rajasthani 187708 34360 312 161 124 0.11 0.84
Hariyanvi 232526 27431 298 156 123 0.13 0.86
Bhil 27246 5557 319 177 68 0.12 0.48
Chattisgarhi 83073 14463 267 134 95 0.16 0.76
Nepali 688865 104687 203 118 65 0.04 0.62
Bajjika 7412 2788 317 149 55 0.13 0.53
Koraku 15508 2278 262 132 17 0.04 0.23
Malwi 9626 2883 325 163 51 0.12 0.46
Sindhi 52659 11850 250 141 55 0.09 0.51
Bhojpuri 196513 34051 303 146 110 0.16 0.83
Garwali 90234 22655 275 161 86 0.07 0.64
Marathi 3109 1685 230 130 29 0.05 0.37
Kumaoni 1013 441 250 171 16 0.10 0.16
Bundeli 26902 7991 272 147 82 0.12 0.63

Table 6: Evaluation token data statistics post-transliteration, after aligning with Hindi. 1 This reports the fraction of
the corpus (token-wise) that is contained in the test, vice-versa for 2.
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Figure 10: t-SNE (Van der Maaten and Hinton, 2008) Visualization of Bhojpuri-Hindi bilingual space, JOINT (up)
and UPSAMPLE (down)
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J_12 J_21 U_12 U_21

Sindhi 0.53 0.23 0.31 0.33
Rajasthani 0.78 0.33 0.62 0.40
Punjabi 0.58 0.19 0.40 0.27
Hariyanvi 0.75 0.30 0.66 0.36
Khadi Boli 0.99 0.18 0.76 0.13
Sanskrit 0.33 0.28 0.12 0.26
Bhil 0.92 0.24 0.53 0.34
Koraku 0.59 0.13 0.34 0.10
Baiga 0.97 0.21 0.73 0.31
Nimaadi 0.87 0.16 0.47 0.21
Malwi 0.88 0.14 0.45 0.13
Marathi 0.95 0.20 0.32 0.15
Bhadavari 1.00 0.12 0.81 0.30
Himachali 1.00 0.07 0.48 0.07
Garwali 0.64 0.25 0.25 0.39
Kumaoni 0.97 0.09 0.74 0.05
Kannauji 1.00 0.04 0.66 0.14
Brajbhasha 1.00 0.32 0.74 0.38
Bundeli 0.99 0.21 0.58 0.36
Awadhi 0.69 0.34 0.45 0.43
Chattisgarhi 0.86 0.29 0.51 0.36
Nepali 0.37 0.39 0.31 0.48
Pali 0.57 0.11 0.07 0.10
Bhojpuri 0.91 0.32 0.74 0.41
Bajjika 1.00 0.20 0.74 0.30
Magahi 0.84 0.21 0.44 0.42
Maithili 0.85 0.38 0.57 0.49
Angika 0.63 0.44 0.50 0.40

Table 7: cl_integ values reported as 0-1 measure for
both sets of embedding spaces, in both directions. 12
indicates that we consider the non-Hindi language as
source, and look for the fraction of nearby Hindi words,
21 is vice versa.

# to-
kens

integ_12 integ_21 bl_12 bl_21

JOINT

5000 0.43 0.37 0.30 0.21
50000 0.33 0.38 0.29 0.21
100000 0.29 0.37 0.29 0.20
500000 0.33 0.44 0.29 0.20

UPSAMPLE

500000 0.29 0.42 0.33 0.15

Table 8: Recall@50 for Nepali data splits of different
sizes against Hindi-Nepali lexicon obtained from In-
doWordNet. 12: Nepali as source, 21: Hindi as source.
We also show results for cl_integ and bilingual lexicon
tests for UPSAMPLE Nepali model

Nepali WordNet. We used the WordNet to extract
a Hindi/Urdu-Nepali bilingual lexicon, and we cal-
culated Recall@K, in the following way: for each
Hindi-Urdu word, we extract its K nearest neigh-
bours. If any of those are the gold target, we count
a full point for that word. Finally, we report the
total such points as a percentage of the length of
the gold bilingual lexicon.

See the results for the joint Nepali model in Fig-
ure 9.

Nepali is in the highest range of availability in
our current dataset, so we do not expect these re-
sults to be representative for other languages with
less data. We therefore also look at these results
over artificially smaller cuts of the Nepali dataset.
See Table 8. We also report these numbers for the
UPSAMPLE Nepali model (all data included) in the
same table.

C.2.3 Discussion
There are a couple of interesting things to note
about the above results. We see that cl_integ
shows high values from the LRL to Hindi direc-
tion, but not vice versa. Nepali happens to be an
outlier in this case, which is perhaps unfortunate
since it is unlikely to be representative of the other
languages, and it is the only language we can eval-
uate with more detail.

We notice in Table 8 that the results for the Word-
Net bilingual lexicon test seem to be stable across
different data splits. This is rather suspicious; how-
ever, a possible explanation is that the positives
accrue from frequent words anyway, possible also
present in the Hindi-Urdu data; therefore, reduc-
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ing the number of Nepali tokens does not seem to
affect this number. Note that this is not at all an
indication that the resulting embeddings are of the
same quality, simply that this metric is not able to
capture possible underlying damage.
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