
Autonomous Robots
https://doi.org/10.1007/s10514-023-10091-y

Visuo-haptic object perception for robots: an overview

Nicolás Navarro-Guerrero1 · Sibel Toprak2 · Josip Josifovski3 · Lorenzo Jamone4

Received: 21 January 2022 / Accepted: 17 January 2023
© The Author(s) 2023

Abstract
The object perception capabilities of humans are impressive, and this becomes even more evident when trying to develop
solutions with a similar proficiency in autonomous robots. While there have been notable advancements in the technologies
for artificial vision and touch, the effective integration of these two sensory modalities in robotic applications still needs to
be improved, and several open challenges exist. Taking inspiration from how humans combine visual and haptic perception
to perceive object properties and drive the execution of manual tasks, this article summarises the current state of the art of
visuo-haptic object perception in robots. Firstly, the biological basis of humanmultimodal object perception is outlined. Then,
the latest advances in sensing technologies and data collection strategies for robots are discussed. Next, an overview of the
main computational techniques is presented, highlighting the main challenges of multimodal machine learning and presenting
a few representative articles in the areas of robotic object recognition, peripersonal space representation and manipulation.
Finally, informed by the latest advancements and open challenges, this article outlines promising new research directions.

Keywords Tactile sensing · Haptics · Robot perception · Sensor fusion · Object manipulation ·Multimodal machine learning

1 Introduction

In humans, vision is themost important source of information
for object perception. However, haptic feedback is crucial,
too. The challenges posed by the absence of vision can be
easily experienced by anyone just by trying to perform daily
tasks blindfolded or in the dark. Less common is to experi-
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ence the lack of haptic perception. Frigid fingers, caused by
either coldness (e.g., frostnip or frostbite) or specific health
conditions (e.g., anaemia), are one example; simply wearing
thick gloves is another one, although the impairment is less
evident. Early scientific experiments conducted by Westling
and Johansson (1984) have shown how simple manipulation
tasks, such as lighting a match, become almost impossible if
the tactile feedback is removed by temporarily anaesthetizing
the fingertips.

The situation is similar for robots. While vision is a pri-
mary source of information, some important object properties
cannot be perceived using (only) vision, such as weight,
material, or texture. Imagine the case of a robot sorting boxes
based on whether they are empty or not without inspecting
their content. Such a robot can only do this job if it can
perceive the weight of the boxes, both to adjust the grip
force (also combining the perceived friction coefficient, i.e.,
by feeling the texture) and to correctly classify the boxes.
In addition, even for properties that are well detected by
vision, such as the position or shape of the object, there are
cases in which the sole reliance on this sensory modality
is limiting, for example in settings characterized by unpre-
dictable changes in the lighting conditions, or when dealing
with translucent, reflecting, and occluded objects. Relying on
multiple sensorymodalities can help resolve these perceptual
ambiguities.
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The idea of integrating vision and touch was first pro-
posed by Allen (1984) to generate descriptions of object
surfaces. Allen (1988) extended this idea to encompass the
whole object recognition task. Since then, much work has
been done on recognizing and manipulating objects based
on one modality, i.e., based on either vision or haptics alone
(Please refer to, e.g., Zhao et al. (2019); Fanello et al. (2017);
Guo et al. (2016); Du et al. (2021) for an extensive overview
of visual object perception and Seminara et al. (2019); Luo et
al. (2017); Kappassov et al. (2015) for an extensive overview
of haptic object perception). Despite the significant progress
achieved in the field based on either visual or haptic infor-
mation, the combination thereof has attracted less attention
in comparison, e.g., Liu et al. (2017a); Yang et al. (2015).

Usually, in machine learning applications, visual and hap-
tic perception are treated as two separate processes that
converge at some point to a final classification result, e.g., Liu
et al. (2020); Cui et al. (2020). However, in the brain, inter-
actions between vision and touch take place in the cerebral
cortex (Lacey & Sathian, 2016). These interactions can be
crossmodal, meaning that the haptic stimuli activate regions
traditionally believed to be visual or multimodal, in which
case the visual and the haptic stimuli converge.

This article presents a holistic overview of multimodal
object perception for robots from both a bio-inspired and
a technical point of view. Firstly, the biological basis of
visuo-haptic object perception is introduced. Secondly, a
summary of tactile sensors and multimodal datasets are pro-
vided. Thirdly, the computational challenges of multimodal
signal processing are presented. Fourth, the main applica-
tion areas are introduced and reviewed, includingmultimodal
object recognition, peripersonal space representation, and
objectmanipulation. Finally, challenges and future directions
for research on artificial visuo-haptic object perception are
discussed.

2 Neural basis of visuo-haptic object
perception

The fact that there is no learning algorithm yet that reaches
the level of proficiency of the human brain when it comes
to recognizing objects illustrates how complex this cogni-
tive task actually is (Smith et al., 2018; Krüger et al., 2013;
James et al., 2007). The human brain is capable of performing
it both quickly and accurately, even when the visual infor-
mation available is incomplete or ambiguous. One reason
might be that the brain can complement that ‘picture’ with
information from other sensory modalities at will; usually,
it does this with haptics. However, it is also because the
learning machinery in the human brain seems to be suited to
learn from drastically different frequency distributions than
those used in machine learning, as described by Smith et al.

(2018). In particular, infants seem to use curriculum learning
constrained by their developing sensorimotor abilities and
actions. However, what is in strong contrast with machine
learning algorithms is that the learning machinery, at least in
infants, is particularly effective in learning from extremely
skewed frequency distributions, i.e., a very small number of
instances are highly frequent while most other instances are
encountered very rarely. For instance, in very young infants,
more than 80% of faces they are exposed to are from 2-3
individuals (Smith et al., 2018).

We argue that taking inspiration from the complemen-
tary nature of sensory modalities as well as processes in the
brain that are involved in fusing the information they pro-
vide during object perception, might help build better robotic
systems. While this topic is an active area of research and
considerable new insights have been gained, there are still
many aspects about the inner workings of the human brain
during object perception that are not fully understood.

In this section, we present a short review of what is known
on visuo-haptic object perception and recognition in the brain
(or more specifically in the cerebral cortex), focusing on the
main organizational and functional principles that can serve
as a basis for computational modelling given the complexity
of this topic and the abundance of research available.

2.1 Visual object perception

For every basic sense, a primary sensory area canbe identified
in the cerebral cortex, the earliest cortical area in the brain’s
outer layer to process the sensory stimuli coming from the
respective receptors. For vision, that area, the primary visual
cortex (V1) (Krüger et al., 2013; Grill-Spector & Malach,
2004; Malach et al., 1995) is located on the backside of the
brain, in what is referred to as the occipital lobe.

The neurons here are organized in a way that allows for
neighbouring regions in the retina, and hence in the visual
input, to be projected onto neighbouring areas in V1. Retino-
topic maps emerge from this orderly arrangement in V1
and subsequent lower visual areas, where the output of the
processing at the level of very primitive visual features is
forwarded to.

The hierarchical organization of the visual cortical areas
and the receptive field size of the neurons gradually increas-
ing with each new area along this hierarchy turns the visual
information into more complex and abstract representations
(Ungerleider & Haxby, 1994; Krüger et al., 2013; Grill-
Spector & Malach, 2004). This hierarchical organization is
what convolutional neural networks (CNNs) take their inspi-
ration from computationally (Fukushima, 1980; LeCun et al.,
2015).

Hierarchical organization aside, the processing of the
visual stimuli following V1 has been found to diverge into
two main pathways or streams (Ungerleider & Haxby, 1994;
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Fig. 1 The dorsal and ventral streams originate from the primary visual
cortex (V1). The arrow from the right to the top left represents the dorsal
stream, and the arrow from the right to the bottom left represents the
ventral stream. Adapted from Young et al. (2013) CC BY 4.0

Mishkin et al., 1983), see Fig. 1. One stream runs ven-
trally, extending into the temporal lobe of the cortex, and
is responsible for the visual identification of objects, while
the other runs dorsally, reaching into the parietal lobe, and
enables the visual location of and spatial relations among
objects (Mishkin et al., 1983). The ventral and dorsal streams
are, therefore, also called the “what” and “where” pathway,
respectively. A modification to this model was later intro-
duced to distinguish between “vision for perception” and
“vision for action” and to emphasize that the dorsal stream
also coordinates visually guided actions directed at objects
(Goodale & Milner, 1992). Hence, these streams are alter-
natively referred to as “perception” and “action” pathways.
The overall model became known as the two visual systems
(TVS) model (Rossetti et al., 2017; Milner, 2017; de Haan et
al., 2018; Goodale & Milner, 2018).

The idea that the neural substrates underlying each visual
processing stream are distinct was initially proposed by
Goodale et al. (1991); Goodale andMilner (1992) andwidely
accepted since. However, it has become the subject of contro-
versy as of late for being oversimplified (de Haan & Cowey,
2011; Sheth & Young, 2016; Rossetti et al., 2017; de Haan et
al., 2018). There is evidence for cross-talk between the two
streams: ventral to dorsal when information about the object
and its qualities is required to plan and fine-tune a grasp-
ing action (Perry & Fallah, 2014; van Polanen & Davare,
2015; Milner, 2017), and dorsal to ventral, when updated
grasp-related information helps refine the 3D perception and
possibly the internal representation of objects (van Polanen
&Davare, 2015; Freud et al., 2016;Milner, 2017). Neverthe-
less, the TVS model has inspired a considerable amount of
research in this area and hence remains influential (de Haan
et al., 2018; Goodale & Milner, 2018).

Zooming in on the perception pathway, the division into
functional streams seems to be a recurring pattern in the
cortex as evidence suggests that there is a further special-
ization into sub-streams here, one dedicated to object form
and another to surface properties (Cant et al., 2009; Cant &
Goodale, 2007). The posterior-lateral regions of the occipito-
temporal part of the cerebral cortex, including the lateral
occipital area (LO), were shown to contribute to the per-
ception of object form. Meanwhile, the more medial parts
of the ventral stream handle the perception of object surface
properties like texture or colour. In particular, areas along the
collateral sulcus (CoS) have been found to respond to texture
specifically. In contrast, an analogous area for colour could
not be identified: it is believed that the processing of infor-
mation related to surface colour occurs relatively early along
the ventral stream compared to surface texture. In general,
it appears that areas showing form selectivity overlap with
those involved in object recognition and identification. Sim-
ilarly, there seems to be an overlap between areas selective
to object surface properties with the fusiform gyrus (FG), an
area in the temporal lobe taking care of perception of more
complex stimuli categories like faces and places (Cant &
Goodale, 2007).

Further studies have confirmed and added to these findings
(Cavina-Pratesi et al., 2010a, b). Accordingly, there is not one
single cortical area but multiple interacting foci in the medial
ventral stream region that infer the material properties of
perceived objects from extracted individual surface proper-
ties. A texture-selective area appears to be located posterior
to a colour-selective one. Also, areas showing responsive-
ness to multiple object properties were detected next to areas
of dedicated single-feature processing (Cavina-Pratesi et al.,
2010a, b).

Overall, visual information can be located at three dif-
ferent levels of abstractions in the cerebral cortex along
the ventral visual stream: between retinotopy and stimulus
categories (objects, faces, places, etc.), there is an intermedi-
ate level of representation based on geometric and material
properties (Cavina-Pratesi et al., 2010a). This hierarchical
functional organization is advantageous (Krüger et al., 2013):
using separate but highly interconnected channels for pro-
cessing different types of visual information (colour, shape,
etc.) allows for representations that are both robust against
missing cues and efficient, as the combinatorial explosion
and the resulting lack of generalization to new objects that
an integrated representation would cause, is prevented.

2.2 Prehension of objects

Object perception benefits greatly from performing explorat-
ory procedures (EPs) on an object of interest, to observe dif-
ferent sides of an object or perceive non-visual features for
instance. For that, we first reach towards that object, i.e.,
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move our hand close to its location, and then grasp it, which
involves pre-shaping our hand to the object’s physical prop-
erties and selecting the optimal grip type. The capacity to
reach and grasp objects is also more generally referred to as
prehension (Turella & Lingnau, 2014).

Initially, itwas thought that the detailed organization of the
dorsal stream reflects these two components of prehension,
again in the form of independent pathways, as in the case of
the ventral stream (see Sect. 2.1). According to this classi-
cal model, one pathway comprises the more laterally located
areas of the dorsal stream and controls grasping, whereas the
medial areas form the other pathway, which is recruited dur-
ing reaching. Hence, these two pathways are also called the
dorsolateral and dorsomedial pathways, respectively (Fattori
et al., 2010; Turella & Lingnau, 2014; Rizzolatti & Matelli,
2003).

Later on, it was shown that this initial model has lim-
itations: Fattori et al. (2010), for instance, offers evidence
that the dorsomedial pathway is not only for reaching and
that it may play a central part in all phases of reach-to-grasp
action. In their review on the coding of prehension in the
brain, Turella and Lingnau (2014) conclude that the coding
of grasping, maybe even the integration with reaching, seems
to happen in both pathways and that the temporal difference
in the onset of processing suggests that the processing in the
dorsomedial pathway is driven by the dorsolateral one. The
authors argue that this aspect could yield a more fitting func-
tional characterization of the pathways instead of grasping
and reaching: There is strong evidence that the dorsolateral
pathway is in charge of creating an action plan and the dor-
somedial one follows with online adjustment.

More recent findings support that the role of the dorsome-
dial pathway goes beyond just online control and adjustment
during prehension: It has been suggested that the early dorso-
medial areas are involved in the biomechanical selection of
viable grasp postures during reach-to-grasp behaviours (Gal-
letti & Fattori, 2018) and even before, that is in preparation
of the action execution (Santandrea et al., 2018).

2.3 Importance of haptics for object perception

Although we primarily rely on our vision for object per-
ception and recognition, we may occasionally use our other
senses in the face of very ambiguous, and hence difficult,
cases. The sensory modality that we then typically resort
to is haptics, which is complementary to vision in many
regards. With our vision, we are capable of perceiving multi-
ple object properties at one glance,whereas haptic perception
can involve a sequence of steps to accomplish the same (Led-
erman & Klatzky, 1987). Our eyes may sometimes provide
access to only a limited perceptual space, be it due to visual
impairments or the conditions in our environment. In such
cases, our skin, as our largest sensory organ, combined with

Fig. 2 Illustration of six exploratory procedures, as described by Led-
erman andKlatzky (2009). From left to right and top to bottom: Contour
Following, Pressure, Enclosure, Unsupported Holding, Static Contact,
and Lateral Motion. Adapted from Nelinger et al. (2015) CC BY 3.0

active touch and exploration, can help us enlarge that space
and perceive what we otherwise would not be able to. That is
because the sets of visually and haptically perceivable object
properties are largely complementary.

Lederman and Klatzky (1987) have identified patterns for
how objects are typically explored manually. These patterns
are referred to as exploratory procedures (EPs) (Lederman
& Klatzky, 1987, 2009). These EPs can be roughly distin-
guished into three categories, namely those related to the
substance of an object (texture, hardness, temperature, and
weight), those related to the structural properties of an object
(global shape and exact shape, volume, andweight) and those
for discovering the function of an object (finding the mov-
able parts, deducing the potential function based on its form).
Examples of the exploratory procedures for the first two cat-
egories are shown in Fig. 2.

There are eight EPs in total (Lederman & Klatzky, 1987):
an object’s texture can be explored using the lateral motion
EP, where the fingers or other parts of the skin are moved
along its surface. With the pressure EP, which can manifest
itself in either a poking or tappingmovement, the hardness of
an object can be tested. The static contact EP is for feeling the
object’s temperature by briefly and passively touching its sur-
face. Using the unsupported holding EP, an object’s weight
can be inferred from the effort needed to balance the object at
a certain height. An object’s global shape and volume can be
sensed with the help of the enclose EP, which involves plac-
ing the hands around the object to cover asmuch of its surface
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Fig. 3 Primary mechanoreceptors in the human skin. Merkel’s cells
respond to light touch, Meissner’s corpuscles respond to touch and
low-frequency vibrations. Rufinni endings respond to deformations and
warmth. Pacinian corpuscles respond to transient pressure and high-
frequency vibrations. Krause end bulbs respond to cold. Image from
Clark et al. (2020) CC BY 4.0

as possible, repeatedly if needed, and positioning the hands
differently each time. During the contour following EP, the
object’s contours are traced, which allows for the local shape
or volume of an object to be perceived in more detail. The
part motion test EP is used to detect to which extent object
parts move when force is applied to them, while the function
test EP examines what functions an object can potentially
fulfil by randomly interacting with it.

2.4 Haptic object perception

Weusually (and intuitively) think of haptic perception as any-
thing we can perceive using our touch sense, i.e., our skin.
The skin is innervated with receptors that can be divided
into three groups based on their function (Purves et al. 2012,
Chap. 9): mechanoreceptors react to mechanical pressure
or vibration and thermoceptors to changes in temperature,
whereas nociceptors create the sensation of pain in the case
of powerful stimuli that could be damaging, see Fig. 3.

However, proprioception, the sense of self-movement and
body position perceived from stimuli originating from recep-
tors embedded in themuscles, joints, and tendons (Lederman
& Klatzky, 2009; Dahiya & Valle, 2013), often also called
kinesthesia, plays an essential role in the haptic perception
of objects. An object property that shows the relevance of the
kinesthetic sense is shape (Lederman&Klatzky, 2009): what
helps us determine an object’s shape is the alignment of the
bones and the stretching of our muscles when we enclose it
with our hands. Similarly, when we are prompted to describe
the shape of an object, we tend to demonstrate it with hand
poses.

The primary sensory area for haptic perception is the pri-
mary somatosensory cortex (S1) (Purves et al. 2012, Chap.
9), (James et al., 2007). It is located in the parietal lobe in the
so-called postcentral gyrus and is, from anterior to posterior,
comprised of the Brodmann areas 3, further subdivided into

Fig. 4 Somatosensory Cortex. The primary somatosensory cortex (S1)
consists of the Area 1 (Blue), Area 2 (Green), Area 3a (Orange), and
Area 3b (Yellow). The secondary somatosensory cortex (S2) is depicted
in red. Image derivative from Selket under CC BY-SA 3.0 and based on
Purves et al (2012, p., 202)

Fig. 5 The cortical sensoryHomunculus.A representationof the human
body based on the proportions of the cortical regions dedicated to pro-
cessing sensory functions. Image from Young et al. (2013) CC BY 4.0

3a and 3b, 1 and 2, see Fig. 4. S1 is organized somatotopi-
cally across all Brodmann areas. Like retinotopy, somatotopy
is a form of topographical organization, resulting in a map
of the complete body in each Brodmann area, though not in
actual proportion: the area dedicated to each body part in
S1 directly reflects the density of receptors in it. The feet,
legs, trunk, forelimbs, and face are represented from medial
to lateral in these somatotopic maps, see Fig. 5.

Like vision, the processing of the somatic sensations
occurs hierarchically: each area receives the information
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from the periphery, but areas 1 and 2 also receive input from
3a and 3b. Most of the initial processing of the somatosen-
sory input happens in area 3, where area 3a is concerned
explicitly with the proprioceptive and 3b with the cutaneous
stimuli. Because area 3b is densely connected to areas 1 and
2, the extracted cutaneous information is forwarded to these
areas for higher-level processing. Here, area 1 seems to be in
charge of texture discrimination, and area 2, involving pro-
prioceptive stimuli, of size and shape discrimination.

The functional divergence into separate pathways might
not be only specific to the visual system. The somatosensory
system may be organized similarly with two or potentially
even more pathways (Sathian et al., 2011; James & Kim,
2010), though different views exist on this matter, see James
and Kim (2010) for a review. Object-related haptic activa-
tion has been detected outside the somatosensory cortex in
multiple areas along the ventral visual pathway. The lateral
occipital complex (LOC) was found to respond selectively
to object features in both vision and haptics (Malach et al.,
1995). In particular, a subregion of the LOC called lateral
occipital tactile-visual region (LOtv) appears to be a bimodal
convergence area concernedwith the recovery of the geomet-
ric shape of objects (Amedi et al., 2001, 2002; Tal & Amedi,
2009).While not bimodal in nature, haptic activationwas also
detected in the medial occipitotemporal cortex in response
to surface texture (Podrebarac et al., 2014; Whitaker et al.,
2008). This area is close to the one along the CoS concerned
with visual texture perception but still spatially distinguish-
able. The representation of texture information in the visual
and haptic modalities differs from that of shape information.
However, the processing might not be entirely independent:
the proximity of both areasmight, in fact, enable cross-modal
interaction.

The representation of object weight is located in the
medial ventral visual pathway as well (Gallivan et al., 2014;
Kentridge, 2014), which might also explain our ability to
associate a certain weight to an object just based on what we
perceive visually, without having actually explored it hapti-
cally. It also gives rise to the assumption that other properties,
such as object hardness, are dealt with similarly.

2.5 Integration of visual and haptic experiences

The reliability of each sensory modality plays a crucial
role in how our brain weighs and combines our visual and
haptic experiences of an object to more abstract and mean-
ingful concepts (Helbig & Ernst, 2007; Ernst & Banks,
2002). We are not born with this ability; it emerges and
matures as we live and accumulate experiences of the world.
While we do so, the neurons in our brain organize among
themselves, a process which has been termed input-driven
self-organization (Miikkulainen et al., 2005).

The integration of multiple sensory modalities at the level
of a single neuron has been studied in the cat superior col-
liculus (Stein et al., 2014). Newborn cats can already detect
certain cross-modal correspondences, but the ability to inte-
grate information from different senses develops after birth.
The underlying neural circuitry adapts to the cross-modal
experiences of the environment while optimizing the multi-
sensory integration capabilities. This learning process does
not wait for the contributing unisensory system to fully
mature. Both the unisensory perceptual skills and the abil-
ity to integrate information from multiple senses develop in
parallel.

A lot speaks for self-organization among the neurons
being a fundamental principle for how the brain functions.
One example is the neurons in the primary visual cortex
that learn selectivity for certain features like orientation and
colour and form different cortical feature maps (Miikku-
lainen et al., 2005). The coarse structure of these feature
maps is predetermined even before birth by retinotopy, while
the more granular structure is shaped by visual experience
after birth. The first few weeks seem especially critical:
experiments have shown that depriving kittens of typical
visual experience in this stage of their development can cause
irreparable permanent physiological effects, even blindness
(e.g., Hubel and Wiesel 1970; Blakemore and Cooper 1970;
Blakemore and Van Sluyters 1975). The somatic sensory
maps develop in a similar manner, possibly starting with the
first body movements while still in the womb (Mountcastle,
2005).

A behavioural study performed byGori et al. (2008) offers
the most important evidence thus far on the role of input-
driven self-organization in our acquiring of visuo-haptic
integration capabilities. They found that a human’s ability
to integrate visual and haptic inputs related to object form
becomes statistically optimal between the ages 8 and 10.
Theweight that children below that age range assign to either
modality often does not correspond to their respective relia-
bility in a particular situation. Further, perceptual illusions,
such as the rubber hand illusion (RHI), indicate that the tem-
poral co-occurrence between unimodal experiences is what
triggers the creation of associative links between the sen-
sory modalities (Botvinick & Cohen, 1998). The likelihood
of stimuli coming from the two modalities being integrated
increases if it is known that they originate from the same
object or are otherwise spatially related (Helbig & Ernst,
2007).

2.6 Organizational principles

We do not have a complete picture of how object percep-
tion works in the brain and how visual and haptic cues are
combined to accomplish object-related tasks. However, we
can derive some basic principles from the evidence presented
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above that could help us build robots with human-like profi-
ciency in object perception:

Hierarchical processing: Object recognition and identi-
fication are performed by the ventral visual pathway, which
starts in the occipital lobe and reaches down to the tempo-
ral lobe in the cerebral cortex. The processing of the visual
input occurs in a hierarchical fashion along this pathway,with
increasingly complex and abstract features being extracted.

Separate substreams for object shape and material per-
ception:Someareas along the ventral pathway are responsive
to haptic stimuli. Bimodal activation has been detected in the
LOC, in charge of perceiving the geometric shape of objects.
Neighbouring and sometimes crossmodally interacting foci
specialized in the processing of material properties were
identified in more medial areas of the ventral pathway, along
with the CoS specifically. This evidence supports the idea
that the ventral pathway is further organized into two sub-
streams for object shape and material perception stretching
across the more lateral and more medial areas, respectively.

Input-driven self-organization: The ability to integrate
the visual and haptic input in a statistically optimal way is not
innate but emerges only after birth aswe experience theworld
around us. Here, unimodal stimuli’s temporal and spatial co-
occurrence serves as a trigger for multimodal integration.

3 Multimodal object perception in robots

The previous section presented some organisational and
functional principles that enable visuo-haptic object percep-
tion and recognition in the brain. The following sections
cover the sensory and computational aspects used for visuo-
haptic object perception and recognition in robots and other
artificial systems and indicate how they relate to their bio-
logical counterpart. We start with a brief overview of visual
sensors, follow up with the topics of tactile sensors, and con-
tinue with data collection and datasets.

3.1 Visual sensors

Visual sensors or cameras are ubiquitous nowadays and
designed to create images that are interpretable by humans.
Although their working principle has been perfected in the
past two hundred years (Brady et al., 2018), the field contin-
ues to evolve. However, due to the abundance of material for
visual sensors and their applications, we will provide only
a short overview of the most common technologies used in
robotic applications before moving on to the less established
tactile sensing technologies.

Cameras capturingvisible light (400-700nm)havebecome
commodities.Most of the research and application in robotics
and computer vision have specialized in greyscale or RGB
images obtained with these types of cameras. However, they

have been optimized for human interpretation rather than
computer vision and robotics. Moreover, their performance
is significantly impacted by environmental conditions such
as illumination intensity and direction, fog, haze, and smoke
(Gade & Moeslund, 2014). Thus specialized solutions opti-
mized for computation are needed. Some of these alternatives
might be RGB-D, thermal cameras (Gade & Moeslund,
2014), parallel cameras (Brady et al., 2018) or event cam-
eras (Gallego et al., 2022).

Nowadays, some of the most common sensors used for
visual perception in robotics are consumer-grade RGB or
RGB-D cameras. RGB-D cameras provide a visible light
(RGB) image and a depth image used for the 3D percep-
tion of a scene. These cameras produce depth images using
near-infrared (NIR) light projection (750-1400nm) and dif-
ferent working principles, such as time-of-flight (ToF) for
the Microsoft Kinect v2, structured-light (SL) for the Asus
Xtion Pro Live, and active stereo vision (ASV) for the Intel
Realsense R200 cameras (Kuan et al., 2019).

Thermal cameras capture infrared radiation. Although ini-
tially developed as a surveillance and night vision tool for
the military, as the technology has matured and the price has
dropped, their use has expanded to other fields of application
such as robotics (Gade & Moeslund, 2014).

More recently, event cameras have also become popular
in robotics research. They are bio-inspired sensors that asyn-
chronouslymeasure per-pixel changes and output a stream of
events that encode the changes’ time, location and sign. This
operation principle translates to high temporal resolution,
very high dynamic range, low power consumption, and high
pixel bandwidth, which are attractive properties for mobile
robotics, augmented and virtual reality (AR/VR), and video
game applications (Gallego et al., 2022).

3.2 Tactile sensors

Tactile sensors are mostly designed to mimic mechanorecep-
tors, particularly to detect mechanical pressure. The main
objectives of tactile sensors are to determine the location,
shape and intensity of contacts. These properties are deter-
mined by measuring the instantaneous pressure or force
applied to the sensor’s surface on multiple contact points.
Also, the contact’s late effects, i.e., body-borne vibrations,
may carry relevant information. Body-borne vibrations are
not as commonly measured or exploited as part of haptic
sensing; however, there are some examples, e.g., Syrymova
et al. (2020); Toprak et al. (2018), including sensors that
are inspired by the hair follicle receptors or ciliary structure
(Alfadhel & Kosel, 2015; Ribeiro et al., 2017; Kamat et al.,
2019) and that have been proven very effective in obtain-
ing information about the texture of objects (Ribeiro et al.,
2020b, a).
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Thermoceptors, although an integral part of human hap-
tic perception, are typically not classified as tactile sensors
within robotic applications. However, they are sometimes
included because they might help compensate for thermal
effects (Tomo et al., 2016), thus helping to obtain a more
robust electronic signal related to pressure or vibrations, or
because they might help to classify the material of the object
in contact (Wade et al., 2017). In contrast, nociceptors have
not yet been developed as part of haptic or tactile sensing
per se but can be and have been implemented in software
based on the limitations of robots (e.g., Navarro-Guerrero et
al. 2017b, a).

Technologies for tactile sensing have been developed
since the early ’70s and have greatly improved in the past
ten years (Dahiya et al., 2010; Dahiya & Valle, 2013; Kap-
passov et al., 2015), but the field is still young, and there are
no widely accepted solutions. Several transduction methods
have been explored, including capacitive (e.g., Larson et al.
2016), piezoelectric (e.g., Seminara et al. 2013), piezoresis-
tive (e.g., Jung et al. 2015), optical (e.g., Ward-Cherrier et al.
2018; Kuppuswamy et al. 2020), fiber optics (e.g., Polygeri-
nos et al. 2010), and magnetic (e.g., Jamone et al. 2015).
Table 1 summarizes the advantages and disadvantages of
the different transduction principles for detecting mechan-
ical pressure. For additional information, please refer to Chi
et al. (2018).

3.2.1 Commercial sensors

Although there are some commercial solutions, the costs are
still relatively high, and the performance level is not always
satisfactory. In the remainder of this section, we present some
of the commercial solutions for tactile sensing. Although we
are aware of other commercial sensors, such as the WTS-FT
by Weiss Robotics GmbH & Co. KG., all but the presented
here seem to have been discontinued at the time of writing.

TheBioTac® sensor by SynTouch® was launched in 2008.
The sensor’s design attempts to mimic some of the human
fingertip’s physical properties and sensory capabilities. It
consists of a rigid core surrounded by an elastic bladder
filledwith liquid. This construction provides a compliant sur-
face, allowing it to sense force, vibration, and temperature.
SynTouch® offers variations of the technology tailored to
different applications. Examples for robotic applications are
shown in Fig. 6.

The DIGIT tactile sensor (Lambeta et al., 2020) by Gel-
Sight is an optical tactile sensor using a piece of elastomeric
gel with a reflective membrane coat on top, which enables it
to capture fine geometrical textures as a deformation in the
gel. A series of LEDs with RGB colour illuminates the gel
such that a camera can record the deformation.

Seed Robotics’ FTS Tactile pressure sensors (see Fig. 7)
are low-cost sensors that offer high-resolution contact force

Fig. 6 From the left: SynTouch® BioTac®,BioTac® SP, andNumaTac®

Tactile Sensors. Images used with permission from SynTouch® https://
syntouchinc.com/

Fig. 7 Left: the SINGLEX stand-alone tactile pressure sensor version.
Right: FTS tactile pressure sensor mounted on a robot finger. Images
used with permission from Seed Robotics https://www.seedrobotics.
com/

measurement (1mN/0.1g resolution up to 30N range). The
sensor compensates for temperature, and it is immune tomag-
netic interference. The sensors are directly integrated into the
robotic hands also offered by the company. However, there
is a stand-alone version of the sensor for use in third-party
user applications.

The uSkin sensor by Xela Robotics is a magnetic tactile
sensor composed of small magnets embedded in a thin layer
of flexible rubber and placed above a matrix of magnetic
Hall-effect sensor chips. Upon contact, the magnets are dis-
placed and the magnetic field sensed by the Hall-effect chips
changes; the contact forces can be estimated from these vari-
ations in the magnetic field. The uSkin sensor can measure
the full 3D force vector (i.e., both normal and shear contact
forces) at each tactel,with a good spatial resolution (about 1.6
tactels for square cm), high sensitivity (minimum detectable
force of 1gf), and high frequency (> 100Hz, depending on
the configuration). Different versions of the sensor are avail-
able to cover both flat and curved surfaces, see Fig. 8 for an
example.

Finally, Contactile offers both a stand-alone sensor and
tactile sensor arrays called PapillArray sensor, see Fig. 9.
These optical sensors consist of infrared LEDs, a diffuser,
and four photodiodes encapsulated in a soft silicone mem-
brane. The photodiodes are used tomeasure the light intensity
patterns to infer the displacement and force applied to the
membrane. This strategy allows for the measurement of 3D
deflections, 3D forces and 3D vibrations, as well as the infer-
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Fig. 8 Left: a flat version inspired by Tomo et al. (2018a). Right: a
curved version inspired by Tomo et al. (2018b). Images with permission
from Xela Robotics https://xelarobotics.com/

Fig. 9 Left: Single 3D force tactile sensor. Right: A slim tactile sensor
array (PapillArray Sensor) available in different configurations. Images
from Contactile https://contactile.com/ licensed under CC BY-NC-ND
4.0

ence of emergent properties such as torque, incipient slip and
friction.

The need for such technologies is pushing research for-
ward in the development of both, new sensing technologies
and applications such as robotic grasping, smart prosthe-
ses, and surgical robots. In particular, enhancements are still
needed in a number of aspects (e.g., mechanical robust-
ness, sensitivity and reliability of the measurements, ease
of electromechanical integration and replacement) to deploy
sensors in practical applications.

Of particular interest are solutions that: are flexible (Lar-
son et al., 2016; Senthil Kumar et al., 2019), stretchable
(Bhattacharjee et al., 2013; Büscher et al., 2015) and can
cover sizeable (Dahiya et al., 2013) and multi-curved (Juiña
Quilachamín&Navarro-Guerrero, 2023; Tomo et al., 2018b)
surfaces (possibly with a small number of electrical connec-
tions (Juiña Quilachamín & Navarro-Guerrero, 2023)), can
detect multiple contacts at the same time (Hellebrekers et
al., 2020), can detect both normal and shear forces (Tomo
et al., 2018a), can dynamically change the range and sensi-
tivity of the measurements depending on the task (Holgado
et al., 2018), are affordable and can be easily manufactured
(Juiña Quilachamín & Navarro-Guerrero, 2023; Paulino et
al., 2017). Formore information on experimental tactile sens-
ing technologies see Chi et al. (2018), and for a specialized
review of printable, flexible and stretchable tactile sensors,
see Senthil Kumar et al. (2019).

3.3 Data collection and datasets

Data acquisition from tactile sensors still lacks a unified the-
oretical framework. Besides the sensor itself, tactile data is
affected by the sequence of exploration procedures (EPs, see
Sect. 2.3) and the application in which it is to be used in,
among others. A single grasp can only perceive a portion of
an object’s properties, and the perception is limited to the
surface that comes in contact with the tactile sensors. Thus,
it is difficult, if not impossible, to recognize all properties of
an object using one single tactile EP. Unlike vision, tactile
perception is intrinsically sequential.

Authors such as Kappassov et al. (2015), and Liu et al.
(2017a) have defined tactile object recognition into subcat-
egories in an attempt to create a unified framework for data
collection. Kappassov et al. (2015) propose to divide tactile
perception into tactile object identification, texture recog-
nition, and contact pattern recognition. Whereas Liu et al.
(2017a) propose to divide tactile perception into percep-
tion for shape, perception for texture, and perception for
deformable objects. However, there is still no consensus on
how to collect and organize data for haptic or visuo-haptic
object recognition datasets.

In this section, we provide examples of datasets for mul-
timodal object recognition and grasping.

3.3.1 Datasets for multimodal object recognition

One example of such a dataset comes from Kroemer et al.
(2011), who generated a small-scale multimodal dataset for
dynamic tactile sensing. Tactile information was collected
using a customwhisker-like tactile sensor whose data resem-
bles the Lateral Motion EP. Data were collected for a total of
26 surfaces of 17 different materials. Visual information was
collected by taking four grayscale pictures of those objects
from different perspectives.

Sinapov et al. (2014) created amultimodal object recogni-
tion dataset comprising proprioceptive, auditory, and visual
information but not tactile information. The dataset consists
of 100 objects from 20 different categories. All objects were
explored five times, using nine haptic interactions, and pho-
tographed.” The interactions were not extensively described
and thus cannot be confidently mapped to Lederman’s EPs.
They included press and poke (Pressure), grasp (Enclosure),
lift, hold and push (app. Unsupported Holding), plus tap,
drop and shake, which seems to be primarily related to gath-
ering auditory information, aswell as the correspondingRGB
image of the objects or an RGB video while performing the
EPs.
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Chu et al. (2015) collected a small-scale multimodal
dataset for haptic perception, known as the Penn Haptic
Adjective Corpus 2 (PHAC-2). The PHAC-2 dataset con-
sists of haptic data collected with a pair of SynTouch®

BioTac® sensors, which were mounted on the grippers of
a Willow Garage PR2 robot. The labels were collected in a
human study, where 25 haptic adjectives were assigned to
the objects. The PHAC-2 dataset contains haptic and visual
data for 60 household objects. Given the robot’s andBioTac®

sensors’ physical constraints, the objects were chosen to fit
the following physical characteristics: the objects had to be
between 15 and 80mm in width and a minimum height of
100mm. There were no restrictions regarding weight since
the objects were not lifted. All objects included needed to be
at room temperature, clean, dry, and durable. Furthermore,
the object could not be sharp or pointed. Haptic data were
collected for four EPs, namely, Pressure (Squeeze), Enclo-
sure and Static Contact (Hold), Lateral Motion. The dataset
includes two versions of the Lateral Motion EP. The first ver-
sion, referred to as slow slide, is performed with low velocity
and substantial contact force, and the second version, called
the fast slide, is of higher speed and half the contact force as
for a slow slide. Every EP was repeated ten times per object,
and the objects were re-positioned each time.Meanwhile, the
visual data consists of high-resolution images of each object
from eight different viewpoints.

Another small-scale dataset for visuo-haptic object recog-
nition comes from Toprak et al. (2018). A NAO robot (model
T14: torso-only) was used. Visual data was collected using
one of the two RGB cameras in NAO’s head. For the kines-
thetic properties, namely, global shape and weight, the joint
angles and the electric currents in the motors in both arms
were measured when performing the respective EPs. For tex-
ture and hardness, inexpensive contact microphones were
attached as sensors to NAO’s arm and a custom-made table,
on which it performed the corresponding EPs to capture
the resulting vibrations transmitted across the surfaces. A
total of 11 everyday objects were carefully selected to cover
both visually and haptically ambiguous objects. Of each
object, ten observations were collected under optimal light-
ing conditions (controlled and reproducible lab conditions)
and another three under real-world lighting.

More recently,Bonner et al. (2021) created apublic dataset
for visuo-haptic object recognition containing information of
63different objects. Thevisual information comes fromhigh-
resolution RGB images collected using near-ideal lighting
conditions. The kinesthetic datawas collectedwith theRH8D
RoboticHandbySeedRobotics using theUnsupportedHold-
ing and Enclosure EPs. The tactile information was captured
using contact microphones mounted on the RH8D hand and
on a NAO robot that was used to perform the Lateral Motion
and Pressure EPs.

3.3.2 Datasets for multimodal object perception for
manipulation

Calandra et al. (2017) provided a dataset for evaluating grasp
success. Their hardware setup consisted of a 7-DoF Sawyer
manipulator equipped with a WSG-50 gripper, one GelSight
tactile sensor for each of the two gripper fingers and a Kinect
V2 camera placed in front of the robot. First, using the
Kinect’s depth information, the object’s position on a table
in front of the robot was inferred. The gripper was randomly
positioned above the object with its fingers opened. Next, a
closing action was executed, and the gripper was lifted from
the table. After the lifting action, the tactile and visual infor-
mation was used to infer whether the object was still on the
table or successfully grasped. A label indicating the grasp
success was automatically generated. The dataset collected
through this automated data collection procedure consists of
a total of 9269 grasp samples for 106 different objects.

Another visuo-tactile dataset for grasping and related tasks
such as slip-detection or visuo-tactile object classification
is presented by Wang et al. (2019). They used two Intel
RealSense SR300 cameras and a UR5 robot arm equipped
with an Eagle Shoal hand with piezoresistive tactile sensors.
The objects to be grasped were 10 everyday grocery items
like detergent bottles or soup cans, intentionally selected to
be container-like and either full or empty for generating dif-
ferent tactile readings. The dataset includes 2550 grasping
attempts containing information like RGB and depth images
from different grasp stages and videos of the whole grasp,
tactile information from the 16 tactile sensors included in the
hand and ground truth information including timestamps and
grasp outcome.

In the same direction, Li et al. (2018) introduced a dataset
for slip detection during manipulation. Their setup consisted
of a 6-DoF UR5 robot arm and a WSG-50 parallel gripper,
with one gripper’s finger replaced by a GelSight sensor for
tactile recordings, and a regular webcam mounted on the
side of the gripper for visual recordings. The authors thresh-
olded the relative displacement between the object’s texture
and markers of the GelSight sensor during a grasp attempt
to detect if a slip occurred. The dataset covers examples of
translational, rotational and incipient slips. The data acqui-
sition was done by taking a sequence of consecutive tactile
and corresponding camera image pairs at a frequency of 20
Hz. Their dataset consists of 1102 grasp-and-lift attempts on
84 different household objects with varying sizes, shapes,
surface textures, materials and weights. The authors provide
data of 152 grasp attempts on 10 additional objects for testing
purposes.

While the previously presented datasets use a robot to col-
lect the information, some datasets of human grasping can
also be used to train robotic grasping. For instance, Brahmb-
hatt et al. (2019) provide a multimodal dataset from human
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grasps of household objects. Participants were instructed to
grasp 3D-printed objectswith a specific post-grasp functional
intent. Different post-grasp functional intents lead to differ-
ent grasping approaches, even for the same object e.g., when
instructed to hand it off vs to use it. The contact surface of the
hand with the object represents the haptic modality, which is
captured by a FLIR Boson 640 thermal camera. In contrast,
the visual modality is represented by RGB-D images col-
lectedwith aKinectV2 camera. The dataset contains 375 000
synchronized RGB-D and thermal images collected during
grasping 50 different household objects, giving rich informa-
tion about human grasps through detailed contact maps.

4 Multimodal machine learning

Once the multimodal data from the sensors, such as those
presented in Sect. 3.2, has been collected, it needs to be pro-
cessed and integrated to make it useful. Relying on different
sensory modalities offers several advantages, as discussed
in Sect. 2.5. However, the heterogeneity of the data (cf.
Sect. 3.3) creates multiple challenges. Understanding these
challenges can help in applications and guide the develop-
ment of new signal processing methodologies to deal with
the complexities of multimodal information. In particular,
Baltrušaitis et al. (2019) identifies five core challenges: rep-
resentation, translation, alignment, fusion and co-learning.

In the rest of this section, we outline these general chal-
lenges and comment on how they relate to the concrete case
of visuo-haptic perception in robotics to facilitate the under-
standing of architectural decisions and design choices for
approaches presented in Sect. 5.

4.1 Representation

The first challenge refers to creating or learning ameaningful
representation that allows for the preservation and exploita-
tion of the complementarity or redundancy of the multiple
modalities. A representation or feature vector/tensor can be
an image, an audio sample, or discrete values such as open
or close. Some of the challenges in creating useful represen-
tations from multimodal data are:

• how to deal with different levels of noise?
• how to deal with missing data?
• how to deal with out of phase signals or different fre-
quency rates?

• how to deal with different vector sizes?

Bengio et al. (2013) suggested some desirable properties
for representations, including:

Smoothness: similarity of concepts should be preserved
in the representation space.
Natural clustering: different concepts should lead to dif-
ferentiated representations.
Temporal and spatial coherence: consecutive (for sequen-
tial data) or spatially close observations should be asso-
ciated with relevant regions of the representation space.
Sparsity: most extracted features should be insensitive to
minor variations of any given observation.
Expressive: should capture a large number of possible
input configurations.
Distributed: to allow for reuse and recombination of the
activation of parameters or subsets of features across con-
cepts.
Ahierarchical organizationof explanatory factors: increas-
ingly abstract features should be defined in terms of less
abstract ones.

More recently, Baltrušaitis et al. (2018, 2019) proposed
two categories of multimodal representation: joint and coor-
dinated representations. Joint representations take all the
available modalities as input and are used to create a sin-
gle joint representation. In coordinated representations each
modality is used to create an independent representation.
However, intermediate features across modalities are ‘coor-
dinated’ using similarity or structure constraints. Similarity-
based coordination could, for instance, minimize a distance
metric between the features. In structure-constrained coor-
dination, constraints such as order are used. Examples of
structure-constrained coordination are hashing, cross-modal
retrieval, and image captioning (Baltrušaitis et al., 2018,
2019).

The modality representation also affects the fusion strat-
egy (see Sect. 4.4), e.g., while optical tactile sensors such
as GelSight or vibration data via spectrograms could allow
for early integration with visual data, kinesthetic information
would likely not.

4.2 Translation / mapping

A second challenge concerns the translation or mapping of
data from one modality to another. In addition to the het-
erogeneity of the data, the mapping is often not unique and
potentially subjective. Thus, the evaluation of the mapping
becomes a challenge (Baltrušaitis et al., 2019, 2018).

Baltrušaitis et al. (2019, 2018) indicate that several
machine learning applications correspond to translation
between two modalities, such as automated text translation,
image or video captioning, and speech transcription. In the
context of multimodal object perception, translation could,
for instance, serve as a mechanism to deal with the absence
of a modality.

123



Autonomous Robots

Baltrušaitis et al. (2019) further categorize multimodal
translation into two categories: example-based and genera-
tive. Example-based models use a dictionary, which makes
models large, task-specific and unwieldy. In contrast, genera-
tive approaches construct a model to perform the translation.
However, generative models are challenging to build as they
require understanding both the source and target modality
(Baltrušaitis et al., 2019).

Three broad categories can be identified within genera-
tive models: rule-based, encoder-decoder, and continuous
generation models (Baltrušaitis et al., 2019). Rule-based
models rely on pre-defined rules to translate features. They
are more likely to generate syntactically or logically correct
translations. Typically, the representation of each modal-
ity should share similarities with the representations of the
other modalities; for example, Falco et al. (2017) employ
point clouds as a visuo-haptic common representation, and
they combine data pre-processing, feature engineering and
transfer learning techniques to realize an effective mapping.
In fact, this category of approaches often requires complex
pre-processing pipelines to create the features used for the
translation (Baltrušaitis et al., 2019). Encoder-decoder mod-
els, on the other hand, encode the source modality to a latent
representation which is then used by a decoder to gener-
ate the target modality (Keren et al., 2018), reducing the
requirements of data pre-processing and feature engineer-
ing, although typically requiring larger amounts of data to
obtain effective mappings.

Continuous generation models generate the target modal-
ity continuously based on a stream of source modality
inputs and are most suited for translating between temporal
sequences. In general, these models require temporal consis-
tency betweenmodalities (Baltrušaitis et al., 2019); however,
learning from weakly-paired training data has been recently
attempted by Liu et al. (2019), using sparse dictionary learn-
ing.

4.3 Alignment

Determining the relationship between features across modal-
ities is another challenge for multimodal machine learning
(Baltrušaitis et al., 2019, 2018). Similarly, as for the trans-
lation challenge, here, the evaluation metrics might be the
primary challenge. However, other challenges exist, such as
the availability of datasets for evaluation, long-range depen-
dencies and ambiguities, and the lack of correspondence
between modalities.

Baltrušaitis et al. (2019) identifies two types of alignment:
explicit and implicit. For explicit alignment, the alignment is
obvious and easier to measure, such as in automatic video
captioning, or in the context of visuo-haptics, the align-
ment between thermal and RGB-D images in the multimodal
dataset of Brahmbhatt et al. (2019) presented in Sect. 3.3.2.

Fig. 10 Information fusion strategies. Example with two modalities.
Top:Monolithic or pre-mapping fusion.Middle:midst-mapping fusion.
Bottom: post-mapping fusion, the feature modalities modules are not
strictly necessary

While for implicit alignment, a latent or intermediate rep-
resentation is used, for instance, image retrieval based on
text description where words are associated with regions of
an image, or visuo-tactile fusion learning methods with self-
attention mechanisms (Cui et al., 2020).

Aligning features across modalities could be necessary to
exploit the complementarity of the different modalities.

4.4 Fusion

A fourth challenge is to join information from multiple
modalities. Three approaches can be identified based on how
the information from different modalities is combined: pre-
mapping, midst-mapping and post-mapping fusion (Sander-
son & Paliwal, 2004; Toprak et al., 2018). These strategies
are also referred to as early, intermediate, and late integration
(e.g., Keren et al. 2018).

In pre-mapping fusion, the feature descriptors from the
different modalities are concatenated into a single vector
prior to the mapping into the decision space. While this
strategy is simplistic and hence easy to implement, the disad-
vantage is that each modality’s impact on the result is fixed
as it depends on the respective feature vector’s size instead
of its statistical relevance. In midst-mapping fusion, the fea-
ture descriptors are provided to the model separately. The
model then processes these descriptors in separate streams
and integrates themwhile performing themapping. Lastly, in
post-mapping fusion, each feature descriptor is first mapped
into the decision space separately, after which the decisions
are combined to a final result. Figure 10 illustrates the dif-
ferent information strategies.

Apart from being the most frequently used, midst-
mapping fusion appears to be the most promising among
these three approaches as far as performance is concerned
(Castellini et al., 2011). Moreover, this integration strategy
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would also be the best choice considering the principles on
how multimodal object recognition is organized in the brain,
as outlined in Sect. 2.6, since the hierarchical processing in
substreams that later converge to a decision can be mod-
elled with it. This kind of setup has been used extensively
with two substreams focusing onprocessing visual and haptic
inputs separately. Nevertheless, to the best of our knowledge,
only Toprak et al. (2018) have investigated all three princi-
ples simultaneously, also including the separate processing
of object shape andmaterial properties in two substreams as
well as the use of self-organizing mechanisms for processing
and integration of the information.

4.5 Co-learning or transfer learning

The final challenge described by Baltrušaitis et al. (2018) is
co-learning. Co-learning is described as a more general form
of transfer learning at the level of representation or inference.
Co-learning is particularly useful when data for somemodal-
ity is limited, and information from a different modality can
be used to aid training by exploiting complementary infor-
mation across modalities. Thus, it is particularly relevant in
multimodal object perception,where visual data is ubiquitous
and tactile data is scarce. Co-learning is task-independent and
could be used in fusion, translation, and alignment models
(Baltrušaitis et al., 2018).

Baltrušaitis et al. (2019) identified three types of co-
learning approaches: parallel, non-parallel, and hybrid.
Parallel-data approaches required observations from the
same dataset and instances. In contrast, non-parallel data
approaches can use data from a different dataset with
overlapping classification categories. Finally, hybrid data
approaches use a shared modality or dataset to achieve the
transfer (Baltrušaitis et al., 2019). More recently, Rahate et
al. (2022) further extended this taxonomy to include cases
for missing modalities, the presence of noise, annotations,
domain adaptation, and interpretability and fairness. For a
complete description of the taxonomy and examples, please
see Rahate et al. (2022).

The reduced number and small size of public datasets for
multimodal object perception motivates the study of trans-
fer learning from visual object recognition to tactile object
recognition. Such initiatives would also help to cope with the
diverse number of robot embodiments, i.e., different sensors
and actuators, which hinders progress on multimodal object
perception. However, knowledge transfer from one modality
to another is still an incipient field of research.

5 Applications of multimodal object
perception

This section presents examples of multimodal object per-
ception applications, from object recognition, peripersonal
space representation, and object manipulation. However, due
to the heterogeneity of the applications, experimental setups
and datasets, no cross-comparison will be provided. Hence,
some examples are shown to provide a glance into the state
of the art of multimodal object perception applications.

5.1 Multimodal object recognition

Object recognition and the recognition of their properties are
crucial for effective interaction with them both in biological
and artificial systems. As such, an extensive body of work in
this field exists. Here, we provide an overview of the tech-
niques commonly used to address this problem.

5.1.1 Unsupervised learning

Toprak et al. (2018) presented a brain-inspired architecture
for visuo-haptic object recognition, as outlined in Sect. 2.6.
Toprak et al. implemented an architecture including main
principles identified in the processing of object-related stim-
uli in the brain, which are 1) hierarchical processing, 2) the
processing of stimuli separated by object properties rather
than by modality, and 3) experience-driven learning. Toprak
et al. compared their brain-inspired architecture against a
monolithic architecture or pre-mapping fusion, where the
features of all modalities were concatenated before pro-
cessing, and a modality-based integration strategy, where
visual and haptic features were preprocessed in two separate
streams before being integrated into a final object classifier.
Both of these strategies are commonly used in multimodal
learning. To explore whether the brain-inspired processing
principles could be useful for artificial agents, Toprak et al.
implemented all three processing architectures using grow-
ing when required (GWR) neural networks on the same
dataset and preprocessed input vectors. The hyperparameters
for each architecture were optimized separately using hyper-
opt. The results indicate that hierarchical processing was
indeed beneficial. However, results for the other two prin-
ciples were not conclusive, and further research is needed.
Toprak et al. further indicated that the size and quality of the
dataset used might have played an essential role in exploring
the value of processing object properties versus modalities
in different streams.
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5.1.2 Supervised learning

Güler et al. (2014) used pre-mapping fusion to classify the
content of containers. The containers were squeezed, and
both pressure and perceived visual deformationwere used for
classification. A three-fingered Schunk Dextrous Hand with
pressure-sensitive tactile sensors was used to collect the hap-
tic information, and an RGB-D camera placed 1 meter away
was used to collect the visual data, but only a small region of
interest around the finger of the robotswas used for classifica-
tion. TheTetra Pak containerswere either empty or filled 90%
with water, yoghurt, flour, or rice. The collected data from
multiple grasps was classified using k-means, quadratic dis-
criminant analysis (QDA), k-nearest neighbours (kNN), and
support vector machines (SVM). The results show that either
modality is sufficient to perform the classification in this
case, but classification accuracy can improve up to around
3% under the tested conditions when the modalities are com-
bined.

Corradi et al. (2017) compared one pre-mapping fusion
approach and two midst-mapping fusion approaches. They
used an optical tactile sensor, which consists of an illumi-
nated ballon-like silicone membrane, and an internal camera
detecting the shadow patterns created on the membrane.
The camera images were processed using Zernike moments,
which provided rotational invariance, and then PCA was
used for dimensionality reduction. The visual data was pro-
cessed using a bag-of-words (BoW)model of SURF features.
The visuo-tactile recognition process was then performed
in three manners: (1) for the pre-mapping fusion approach,
the unimodal feature vectors were concatenated, and kNN
was used for classification, for the midst-mapping fusion
approaches, the posterior probabilities (the probability of the
label given the observation) were estimated for each modal-
ity, and the classification was performed based on (2) either
on the object label that maximizes their product or (3) the
object label that maximizes the sum of these posterior proba-
bilities weighted by the number of training samples available
for each modality. Corradi et al. showed that multimodal
classification achieves higher classification accuracy than
either modality alone, and the posterior product approach
achieves the highest classification accuracy among the tested
approaches.

Bhattacharjee et al. (2018) combined haptic information
(i.e., force + motion) with thermal sensing to recognise
objects in daily living environments. Several machine learn-
ing techniques were compared to train and test classifiers on
a dataset of more than 60 objects. The data were collected
with different robot movements (e.g., speed, direction) and
at different times of the day (e.g. morning, afternoon, night)
to reproduce the variability encountered in real-world con-
ditions, generating significant differences in the haptic and
thermal information. The results highlighted the importance

of using multimodal information, especially in very unstruc-
tured environments characterised by high variability of the
sensing conditions.

Liu et al. (2017b); Liu and Sun (2018) implemented a
midst-mapping fusion approach using a kernel sparse coding
method. Liu et al. used a three-fingered BarrettHand with
capacitive tactile sensors in all three fingers and the palm.The
tactile sensors have 24 taxels per finger with a spatial resolu-
tion of 5mm. The tactile information was processed using the
canonical time-warping (CTW) method. At the same time,
they used the covariance descriptor to characterize the visual
information. The dataset consisted of 18 household objects.
In general, kernel sparse coding (KSC) uses the idea that a
signal can be reconstructed as a linear combination of atoms
from a dictionary with which the data can then be encoded
sparsely. However, this method fails to capture the intrinsic
relations between the different data sources, and thus it can
only be applied to each modality separately. To address that
problem, Liu et al. proposed the joint group kernel sparse
coding (JGKSC). Their results showed that fusing the visual
and tactile information using the JKGSC method led to a
higher classification accuracy than applying kNN or KSC to
each modality separately.

More recently, deep learning methods have also started
to be used in multimodal object recognition. For instance,
Gao et al. (2016) implemented a deep learning-based midst-
mapping fusion approach and tested it on the PHAC-2
dataset. The haptic data from the two BioTac® sensors were
normalized and downsampled to match the lowest sampling
rate. Four out of 19 of the electrode impedance channels were
selected using PCA. Data augmentation of the data was per-
formed in two ways. Firstly, the two sensor readings were
used as two distinct instances. Secondly, when downsam-
pling the data, five different starting points were selected.
Gao et al. suggest that the signal from both sensors and dif-
ferent downsampling strategies was highly similar, which
resulted in overfitting of the CNN model used. The visual
CNN model was based on the GoogleNet architecture pre-
trained on the Materials in Context Database (MINC). The
preprocessing of the visual data consisted of subtracting the
mean values from the RGB image and resizing it using a
central crop. Finally, both feature vectors resulting from the
haptic and visual networks were concatenated and fed into a
fully-connected (FC) layer trainedwith a hinge loss. The per-
formance was evaluated using the area under curve (AUC)
metric. Themultimodal architecture performed ca. 3% better
than the best unimodal network. Moreover, Gao et al. noted
that the haptic classifier tends to have a high recall, predicting
many adjectives for each class. In contrast, the visual clas-
sifier had higher precision. Finally, the multimodal classifier
had higher precision and recall than the haptic classifier and
higher recall than the visual classifier.
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Tatiya and Sinapov (2019) implemented a post-mapping
fusion approach on the dataset by Sinapov et al. (2014)
described in Sect. 3.3. Tatiya and Sinapov applied a tensor-
train gated recurrent unit (TT-GRU) for processing the visual
information available in the dataset. Both the acoustic and
haptic data in the datasetwere processedusing aCNN.For the
acoustic data, the audio was preprocessed into two channels,
the first consisting of the log-scaledMel-spectrogram and the
second of the spectrogram’s derivative. The haptic data was
downsampled from 500Hz to 50Hz to align with the video
and acoustic data. The multimodal fusion network consisted
of the concatenated output vectors of each unimodal network,
a fusion layer, and an output layer. Each unimodal network
was optimized to recognize the category of the objects. Thus,
these networks can be used as stand-alone classifiers or inte-
grated into a multimodal network. Overall, the results were
comparable to the earlier work by Sinapov et al. (2014).
However, the baseline and the suggested approach have their
strengths in different EPs data. Nevertheless, whether such
complementary best performance can be attributed to the
dataset or the architecture used is unclear. Abderrahmane
et al. (2018) applied Zero-Shot Learning to an object classi-
fication task, in which a multimodal CNN trained on a set of
objects was used to recognize novel objects that were never
seen or touched before; relevant semantic attributes (e.g.
round, soft, bumpy) were encoded from visuo-tactile data
during training and then used to recognize the novel objects,
with an accuracy of 72%. Taunyazov et al. (2020) proposed a
Visual-Tactile Spiking Neural Network (VT-SNN) that com-
bines information coming from two event-driven sensors: a
novel neuromorphic tactile sensor, NeuTouch, and a Proph-
esee event camera1. The network was trained on two tasks:
container classification and rotational slip detection. A com-
parative experimental analysis showed that the combination
of vision and touch performed better than vision or touch
alone.

5.1.3 Transfer learning

One of the challenges of transfer learning (co-learning) is
that machine learning models are based on the assumption
that both training and test data are drawn from the same dis-
tribution. However, such an assumption does not hold when
transferring knowledge between different robots or sensor
modalities. A possible solution is domain adaptation, a.k.a.
transfer learning, (e.g.,Daumé III andMarcu2006;Wang and
Deng 2018). Here, training samples from a source dataset are
adapted to fit a target distribution.

One example of domain adaptation applied tomultimodal
object recognition was recently presented by Tatiya et al.
(2020a). Tatiya et al. used a probabilistic variational auto-

1 https://www.prophesee.ai/

encoder network (β-VAE) to cope with missing or defective
sensors or new behavioural modalities such as those related
to a new exploration procedure. They also implemented a
probabilistic variational encoder-decoder network (β-VED)
to transfer knowledge from one or multiple robots to another.
In both cases, the β-VAE and β-VED were implemented
using multi-layer perceptrons, and object classification was
performed using an SVM. For testing, the dataset of Sinapov
et al. (2014) described in Sect. 3.3 was used. In particular, 15
of 20 object categories were randomly selected for training,
and the five remaining were used to test transfer learning
between sensory modalities or different behaviours. Tatiya
et al. report that such an approach based on β-VAE and β-
VED can effectively transfer feature representations from
oneormore sensorymodalities to anotherwith a performance
comparable to learning those representations from scratch.

Falco et al. (2019) presented a four-steps visual-to-tactile
transfer architecture for object recognition. Firstly, a visuo-
tactile common representation based on point clouds was
preprocessed to obtain similarly sized representations. In par-
ticular, equalizing partiality allowed to filter out the noise and
reconstruct missing portions of the surface, and uniforming
density was used to downsample the point density while cre-
ating a more uniform point density.

Secondly, despite preprocessing, the representation of
both modalities is still imperfect. Thus, the redundancy of
the information was increased to create a more robust fea-
ture set which was later compressed using singular value
decomposition (SVD).

Thirdly, transfer learning three methods based on dimen-
sionality reduction were tested, namely, transfer component
analysis (TCA), subspace alignment (SA), and geodesic flow
kernel (GFK). TCA and SA learn feature representations that
are invariant across domains. In contrast, GFK focuses on
geometric and statistical changes from the source domain to
the target domain.

Finally, for object classification k-NN and SVMs were
compared. The architecture was tested with a dataset of
15 objects, including 40 visual and five tactile samples per
object. The version using transfer learning based on GFK
and an SVM achieved an accuracy of up to 94.7%, compara-
ble to classification results for unimodal object recognition
in this dataset. Moreover, Falco et al. (2019) reported that
the preprocessing step contributes about 13% of the perfor-
mance while the GFK transfer learning accounts for 20% of
the performance. The other transfer learning methods tested
achieved a very low accuracy. A possible disadvantage of the
proposed methods is the need for both the source data and
(portion of) the target data.

Tatiya et al. (2020b) proposed a framework for knowl-
edge transfer using kernel manifold alignment (KEMA).
Manifold alignment aligns datasets and projects them into
a common latent space. The local geometry of each mani-
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fold is preserved while the correlations between manifolds
are extracted. In KEMA, the common latent space was used
for training instead of each robot’s raw sensory data, allowing
knowledge transfer.

Then two multi-class SVM models with the RBF kernel
were trained, one dedicated to speeding up object recognition
and the other to recognising novel objects. For the first case
of speeding up recognition, Tatiya et al. (2020b) used two
source robots with extensive experience of the objects and a
novice robotwith limited experience. The sensory experience
of all three robots was used to build the latent space and train
themodel. The results showed a delicate balance between the
amount of source data used and performance.However,when
that balance was met, the target robot performed consistently
better than a robot trained only using its own sensory data.

For the novel object recognition case, Tatiya et al. (2020b)
used two expert robots and a novice (target) robot having
extensive experience with a few objects and no experience
with other objects. The sensory data of all three robots were
used to train the model. The results showed that KEMA
could transfer existing knowledge to the target robot, accu-
rately classifying all unseen objects. Different variations of
the experiments showed that the target robot consistently
achieved better than chance accuracy. Some of the limita-
tions of this approach were the need to use the target robot’s
sensory data for training themodel and the need for all robots
to perform the same actions on the same objects. Another
limitation was that all experiments were performedwith sim-
ulated robots, and the only haptic difference was the objects’
weight.

Luo et al. (2018) applied maximum covariance analysis
(MCA) for crossmodal texture recognition. They introduced
the ViTac dataset, consisting of 100 different cloth textures
collected with an RGB camera and a GelSight sensor. For
MCA, both modalities were preprocessed independently.
Then, these features were used to create a covariance matrix,
and finally, singular value decomposition (SVD) was applied
to reduce the dimensionality. MCA is typically used with
handcrafted features to create the covariance matrix. How-
ever, Luo et al. used a pre-trained AlexNet, replaced the
fully-connected layers, and called theirmethodDMCA.Both
visual and tactile data were presented durfing the learning
phase. However, only one modality was used for testing. Luo
et al. showed that the classification performance of DMCA
improves as the output dimension increases, reaching a max-
imum performance at approximately 25 output dimensions.
The classification performance for tactile data was ca. 90%,
while the classification performance for visual data was ca.
92.6%. In both cases, these results were ca. 7%better than the
unimodal classification case in this data using a pre-trained
AlexNet.

Lee et al. (2019a) presented conditional generative adver-
sarial nets (cGANs) to generate visual data from tactile

sensory input and vice-versa. They used the ViTac dataset
of cloth textures, which consists of 100 different pieces of
fabric. The dataset has RGB macro images of the fabrics
and tactile readings from a GelSight sensor. The results
showed that visual-to-tactile generation achieves a similarity
of around 90%. Whereas generation from tactile-to-visual
achieved similarities ranging from 50% to 90%. Finally, the
classification of both generated and original visual and tactile
images achieved an accuracy of ca. 90%. Data augmentation
seemed to be a promising direction for some modalities, par-
ticularly from a higher dimensional modality like vision to a
lower-dimensional one like tactile images.

5.2 Multimodal peripersonal space representation

The peripersonal space (space immediately surrounding the
body) is crucial for effective interaction with the environ-
ment. Examples of work on this area are presented by
Bhattacharjee et al. (2015) in which an iterative algorithm
is used to extrapolate haptic labels (force data) to regions of
an RGB-D image with a similar colour and depth as those for
which the haptic datawas explicitlymeasured. The algorithm
operates under the assumption that visible surfaces that look
similar to one another are likely to have similar haptic prop-
erties. The algorithm can reach an average performance of
76.02%employing40 contact points in simulation. For haptic
categorization, a Hidden Markov Model (HMM) based clas-
sification method was employed, which takes force data as
input and outputs sparse haptic labels, each with a 2D colour
image coordinate. Later, Shenoi et al. (2016) used a dense
Conditional Random Field (CRF) to produce a haptic map
based on the HMM classification and a vision-based haptic
label estimation using a CNN. This approach improved the
average performance to 93% for 40 contact points in the sim-
ulation. When tested on a foliage environment, the algorithm
achieves 82.52% performance after ten reaches.

A cognitive-inspired model for peripersonal space learn-
ing presented by Roncone et al. (2016) was implemented on
the iCub robot. Themodel is used to learn approach/avoidance
behaviour with the closest body part based on the distance
and velocity of the stimuli. The model is fast to learn (a
single interaction can already produce a functional represen-
tation which can be refined over time), capable of learning
distributed representations incrementally, and stimuli agnos-
tic. Thus, the algorithm can be used online and in real time
without pretraining. The use of the distributed representa-
tion, although overall beneficial, imposes high computational
and memory requirements. The current implementation
assumes the robot’s kinematics, and the different reference
frames transformation is given. Other assumptions include
the motor primitives used for learning (i.e., double-touch
behaviour). The model’s implementation follows a devel-
opmental timeline. It is divided into three phases: starting
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with data collection through self-exploration or self-touch
(motor-tactile stimulation), followed by data from external
approaching objects considering time to contact (visuo-
tactile stimulation). Finally, learning approach/avoidance
behaviours irrespective of whether the perceived stimulus
is of motor or visual origin.

Building upon Roncone et al. (2016), Straka and Hoff-
mann (2017) proposed amodel using a Restricted Boltzmann
Machine and a feedforward neural network. The stimulus’s
position and velocity are estimated visually and represented
as a normal distribution to account for uncertainties. The
resulting representation is then fed into a feedforward neural
network that learns to predict a contact’s location. Themodel
was tested on a simulated 2D scenario and can expand the
Peripersonal Space when confronted with fast stimuli. It can
also confidently predict contact based only on visual estima-
tions of position and velocity.

5.3 Multimodal object perception for manipulation

Robotic manipulation has a huge impact in many industrial
and service applications; visuo-tactile perception has been
actively studied to improve the performance of robots, for
instance, by allowing more secure object grasping and han-
dling with a lower risk of damaging delicate objects. In the
multimodal setting, visual perception is predominantly used
for planning reaching trajectories and identifying grasp type
and orientation, while haptic perception is typically used
for slippage prevention and compliant grasping. The clas-
sical way of tackling the problem of grasping has been with
model-based, i.e., analytical approaches, and examples of
suchmultimodal perception for grasping andmanipulation in
the literature are abundant. However, as seen in other fields,
recently, there has been a tendency to move from model-
based approaches to data-driven ones. In this section, we
outline the importance of using both the visual and haptic
modality for grasping and manipulation tasks by presenting
several recent approaches whose results show that multi-
modal variants are outperforming the uni-modal ones; see
Bohg et al. (2014) for an in-depth survey of older data-driven
grasping approaches.

5.3.1 Reaching

Nguyen et al. (2019) proposed a visuo-proprioceptive-tactile
integration model for a humanoid robot based on how infants
learn to reach for an object. The authors used the iCub robot in
simulation, with emulated tactile sensor regions distributed
along the left arm and forearm representing the haptics
modality, images from the two eye-cameras of the robot rep-
resenting the visual modality and the configuration of the
head, arm and torso joints representing proprioception. The
proposedmodel uses the images from the eye-cameras and its

head joints configuration as an input and predicts a list of the
torso and arm joints configurations for reaching the object.
Convolutional feature extractors were used to extract feature
descriptors from the visual input, after which the descriptors
from both visual streams were concatenated with the head
joints values. The concatenated descriptorswere fed to a two-
layer MLP, from which a third layer branched out to provide
region-specific weights for mapping each of the 22 tactile
regions to an input-specific arm-torso joint configuration.
The trained model could successfully infer arm-torso con-
figurations to perform region-specific reaching of the object
with the arm or the forearm.

5.3.2 Grasping

Once an object is reached, the robot can grip the object
and lift it. At this stage, it is crucial to find a good grip-
per configuration and to apply an adequate force such that
the grasp is successful. Calandra et al. (2018) presented a
data-driven action-conditioned approach for predicting grasp
success that can be used to determine the most promis-
ing grasping action based on raw visuo-tactile information.
Given an action consisting of 3D motion, in-plane rotation
and change of force applied by the gripper, the proposed
model uses a midst-mapping fusion strategy to combine the
different modalities and predict the grasp outcome. First, the
visual input from a Kinect v2 camera and the tactile input
from two GelSight sensors attached to the fingers of a Weiss
WSG-50 gripper are separately processed by CNNs, while
an MLP processes the action channel. Then the latent fea-
tures were concatenated and fed to an MLP that outputs the
probability of successful grasp. The results show that the
multimodal variant outperformed uni-modal or hard-coded
baselines when grasping previously unseen objects. Further-
more, the qualitative analysis shows that the model learned
meaningful grasping strategies for positioning the gripper
and what amount of force to apply for successful grasping.

In the same direction, Cui et al. (2020) suggested a visuo-
tactile fusion learning method with a self-attention mech-
anism for determining the grasp outcome. Their model’s
architecture consists of three modules: a feature extraction
module, a module incorporating visual-tactile fusion and
self-attention, and a classificationmodule predictingwhether
a grasp would be successful. The feature extraction modules
for the vision and tactile channel are based on CNNs. The
feature fusion module performs a slice-concatenation of the
visual and tactile features of particular positions in the cor-
responding feature maps. Then the self-attention mechanism
generates a weighted feature map that learns to determine
the importance of different spatial locations. In this way,
the overall architecture could learn some aspects of the
cross-modal position-dependent features. Finally, the clas-
sification module, composed of two fully-connected layers,
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maps the extracted visuo-tactile features to either a success-
ful or unsuccessful grasp. The authors ran experiments and
ablation studies considering different model input variants
and tactile signal types, reporting state-of-the-art results on
two publicly available datasets.

5.3.3 Maintaining grasping

Once the object is grasped and lifted, slip detection is essen-
tial for maintaining a successful grasp. For instance, the
gripper force can be adjusted to prevent objects from drop-
ping when a slip is detected. In this direction, Li et al. (2018)
proposed a data-driven visuo-tactile model for slip detection
of grasped objects based on DNN architecture. Their model
uses a sequence of eight consecutive GelSight and corre-
sponding camera image pairs during a grasp-and-lift attempt.
Each modality undergoes a separate feature extraction step
through a pre-trained CNN, after which the latent features
for both modalities are concatenated (midst-mapping) and
passed through an additional FC layer. LSTM layers are
used on top of the FC layer, and a final FC layer provides
the probability that a slip occurred for the duration covered
by the image sequence. During the experimental evalua-
tion, several conditions were tested, like the type of image
input (raw vs difference images), type of feature extractor
(different off-the-shelf CNN models) or the type of infor-
mation (visual, tactile or visuo-tactile). The best performing
model used combined visuo-tactile information, significantly
outperforming the unimodal approaches and achieving 88%
accuracy in detecting slips on a test dataset of unseen objects.

5.3.4 Multi-stage grasping pipelines

Unlike the previouslymentioned end-to-end learning approa-
ches, Ottenhaus et al. (2019) proposed a multi-stage pipeline
to combine vision and haptic information for finding themost
suitable grasp pose. Depth information of the object’s front
side and touch information from its backside were fused to
construct a precise voxel representation of unknown objects.
Next, planners proposed grasp hypotheses, forwhich a neural
network provided scores to decide on themost suitable grasp.
Finally, the approach and grasp actions to lift the object
of interest were executed. While the authors used existing
methods for different parts of the pipeline, their main contri-
bution was the neural network that can propose grasp scores
from the voxel representation of the object and the rotation
matrix of a grasp pose candidate. The network architecture
is an example of midst-mapping fusion, where the output
of a CNN feature extractor for the voxel input and an MLP
feature extractor for the pose input is concatenated and fed
into a final MLP that predicts the probability of a successful
grasp. The neural network was trained in simulation, but its
performance was validated on a real ARMAR-6 humanoid

robot, with a head-mounted Primesense RGB-D camera and
a force-torque sensor in the wrist of the robot’s arm used for
haptics.

Another multi-stage pipeline was recently proposed by
Siddiqui et al. (2021). Firstly, RGB-D sensing from a Kinect
V2 camera was used to identify an approximate object pose
with a 3D bounding box; then, the motion of a UR5 robot
armwas planned to bring amulti-fingeredAllegro robot hand
equipped with Optoforce fingertip force sensors near to the
located object. Finally, a haptic exploration procedure was
performed, inwhich the hand touched the object several times
with different tentative grasps, without lifting it, while evalu-
ating a force closure grasp metric at each attempt. The haptic
exploration was realized with unscented Bayesian optimiza-
tion to reduce the number of exploration steps (Nogueira
et al., 2016; Castanheira et al., 2018). Unscented Bayesian
optimization outperformed both Bayesian optimization and
random exploration, i.e., uniform grid search. Overall, this
method permitted to find safe and robust grasps for unknown
objects without needing any previous learning, but at the cost
of requiring considerable time (i.e., in the order of minutes)
to haptically explore the object before lifting it.

5.3.5 Contact-rich manipulation

While traditional robotic manipulation is all about avoid-
ing physical contacts with the environment that surrounds
the objects, human manipulation is to a large extent about
exploiting those contacts, as noted by Deimel et al. (2016).
Inspired by this observation, and by the presence of several
applied example in industry, such as peg-in-hole insertion
tasks (Jiang et al., 2020), the robotics community is showing
increased interest in the development of robotic solutions for
contact-rich manipulation tasks, as summarised by Suoma-
lainen et al. (2022). Clearly, visual perception is not enough
for these tasks, and visuo-haptic integration becomes crucial.
As a most notable example, Lee et al. (2019b) recently pro-
posed a system inwhich a roboticmanipulator learns by deep
reinforcement learning a control policy that includes sensory
feedback from visual (RGB camera), haptic (force/torque
sensor) and proprioceptive (motor encoders) sensing. A
shared and compact representation of the high-dimensional
and heterogeneous multimodal data is learned with a neural
network, which is trained to predict optical flow, presence
of contact, and concurrency of visual and haptic data; the
neural network is then used as sensory feedback to learn a
control policy for a peg insertion task, directly on the real
robot. The experiments compare four models: no sensory
feedback, vision only, haptics only, vision and haptics. Inter-
estingly,while themodelwith haptics only performs as bad as
the one with no feedback, because the robot cannot even pick
the peg in most trials, the model with vision only performs
the insertion successfully only about 50% of the times, while
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the model with both vision and haptics brings the success
rate to about 75%.

6 Discussion and outlook

Visuo-haptic object perception is a vibrant and dynamic field
whose development is crucial for new sensing technologies
and applications such as robotic grasping, smart prostheses,
and surgical robots. This article highlightsmany foci of ongo-
ing research from the theoretically and biologically inspired
approaches, passing via sensor technologies, data collec-
tion, and finally, data processing and applications. However,
numerous crucial challenges need to be overcome. This sec-
tion summarizes and discusses some of these challenges.

6.1 Biologically-inspired approaches

Regarding biological inspiration, the question for robotics
is which and in what proportion bio-inspired sensory and
data processing principles can help us improve multimodal
object recognition in its multiple application areas. Sensor
technologies are largely bio-inspired, and there are efforts
to incorporate other capabilities, such as measuring humid-
ity, hardness, and viscosity, as well as mimicking other
skin properties such as self-healing (Oh et al., 2019). On
the contrary, perception models in artificial agents are still
largely detached from their biological counterparts. While
some biological principles have been explicitly studied, like
integration strategies (e.g., Toprak et al. 2018), others like
hierarchical processing and input-driven self-organizationor
processing of object properties rather than sensory modality
are some of the promising directions that should be further
explored.

6.2 Sensor technologies

Tactile sensing technologies require advancements in several
aspects before they can be deployed as easily as cameras.
Advancements not limited to the following areas are needed:
mechanical robustness, flexibility, compliance, a decrease
in electrical connections, sensitivity and reliability of the
measurements, the capability of detecting multiple contacts
simultaneously, detectability of both normal and shear forces,
affordability and ease of manufacturing, as well as ease of
electromechanical integration and replacement.

6.3 Data collection and datasets

Collecting tactile data during grasping on a real robot or
correctly simulating tactile sensors for synthetic data gener-
ation are resource-intensive tasks, which in turn is reflected
in datasets’ availability and size. While there are many

large-scale vision-only datasets for grasping in real-world
scenarios or simulation (e.g., Jiang et al. 2011; Levine et al.
2018; Depierre et al. 2018), only a few small-scale visuo-
tactile datasets exist. Thus, large-scale multimodal datasets
should be created, considering a variety of objects, grasp-
ing scenarios and different tactile sensor types. However,
data acquisition from tactile sensors still lacks a unified
theoretical framework. The challenges here stem from the
fact that haptic perception is an intrinsically sequential pro-
cess. Moreover, haptic perception is highly dependent on
the robot’s embodiment which makes the generalization to
other robots or tasks difficult. In addition to a unified theoret-
ical framework for data acquisition, solving other standing
computational challenges such as representation learning,
mapping and co-learning seem to be key enabling technolo-
gies that could help cope with the resource-intensive nature
of data acquisition.

Real-world tactile data collection will continue to be
the most relevant, and it will also continue to be the most
resource-intensive to obtain. In light of recent improvements
in the simulation approaches (e.g., Wang et al. (2022); Lin
et al. (2022)) that allow generating synthetic data from dif-
ferent tactile sensors or improve the sim2real transfer (e.g.,
Josifovski et al. (2018); Jianu et al. (2022); Gao et al. (2022);
Josifovski et al. (2022)) for visual, tactile or proprioceptive
sensing, it is expected that synthetic data gains popularity.
Although synthetic data might not be sufficient, it might be
a valuable and effective way to move the field forward when
combined with small-scale real-world datasets.

6.4 Multimodal signal processing and applications

With regards to signal processing and applications, even
though multimodal visuo-haptic approaches for grasping
show better results and have the potential to handle use-cases
where visual information alone is insufficient, vision-only
grasping approaches (e.g., Levine et al. 2018; Mahler et al.
2017; Bousmalis et al. 2018; James et al. 2019) are still more
popular. Some reasons for this popularity are that the avail-
ability, durability and understanding of vision sensors are
better than tactile ones. Moreover, the simulation of vision
sensors is easier and more realistic, and the collection, pro-
cessing and interpretation of visual information are easier
than tactile sensor readings. On the other side of the spec-
trum, there are also recent grasping approaches (e.g., Murali
et al. 2020; Hogan et al. 2018) that only use tactile informa-
tion, but such approaches are usually only suitable for limited
scenarios or parts of the grasping process.

Thus, future efforts should be concentrated onmultimodal
approaches. However, as discussed by Xia et al. (2022), the
main challenge is ensuring safety during the physical contact
between the object and the robot necessary for tactile sensing.
To avoid the hardware dependencies and the safety risks,
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simulations are a promising alternative to real-world training
and data collection for learning-based grasping approaches.
However, due to the inaccurate nature of simulations, they
cannot completely replace, but they can significantly reduce,
the amount of real-world data needed. Finally, fine-tuning
on the real system or sim2real techniques (e.g., Ding et al.
2020; Narang et al. 2021) can help to bridge the simulation-
to-reality gap.

Another major problem of data-driven and end-to-end
learning grasping approaches is that they require a vast
amount of training data, in contrast to humans, who learn
and generalize from very few examples. In this regard,
future work should concentrate on improving the sam-
ple efficiency of the algorithms. One option is to include
priors in the learning process, e.g., meaningful relations
between tactile sensing regions can be incorporated into the
model through graph-like structures, e.g., Garcia-Garcia et
al. (2019). Another option is combining model-based and
model-free techniques for grasping or developing hierarchi-
cal and multi-stage approaches. An added benefit of such
approaches is that they provide better control over the grasp-
ing process and increased interpretability of the model’s
behaviour, which is crucial for applications in industrial
or collaborative environments alongside humans. Safety is
of utmost importance in such environments, and integrat-
ing tactile sensors like robotic skin (Pang et al., 2021) can
help improve tasks like grasping, prevent injuries, and enable
compliant robot control.

7 Conclusion

This article provides a holistic overviewof the current state of
visuo-haptic object perception for robotic applications. First,
it covers the biological basis of multimodal object perception
in humans. Second, it summarizes sensor technologies, data
collection strategies, and datasets. Third, it introduces the
main challenges of multimodal machine learning, focusing
on visuo-haptics. Fourth, it presents an overview of different
applications. Finally, it presents a detailed discussion of the
above points and future research directions for each of them.

Despite the substantial advancements in the understand-
ing and development in all those areas, there are still many
open challenges, from the role of biological inspiration in
multimodal object perception, to material and mechatronic
advances required for the development of better tactile sens-
ing technologies, to the development of better multimodal
signal processing methodologies.

Covering the entire field of visuo-haptics for both biolog-
ical and artificial agents in a single article is difficult. Thus,
despite not being exhaustive, the holistic approach to the field
presented in this article should provide a unique perspective
to the reader on the current state and most pressing chal-

lenges that need to be addressed to continue moving the field
of visuo-haptic object perception in robotics and its different
applications forward.
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