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Abstract
Background: New methods are constantly being developed 
to adapt cognitive load measurement to different contexts. 
However, research on middle childhood students' cogni-
tive load measurement is rare. Research indicates that the 
three cognitive load dimensions (intrinsic, extraneous, and 
germane) can be measured well in adults and teenagers using 
differentiated subjective rating instruments. Moreover, digital 
ink recorded by smartpens could serve as an indicator for 
cognitive load in adults.
Aims: With the present research, we aimed at investigating 
the relation between subjective cognitive load ratings, veloc-
ity and pressure measures recorded with a smartpen, and 
performance in standardized sketching tasks in middle child-
hood students.
Sample: Thirty-six children (age 7–12) participated at the 
university's laboratory.
Methods: The children performed two standardized sketch-
ing tasks, each in two versions. The induced intrinsic cogni-
tive load or the extraneous cognitive load was varied between 
the versions. Digital ink was recorded while the children 
drew with a smartpen on real paper and after each task, they 
were asked to report their perceived intrinsic and extraneous 
cognitive load using a newly developed 5-item scale.
Results: Results indicated that cognitive load ratings as well 
as velocity and pressure measures were substantially related 
to the induced cognitive load and to performance in both 
sketching tasks. However, cognitive load ratings and smart-
pen measures were not substantially related.
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INTRODUCTION

Attempts to measure cognitive load multidimensionally in middle childhood are rare, and there are no 
instruments available specifically for primary students. In this study, we investigated two methods for 
differentiated measurement of  cognitive load in this age group regarding their sensitivity with respect to 
the manipulation of  different cognitive load dimensions.

Cognitive load theory

Cognitive load theory (CLT) is concerned with the ease of  information processing in working memory 
(Sweller et al., 2019). According to the CLT, during learning and problem solving, a good deal of  a 
learner's limited working memory resources is committed to handling the complexity of  the actual learn-
ing task, the design of  the instructional materials and the generative learning process itself. Based on 
these distinguishable demands, the CLT separates three types of  cognitive load: Intrinsic, Extraneous and 
Germane Cognitive Load (ICL, ECL and GCL, Sweller, 2010; Sweller et al., 1998).

The level of  intrinsic cognitive load (ICL) is assumed to be determined by the complexity of  a current 
task and mainly by the number of  elements that must be processed concurrently (Sweller et al., 2011). 
As the learning process itself  reduces the number of  interacting elements (Sweller et al., 2019), ICL also 
depends on the learner's prior knowledge.

Extraneous cognitive load is assumed to be elevated if  cognitive resources are devoted to processes 
resulting from an inappropriate design of  the learning materials. For instance, irrelevant processing takes 
place if  related pieces of  information are presented temporarily or spatially separated from each other 
and have to be integrated mentally (split attention effect; Cierniak et al., 2009; Schroeder & Cenkci, 2018). 
In contrast, if  the learning content is presented in a way that facilitates the identification and integration 
of  essential information, ECL is low. Sweller et al. (1998) assume that ECL should be reduced to free 
working memory resources, which is expected to result in more efficient learning.

Germane cognitive load is related to the working memory resources which are devoted to schema 
building. Therefore, high GCL is desirable as it is conducive to performance (Sweller, 2010). The most 
prominent CLT approach (e.g., Sweller et al., 1998) assumed that ICL, ECL and GCL are independent 
types of  working memory load that add up to the total cognitive load. Recently, GCL was understood as 
a germane resource which can be available to the learner for dealing with the interactivity of  the elements 
in the learning materials if  it is not wasted on cognitive processes caused by a poor instructional design 
(Kalyuga, 2011; Sweller, 2010; Sweller et al., 2011, 2019).

Cognitive load measurement in children

Measuring cognitive load is essential for refining and proving the assumptions of  the CLT as well as to 
develop load-optimizing strategies (Paas et al., 2003). Nevertheless, a valid measurement of  cognitive load 
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Conclusions: Both subjective rating and digital ink hold 
potential for cognitive load and performance measurement. 
However, it is questionable whether they measure the exact 
same constructs.
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in children is considered challenging, and this challenge becomes even greater when aiming at capturing 
its multidimensional nature (Ayres & Paas, 2012; Kirschner et al., 2011).

Subjective cognitive load measurement

Concurrently, self-reports are the most prevalent approach to cognitive load measurement in the field 
of  education (Anmarkrud et al., 2019). Usually, learners rate cognitive load perceived during a previ-
ously completed unit of  instruction on a Likert scale referring to a single (e.g., Park et al., 2015; Stebner 
et al., 2017; Yung & Paas, 2015) or two subsequent items, often differentiating between mental effort and 
perceived difficulty (e.g., Eitel et al., 2014; Korbach et al., 2017; Lee & Mayer, 2015).

A few rating scales provide the learners with multiple items on the three cognitive load dimensions. 
Klepsch et al. (2017) and Klepsch and Seufert (2020) have carried out extensive validation studies of  their 
differentiated cognitive load questionnaire, reporting two experimental studies which served to develop 
and adjust the items (Klepsch et al., 2017) and six further studies (Klepsch & Seufert, 2020) that proved 
the validity of  the newly developed questionnaire for different types of  tasks in a variety of  learning 
domains. Internal consistency, criterion validity and prognostic validity were empirically supported for an 
instrument consisting of  two items measuring ICL, three for ECL and two (plus one, if  applicable) to 
measure GCL. Krieglstein et al. (2022) conducted a meta-analysis of  studies that had applied differenti-
ated cognitive load scales (Eysink et al., 2009; Klepsch et al., 2017; Leppink et al., 2013, 2014). Overall, 
the meta-analysis indicated that the scales were reliable and valid in measuring adult ICL, ECL and GCL.

Despite their obvious benefits, subjective measures also come with some disadvantages. In general, 
retrospective ratings can be biased by memory effects (Schmeck et al., 2015) and singular measurements 
cannot capture dynamic variations of  cognitive load (Chen et al., 2016).

Beyond these general constraints, there are further limitations of  subjective cognitive load measure-
ment when referring to children as a target group. First, it is unclear whether children can reflect on their 
own learning processes. Evidence that children might be capable of  retrospective metacognition regard-
ing their learning processes and outcomes (Metcalfe & Finn, 2013) and producing reliable cognitive load 
ratings (Ayres, 2006) is met with concerns implying that particularly younger children might not be able to 
provide valid and reliable self-reports in general (Chambers & Johnston, 2002) and on their cognitive load 
specifically (Leahy, 2018).They might tend to give extreme ratings (Chambers & Craig, 1998) and have 
struggles understanding complex or negatively worded items (Marsh, 1986).

In their meta-analysis, Krieglstein et al. (2022) found no evidence that the multidimensional cognitive 
load scales were less appropriate for children than for adults. However, only a few studies with younger 
school children were included in the meta-analysis and the study with the youngest sample was the study 
by Tang et al. (2019), in which the participants had an average age of  11.1 years.

Accordingly, differentiating measurements of  cognitive load can be expected to place high demands 
on self-reflection and text comprehension in children, which makes it necessary to approach their devel-
opment with consideration. Some principles can be learned from the differentiated measurement of  
adults. For example, it can be recommended to only include items on load types that are varied in the 
experimental conditions (Korbach et al., 2019). Furthermore, in their study comparing two differentiated 
cognitive load measurements, Skulmowski and Rey (2020) found evidence that the choice of  measure-
ment instrument had a significant impact on cognitive load ratings and that the instrument should match 
the type of  learning task. In this regard, the authors consider the cognitive load questionnaire by Klepsch 
et al. (2017) particularly well suited for interactive tasks.

Objective cognitive load measurement with smartpens

Objective measurement methods are based on observations and recordings of  participants' behaviour or 
reactions that reflect their concurrent total cognitive load. Only in very few cases have objective measures 
been used to differentiate the three cognitive load dimensions (e.g., for eye tracking; Zu et al., 2020).
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Objective cognitive load measurement methods include task performance (post-test scores, perfor-
mance in primary or secondary tasks; e.g., Korbach et al., 2017), physiological (heart rate and variability, 
brain activity, galvanic skin response or pupil dilation; for an overview, see Chen et al., 2016) and behav-
ioural load indicators. The latter are based on activities tracked during task solving, of  which most can 
be observed in real time and non-intrusively. In prior research, for example, gestures, eye movements or 
computer mouse interaction were identified as load indicators (Chen et al., 2016).

A further activity that is assumed to be particularly closely linked to cognitive processes and perfor-
mance in written assignments is writing and sketching behaviour. Both are goal directed activities involv-
ing complex interactions between the brain, hand and eyes. Since writing takes years to evolve, the writing 
process itself  can be a challenge for children (Berninger, 1991). Therefore, sketching behaviour may be a 
less confounded cognitive load indicator in children.

Smartpens are used to record and analyse a set of  dynamic handwriting signals. Smartpens that write 
on paper can be considered as particularly unobtrusive input devices, as they can hardly be distinguished 
from a usual pen and fit seamlessly into a child's familiar learning environment.

There are various theoretical approaches to identify smartpen measures on which cognitive 
load can have an impact. Since high working memory load is assumed to interfere with cognitive 
and psycho-motor tasks, high cognitive load is expected to affect completion time in written tasks 
(Ruiz et al., 2007). With regard to smartpen measures, this leads to the conclusion that cognitive load 
influences temporal measures like writing velocity. Easy tasks inducing low cognitive load might be 
solved faster. High cognitive load is furthermore associated with a high (written) energy expenditure 
which can be reflected in strong writing pressure (Oviatt et al., 2018, 2021). Additionally, it is assumed 
that low mental load is associated with automatic, consistent, fluent and smooth writing, reflected by 
low variability (i.e., standard deviation) in temporal and pressure-based smartpen measures (Luria & 
Rosenblum, 2012; Smits-Engelsman & Van Galen, 1997). In contrast, high cognitive load is assumed 
to lead to a dis-automatization causing an increase in variability of  writing features (Van Gemmert & 
Van Galen, 1998).

These theoretical assumptions on predictive smartpen measures have also been supported in studies 
on computer mouse interaction as a related type of  goal-driven fine motor activity performed by hand. 
For example, high load tasks were found to lead to a reduction of  velocity of  mouse cursor movements 
(Rheem et al., 2018) as well as to an increase in mouse click pressure (Witte et al., 2021).

Moreover, the supposed impact of  cognitive load on smartpen measures has been confirmed in 
various studies on text writing, digit writing and sketching. Regarding text writing, several investigations 
used a sentence making task (Ransdell & Levy, 1999) to induce different mental workload levels. Yu 
et al. (2011) showed that writing pressure and writing velocity information were cognitive load indicators. 
Lin et al. (2013) revealed that a subset of  writing features including average pressure, azimuth, velocity 
in Y-direction, count of  sensible pen tip pauses and maximum pressure achieved a cross-validation accu-
racy of  76.27% for cognitive load level classification. Wu et al. (2016) confirmed that it is also possible 
to predict mental workload levels based on handwriting patterns for a target group of  children. Badarna 
et al. (2018) demonstrated that measures of  motor control as well as pressure and velocity were affected 
by the induced cognitive load level in a text writing task.

In a study on digit writing (Luria & Rosenblum, 2012), participants performed numerical progressions 
of  varying difficulty. Results revealed that velocity handwriting measures were influenced by cognitive 
load. Moreover, the results indicated that high cognitive load was reflected in increased variation and 
dis-automatization.

In a subsequent study on sketching behaviour, Rosenblum and Luria (2016) compared complex figure 
drawing from memory or by copying with paragraph copying. They found mean pressure and mean 
velocity to indicate cognitive load variation. It was further demonstrated that the difficulty levels of  
standardized sketching tasks could be predicted with over 90% accuracy for a sample of  primary school 
children by a relatively small number of  parameters recorded by a smartpen (Barz et al., 2020).
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This study

In this study, we aimed at developing and preliminarily validating a subjective instrument with the help 
of  which younger children can rate their perceived ICL and ECL. The second aim was to examine the 
potential of  different parameters of  smartpen use during sketching to serve as real-time indicators of  
ICL and ECL.

For this purpose, we identified two standardized child-oriented tasks that, firstly, allowed accurate 
performance measurement (criterion), secondly, could be varied in terms of  the level of  ICL and ECL they 
generated and thirdly, required continuous working with a pen. We had primary school children complete 
these tasks using smartpens and presented them in high load and low load versions in a within-subjects 
design. Cognitive load was rated on a self-developed differentiated scale.

If  the measurement instruments were sensitive to cognitive load, there should be both high 
criterion-based validity and high convergent validity of  the measures. The following hypotheses were 
therefore formulated:

Reflection of  cognitive load variation in subjective ratings:
1a. The children rate their perceived ICL higher in the high-ICL than in the low-ICL tasks.
1b. The children rate their perceived ECL higher in the high-ECL than in the low-ECL tasks.
Relationship between cognitive load ratings and performance:
2a. Children's ICL ratings are negatively related to their performance in the sketching tasks.
2b. Children's ECL ratings are negatively related to their performance in the sketching tasks.
Predictive value of  smartpen measures for performance:
3a. Low mean pressure and high velocity as well as low standard deviations of  pressure and velocity can predict high 

performance in the Trail Making Test for children (TMT-C).
3b. Low pressure and high velocity as well as low standard deviations of  pressure and velocity can predict high perfor-

mance in Drawing Patterns Tasks.
Differences in smartpen measures depending on cognitive load variation:
4a. While velocity is lower, pressure as well as standard deviations of  pressure and velocity are higher in high-ICL 

than in low-ICL tasks.
4b. While velocity is lower, pressure as well as standard deviations of  pressure and velocity are higher in high-ECL 

than in low-ECL tasks.
Predictive value of  smartpen measures for cognitive load ratings:
5a. High mean pressure and low mean velocity as well as high standard deviations of  pressure and velocity predict high 

ICL ratings.
5b. High mean pressure and low mean velocity as well as high standard deviations of  pressure and velocity predict high 

ECL ratings.

METHOD

Sample

Data collection took place at a large university event for children, to which several hundred local children 
and their parents were invited. Thirty-six of  these children voluntarily participated in this study. They 
were not expected to have any specific prior knowledge. Since seven smartpens were available at the 
same time, the children were placed in ad hoc grouping arrangements of  five to seven children but did 
not interact as a group. The children that took part at the same time did not belong to the same class or 
school. Moreover, the individual children were placed at a distance from each other and worked quietly 
on their own. The data of  three children had to be excluded (one was significantly older than the others, 
there were problems with data recording for another and a third did not understand the instructions for 
the cognitive load measurement). The 33 remaining children (56% female) were between 7 and 12 years 
old (M = 9.96; SD = 1.13).

5 of  18
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Design and procedure

In a within-subjects design, all participants engaged with the material in all conditions. After the children 
and their parents had given their informed consent, the children were provided with a smartpen and 
the paper-pencil-based materials. All steps of  the procedure were introduced verbally by two female 
experimenters according to a fixed script. For each measurement, there was an example exercise that the 
children solved simultaneously.

In step one, the children filled out a demographic questionnaire, then they completed the Trail Making 
Test for children (TMT-C; Reitan, 1992) two times either first in version A (low ICL) or first in version B 
(high ICL). After each trial, they filled out a cognitive load questionnaire on their perceived ICL and ECL. 
Subsequently, the children performed two versions of  a subset of  six items from the Drawing Patterns 
subtest of  the Snijders-Oomen nonverbal intelligence test (Snijders et al., 2005). There were also two 
parallel versions of  this test, A (low ECL) and B (high ECL), which children worked on one after the 
other in either order. After each part, again, they completed the cognitive load questionnaire. The whole 
procedure took about 30 min.

Measures

Cognitive load questionnaire

We developed a differentiated cognitive load rating questionnaire containing two items on ICL and three 
on ECL. Each item consisted of  a statement (e.g., for ICL: ‘The patterns that I had to draw were compli-
cated’) and a Likert scale on which the students indicated their agreement. The items were derived from 
the naïve rating scale of  Klepsch et al. (2017) but adapted to the target group through various measures 
(see Table 1): Firstly, the items for GCL were excluded. Secondly, we simplified the wording and adapted 
it exactly to the respective sketching tasks. Third, a 5-point instead of  the original 7-point Likert scale 
was used. Each level of  agreement was described verbally (from ‘I find that this is not true at all’ to ‘I 

6 of  18

T A B L E  1  Items of  the differentiated measurement of  intrinsic (ICL) and extraneous (ECL) cognitive load.

Type Task Item adapted to children Original item (Klepsch et al., 2017)

ICL TMT While connecting the numbers (and letters), I had to keep 
many rules in mind at the same time.

For this task, many things needed to 
be kept in mind simultaneously.

DP When drawing the patterns, I had to follow many rules at the 
same time.

ICL TMT Connecting the numbers (and letters) was complicated. This task was very complex.

DP The patterns I had to draw were complicated.

ECL TMT Connecting the numbers (and Letters) was difficult because 
important things were hidden.

During this task, it was exhausting to 
find the important information.

DP It was difficult to draw the patterns because important things 
were hidden.

ECL TMT The way the task appeared on the sheet made it difficult to 
connect the numbers (and letters).

The design of  this task was very 
inconvenient for learning.

DP The way the task appeared on the sheet made it difficult to 
draw the patterns.

ECL TMT Connecting the numbers (and Letters) was difficult because 
important things were not visible.

During this task, it was difficult to 
recognize and link the crucial 
informationDP Drawing the patterns was difficult because important things 

were not always visible.

Note: DP, Drawing Patterns sub-task of  SON (Snijders et al., 2005); TMT, Trail Making Test (Reitan, 1992).
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find that this is perfectly true’) and increasing levels of  agreement were visualized with circles increasing 
in size (see Figure 1). Moreover, we developed a pre-instruction for children on how to assess and report 
one's own experiences with the help of  the developed Likert scale. The supervisors explained that there 
were no correct or false answers and what the size of  the circles meant. It was pointed out that children 
should express their very own experience and that they can take their time with the answers. After the 
instruction, open questions were clarified, the supervisors asked the children to complete the practice 
item (‘It is very noisy in this classroom’) and checked immediately for each child whether they had given 
a plausible answer. If  necessary, they would have offered help to single children. However, it turned out 
that all children had marked plausible levels of  agreement to the sample item and thus obviously had well 
understood how the items were to be completed. The main points of  this pre-instruction were briefly 
repeated prior to each cognitive load rating questionnaire.

Trail Making Test for children (TMT-C)

The TMT-C (Reitan, 1992) has two versions: in version A, circled numbers from 1 to 15 are irregularly 
distributed on a sheet (Figure 2, Version A). The child's task is to connect the numbers in the correct 
order as quickly as possible. Version B contains a task switching component, as again 15 circled elements 
are distributed on the sheet, but these contain the numbers from 1 to 8 and the letters from A to H 
(Figure 2, Version B) that must be connected alternately (e.g., 1-A-2-B-3-…). We assumed version B to 
be more complex and to trigger higher ICL. Analysing the element activity of  the task as suggested by 
Sweller (2010), higher ICL in version B is caused by altering the task material through adding sequential 
letters as additional elements that interact with the number elements and have to be processed simultane-
ously. Consequently, version A represents the low load condition and version B the high load condition.

As dependent variable, children's completion times for versions A and B were recorded by means of  
the smartpen.

Drawing Patterns Task

To vary ECL, we selected the Drawing Patterns subtest from the Snijders-Oomen nonverbal intelligence 
test (SON; Snijders et al., 2005), which requires patterns of  increasing complexity to be drawn. In the 
original version (A, low ECL), each item consists of  a pattern drawn of  one or two black lines, with a 
small piece in the middle having been left out (see Figure 3a). Children are instructed to fill in the missing 
piece of  the pattern. We created our own version B (high ECL) of  six selected items (extracted from 
each of  the two available parallel tests). In version B, the children were not allowed to fill in the missing 
piece of  the pattern directly into the gap, but had to turn the sheet over and draw the missing piece on 
the reverse side. In terms of  Sweller's (2010) suggested analysis of  element interactivity, this leads to a 

7 of  18

F I G U R E  1  Sample Item of  the differentiated cognitive load questionnaire (ICL). Note: This sample item was presented 
after completion of  the TMT-C.
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ALTMEYER et al.

challenging search process in order to link the interacting elements reference pattern, empty grid and 
self-drawn lines. The children had to find the beginning and end points of  the lines forming a pattern 
by repeatedly checking the reference pattern on the reverse side. This discontinuity was supposed to lead 
to a higher working memory load since the reference pattern had to be held in working memory while 
drawing. It was alternated between the participants which parallel test items were given in the versions 
A or B. According to the administration manual, scoring is done in a binary way using masks. Since the 
children drew with a smart pen, it was convenient to carry out a more precise scoring: we calculated 
the coverage of  the ideal reference patterns by children's drawings. Slight deviations to the reference 
pattern were tolerated, as can be seen in Figure 3b. This was done by an automatic assessment algorithm 
based on the digital drawing, the reference pattern and a distance threshold for deviations. The resulting 
performance measure coverage describes the percentage to which a child's drawing matches the reference 

8 of  18

F I G U R E  2  Fictitious excerpts from TMT-C Versions A (low load) and B (high load).

F I G U R E  3  Fictitious sample item of  the Drawing Patterns Task. Note: (a) Item as presented to the children; (b) 
completed item (black line), with ideal line for coverage calculation (green: tolerated parts with no or small deviation, red dotted: 
non-tolerated parts with large deviation from ideal line).
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DIGITAL INK AND DIFFERENTIATED SUBJECTIVE RATINGS FOR COGNITIVE  
LOAD MEASUREMENT IN MIDDLE CHILDHOOD

pattern within the tolerated deviation threshold. For more information on the described coverage metric, 
see also (Barz et al., 2020).

Digital ink

In our experiment, the children worked with a Neo Smartpen M1, which resembles an ordinary ballpoint 
pen but is equipped with a camera aligned with the writing surface and multiple pressure and motion 
sensors. To enable the recording of  digital ink, all materials were printed on paper, which was previously 
imprinted with a special micro-dot pattern (NCode) and was used to locate the pen on the sheet by means 
of  the camera. The children participating in this study were not aware of  the smartpen's recordings: they 
experienced the sketching tasks as working with an ordinary pen on ordinary paper as they are used to 
from school. For more information on apparatus, see (Barz et al., 2020).

Smartpens record three basic features: x and y coordinates, pressure on the pen tip and time stamps. 
By means of  these, a large set of  sophisticated metrics of  pen use can be calculated (for an overview, 
see Prange & Sonntag, 2022). For our purpose, only selected indicators for velocity and pressure of  
the normalized sketches were considered that had already yielded promising results in previous studies 
regarding cognitive load measurement. The extracted digital ink measures were based on the feature set 
by Willems and Niels (2008) and are listed and explained in Table 2.

RESULTS

A brief  preregistration and data that support the findings of  this study are available on the Open Science 
Framework: https://osf.io/p3e6d/.

In addition to conventional inferential analyses resulting in p-values, we performed bootstrapping 
with 5000 samples and provide the bias-corrected and accelerated bootstrap 90% confidence intervals 
(BCa 90% CI) for each analysis. Although bootstrapping might be more robust with respect to the statis-
tical limitations of  the present small sample (n = 33), it is nevertheless important to mention that the 
small sample size leads to a lack of  power regarding the following analyses and that results should only be 
interpreted as indications in certain directions.

The within-subject variation in this study was achieved by providing the participants with high load 
and low load versions of  tasks. While paired t-tests were used to compare variables between conditions, 
that is, high and low load versions of  tasks, standard linear multiple regressions were carried out sepa-
rately for each task version. Consequently, each multiple regression refers to task specific load ratings or 
performance as a criterion and smartpen measures that were precisely related to this task as predictors.

9 of  18

T A B L E  2  Description of  selected digital ink features.

Features Type Description

Average pressure Pressure based Force sensors built into the pen measure how hard the user presses 
the tip onto the surface. Average pressure is calculated for a set of  
sample points.

Standard deviation of  pressure Pressure based Standard deviation of  pressure is calculated for a set of  sample points.

Average velocity Temporal Based on recorded time stamps for sample points (e.g., numbers in the 
TMT-C): Average velocity between sample points is calculated.

Standard deviation of  velocity Temporal Standard deviation of  the average velocity between sample points is 
calculated.

Note: The measures were computed according to the formulas provided with the feature set published by Willems and Niels (2008). All measures 
refer to recordings of  sample points, each including location, pressure and time data.
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ALTMEYER et al.

Manipulation checks were performed to ascertain whether the B versions of  both tasks resulted in 
worse performance than the A versions. T-tests for dependent samples indicated that students solved 
version A of  the TMT faster on average than version B, (t(32) = −9.26, p < .001, BCa 90% CI [−40.76, 
−28.26] dz = −1.61) and that they drew more percent of  the missing patterns correctly in the A version 
of  the Drawing Patterns than in the B version, (t(32) = 4.89, p < .001, BCa 90% CI [.11, .22], dz = .85). 
Descriptive data on performance are displayed in Table 3. Accordingly, the data indicate that the manip-
ulations were successful.

Hypothesis 1a. Cognitive load variation and ICL ratings

A dependent samples t-test demonstrated that students rated their ICL significantly different for the two 
versions of  the TMT-C (t(32) = −3.75, p < .001, BCa 90% CI [−.88, −.39], dz = −.65). The descriptive 
data indicate that they reported lower ICL for version A than for B (see Table 4). The two versions also 
evoked significantly different ECL ratings, (t(32) = −2.59, p = .007, BCa 90% CI [−.78, −.19], dz = −.45). 
ECL was also rated lower for version A.

Hypothesis 1b. Cognitive load variation and ECL ratings

A dependent samples t-test demonstrated that the students' ECL ratings differed significantly for the two 
versions of  the Drawing Patterns Task, (t(32) = −5.01, p < .001, BCa 90% CI [−1.28, −.61] dz = −.87), 
indicating that higher ECL was experienced in version B (see Table 3). Moreover, the two versions of  the 
Drawing Patterns Task differed regarding ICL ratings, (t(32) = −6.44, p < .001, BCa 90% CI [−1.21, −.74], 
dz = −1.12). ICL was also rated higher for version B.

Hypothesis 2a. Performance and ICL ratings

Linear regressions revealed that ICL ratings related to TMT-C version A did not predict completion time 
for TMT-C version A (F(1, 31) = .05, p = .412, BCa 90% CI [−9.24, 5.98], R 2adj. = −.03), but ICL ratings 
for TMT-C version B predicted completion time for version B (F(1, 31) = 18.65, p < .001, BCa 90% CI 
[5.43, 24.45], R 2adj = .36): The higher ICL was rated, the more time was needed for task completion. More-
over, high ICL ratings were related to worse performance in Drawing Patterns Task A (F(1, 31) = 3.94, 
p = .028, BCa 90% CI [−.12, −.001], R 2adj = .08), but ICL did not predict performance in Task B (F(1, 
31) = .04, BCa 90% CI [−.06, .08], p = .427, R 2adj = −.03).

10 of  18

T A B L E  3  Means (M) and standard deviations (SD) for performance measures.

Version

A (Low load) B (High load)

Completion time TMT-C M (SD) 29.3 (12.93) 63.51 (25.33)

Coverage Drawing Patterns M (SD) 77.83 (17.4) 61.1 (18.1)

Note: Completion time in seconds, coverage in percentage.

T A B L E  4  Means (M) and standard deviations (SD) for subjective cognitive load ratings.

Type of  load

TMT-C Drawing Patterns

A (Low load) B (High load) A (Low load) B (High load)

ICL M (SD) 1.44 (.49) 2.06 (.92) 2.41 (.94) 3.38 (.8)

ECL M (SD) 1.45 (.59) 1.93 (.95) 2.27 (1.13) 3.2 (1.04)

Abbreviations: ECL, Extraneous cognitive load; ICL, Intrinsic cognitive load.
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DIGITAL INK AND DIFFERENTIATED SUBJECTIVE RATINGS FOR COGNITIVE  
LOAD MEASUREMENT IN MIDDLE CHILDHOOD

Hypothesis 2b. Performance and ECL ratings

Linear regressions revealed that ECL ratings predicted completion time for TMT-C version A (F(1, 
31) = 4.18, p = .025, BCa 90% CI [.54, 16.09], R 2adj = .09) and version B (F(1, 31) = 17.51, p < .001, BCa 
90% CI [4.92, 22.53], R 2adj = .34): The higher ECL was rated, the higher was a participant's task comple-
tion time. Furthermore, ECL ratings were negatively related to performance in Drawing Patterns Task A 
(F(1, 31) = 11.51, p = .001, BCa 90% CI [−.13, −.02], R 2adj = .25), but did not predict performance in Task 
B (F(1, 31) = 1.58, p = .109, BCa 90% CI [−.09, .01], R 2adj = .02).

Hypothesis 3a. Smartpen measures and performance in TMT-C

Descriptive data on smartpen measures can be found in Table 5.
Smartpen measures were recorded separately for each task version. A multiple linear regression 

including the smartpen measures means and standard deviations of  pressure and velocity related to 
TMT-C version A as predictors for the dependent variable completion time in TMT-C version A was 
significant (F(4, 28) = 13.43, p < .001, R 2adj = .61). Mean and standard deviation of  velocity were signif-
icant predictors for performance in TMT-C version A (see Table 6 on regression coefficients and BCa 
90% CIs resulting from bootstrapping). Higher mean velocity and less variation in velocity lead to better 
performance.

A multiple linear regression including the same smartpen measures but related to TMT-C version 
B as predictors and considering completion time in TMT-C version B as criterion was also signif-

11 of  18

T A B L E  5  Means (M) and standard deviations (SD) for smartpen measures.

TMT-C Drawing Patterns

A (Low load) B (High load) A (Low load) B (High Load)

Mean velocity M(SD) 32.76 (9.1) 24.70 (6.12) 78.1 (81.5) 68.2 (15.8)

Velocity variation M(SD) 31.35 (9.48) 25.89 (7.98) 52.3 (17.3) 53.6 (15.6)

Mean pressure M(SD) 157.99 (37.63) 154.3 (35.8) 157.34 (35.49) 158.37 (34.91)

Pressure variation M(SD) 34.16 (14.72) 37.94 (14.10) 36.2 (11.16) 37.52 (10.66)

Note: Velocity in smartpen units per second, pressure as raw Neo Smartpen M1 sensor output.

TA B L E  6  Standardized regression coefficients and BCa 90% CIs of  predictors of  completion time in TMT-C Versions A and B.

β t(28) p BCa 90% CI

TMT-C Version A

 Mean velocity −1.13 −4.52 <.001** [−2.42, −1.12]

 Velocity variation .48 1.84 .038* [.006, 1.54]

 Mean pressure −.07 −.6 .278 [−107.42, 59.31]

 Pressure variation −.21 1.58 .063 [−19.89, 331.11]

TMT-C Version B

 Mean velocity −.58 −2.3 .015* [−4.91, .34]

 Velocity variation .08 .3 .382 [−1.67, 1.99]

 Mean pressure −.37 −1.89 .07 [−589.56, 109.72]

 Pressure variation .26 1.29 .103 [−143.15, 985.16]

*p < .05; **p < .001.
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ALTMEYER et al.

icant (F(4, 28) = 2.97, p = .018, R 2adj = .2). With respect to p-values of  coefficients, mean velocity 
showed to significantly predict performance (see Table 6). Higher mean velocity was related with 
better performance in TMT-C version B. In contrast, since all coefficient BCa 90% CIs include zero, 
bootstrapping-based results revealed no significant smartpen predictors for TMT-C version B (see 
Table 6).

Hypothesis 3b. Smartpen measures and performance in Drawing Patterns Task

For the dependent variable performance in Drawing Patterns Task A, a multiple regression analysis 
including means and standard deviations of  velocity and pressure related to Drawing Patterns Task A as 
predictors was not significant (F(4, 28) = .3, p = .438, R 2adj = −.1).

With regard to the criterion performance in Drawing Patterns Task B, a multiple regression with 
according predictors but related to Drawing Patterns Task B was significant (F(4, 28) = 3.74, p = .007, 
R 2adj = .26). Both mean and standard deviation of  velocity predicted task performance (see Table 7 for 
regression coefficients and BCa 90% CIs resulting from bootstrapping). Higher mean velocity and less 
velocity variation were related with higher performance.

Hypothesis 4a. ICL variation and smartpen measures

Paired t-tests revealed that mean velocity was significantly higher in TMT-C version A than version B 
(t(32) = 5.96, p < .001, BCa 90% CI [.59, 10.42], dz = 1.04). Mean pressure did not differ between TMT-C 
versions (t(32) = 1.43, p = .81 BCa 90% CI [−1.55, 8.93], dz = .25). Standard deviation of  velocity was 
higher for TMT-C version A than B (t(32) = 4.19, p < .001, BCa  90% CI  [3.25,  7.81],  dz = .729). In 
contrast, standard deviation for pressure was higher in TMT-C version B than in version A (t(32) = −2.99, 
p = .003, BCa 90% CI [−6.36, −1.2], dz = −.52).

Hypothesis 4b. ECL Variation and smartpen measures

Paired t-tests showed no significant differences between Drawing Patterns Task A and B regarding mean 
velocity (t(32) = .76, p = .228, BCa 90% CI [−4.3, 33.8], dz = .13) or mean pressure (t(32) = −.65, p = .261, 
BCa 90% CI  [−3.81, 1.64], dz = −.11). Moreover,  there were no differences for standard deviation of  
velocity (t(32) = −.61, p = .274, BCa 90% CI [−4.3, 1.9], dz = −.11) and pressure (t(32) = −1.5, p = .072, 
BCa 90% CI [−2.8, .11], dz = −.26).

12 of  18

T A B L E  7  Standardized regression coefficients and BCa 90% CIs of  predictors of  coverage regarding Drawing Patterns 
Task B.

β t(28) p BCa 90% CI

Drawing patterns Task B

 Mean velocity 1.18 3.21 .002* [.62, 1.9]

 Velocity variation −1 −2.85 .004* [−1.98, −.21]

 Mean pressure .26 1 .16 [−.001, .005]

 Pressure variation −.29 −1.06 .15 [−.01, .002]

*p < .05.
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DIGITAL INK AND DIFFERENTIATED SUBJECTIVE RATINGS FOR COGNITIVE  
LOAD MEASUREMENT IN MIDDLE CHILDHOOD

Hypothesis 5a. Smartpen measures and ICL rating

A multiple linear regression using means and standard deviations of  velocity and pressure related to 
TMT-C version A as predictors for ICL ratings after TMT-C version A was not significant (F(4, 28) = .69, 
p = .302, R 2adj  = −.04).  The  corresponding multiple  regression  for  the  smartpen measures  related  to 
TMT-C version B and the criterion ICL ratings after TMT-C version B showed no significance either 
(F(4, 28) = 1.75, p = .083, R 2adj = .09).

With regard to Drawing Patterns Task, a multiple regression analysis using smartpen features related 
to Drawing Patterns Task A as predictors were not significant for the dependent variable ICL ratings 
after Drawing Patterns Task A (F(4, 28) = 1.06, p = .199, R 2adj = .01). Another multiple regression analysis 
considering smartpen measures related to Drawing Patterns Task B and ICL rating after Drawing Patterns 
Task B was not significant either (F(4, 28) = .97, p = .219, R 2adj = −.003).

Hypotheses 5b. Smartpen measures and ECL rating

A multiple linear regression including means and standard deviations of  velocity and pressure related 
to TMT-C version A as predictors for ECL ratings after TMT-C version A was not significant (F(4, 
28) = .12, p = .488, R 2adj = −.12). With regard to ECL ratings after TMT-C version B, a multiple regres-
sion using the smartpen measures related to TMT-C version B was significant (F(4, 28) = 2.46, p = .034, 
R 2adj = .16). High mean velocity was related to low ECL ratings (see Table 8 for regression coefficients 
and BCa 90% CIs resulting from bootstrapping). A further multiple regression with smartpen measures 
related to Drawing Patterns Task A predicting the ECL rating after Drawing Patterns Task A showed no 
significance (F(4, 28) = .43, p = .393, R 2adj = −.08). The multiple regression investigating the predictive 
power of  the same smartpen measures but related to Drawing Patterns Task B for the criterion ECL 
ratings after Drawing Patterns Task B was also not significant (F(4, 28) = 1.38, p = .133, R 2adj = .05).

DISCUSSION

This study investigated whether a newly developed subjective rating instrument and digital ink recorded 
by a smartpen were sensitive to manipulation of  ICL and ECL in primary school students. Overall, 
cognitive load ratings as well as pressure and especially velocity-based smartpen measures were related to 
induced cognitive load and performance. However, cognitive load ratings and smartpen measures were 
not substantially related.

In line with hypotheses 1a and b, cognitive load variation was reflected by differences in children's 
ratings. In both sketching tasks, cognitive load was rated significantly lower in the conditions that were 
expected to induce low cognitive load than in the conditions that were expected to induce high cognitive 
load.

13 of  18

T A B L E  8  Standardized regression coefficients and BCa 90% CIs of  predictors of  extraneous cognitive load rating after 
TMT-C Version B.

β t(28) p BCa 90% CI

TMT-C Version B

 Mean velocity −.73 −2.82 .004* [−.19, −.04]

 Velocity variation .27 1.02 .158 [−.01, .078]

 Mean pressure −.21 −1.06 .149 [−.02, .01]

 Pressure variation .05 .23 .409 [−.02, .03]

*p < .05.
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ALTMEYER et al.

Concerning hypothesis 2a and b, the results on the relation between sketching performance and 
cognitive load ratings were mixed. Highly rated ICL was associated with lower performance in TMT-C B 
as well as Drawing Patterns Task A. High-ECL was associated with low performance in TMT-C A and B 
and Drawing Patterns Task A. However, neither ICL nor ECL ratings were related to performance in the 
high-ECL inducing Drawing Patterns Task B. These results support the assumption of  Chambers and 
Johnston (2002) that children might struggle with valid self-assessment, but the findings also indicate tha 
it depends on the specific task.

Confirming hypotheses 3a and b, smartpen measures held predictive value for task performance. 
High mean velocity proved to predict high task performance in TMT-C version A as well as in Draw-
ing Patterns Task B. This is in line with prior results on writing velocity and mental workload (e.g., Yu 
et al., 2011). Moreover, low variation in velocity was associated with high performance for TMT-C version 
A and Drawing Patterns Task B. According to Luria and Rosenblum (2012) and Smits-Engelsman and 
Van Galen (1997), these findings support the presumption that high load experienced due to high perfor-
mance can lead to dis-automatization of  writing processes. However, performance was not related to 
pressure-based smartpen features.  

Regarding hypotheses 4a and b, results revealed that mean and standard deviation of  velocity were 
higher for the low-ICL version of  TMT-C. The latter conflicts the hypothesis and our finding that low 
variation of  velocity was associated with higher performance within the task versions (hypotheses 3a and b). 
Possibly, smoothness of  sketching velocity can represent different types of  load. If  the induced ICL remains 
the same (within versions), it may depend more on conscious effort how well a person performs. Smooth 
sketching might reflect both: strong effort, which is more associated with GCL than with ICL (Klepsch & 
Seufert, 2020) or high induced ICL. As expected, standard deviation of  pressure was higher for the high-
ICL version of  the TMT-C, reflecting dis-automatization of  the writing process (Luria & Rosenblum, 2012).

Results for hypothesis 5a indicated that smartpen measures could not predict children's subjective 
ICL ratings. Regarding hypotheses 5b, only mean velocity was identified as predictor for ECL. High mean 
velocity was related to low-ECL ratings. These results could partly be explained by missing metacognitive 
skills of  children and the corresponding challenge of  self-assessment (Chambers & Johnston, 2002) and 
by limited variance of  ICL and ECL ratings. However, one can also question whether the two meas-
ures actually represent the same constructs, or maybe different ones (smartpen measures possibly rather 
effort), both related to performance.

Limitations and future research

This study adds to the limited literature on cognitive load measurement in middle childhood (Krieglstein 
et al., 2022), but it has several shortcomings regarding the generalizability of  the findings.

The first limitation concerns the sample size. Particularly (multiple) regression analyses require large 
samples to reach sufficient levels of  power. This leads to the fact that sample sizes of  many behavioural 
regression studies, including the present one, are too small (Green, 1991; Maxwell, 2000). However, even 
if  the results of  this study can only point in certain directions, they nonetheless contribute a further 
puzzle piece to cognitive load measurement research. Particularly regarding the target group of  children, 
there has been a lack of  studies so far. Following Maxwell (2000) and Schmidt (1992), sufficient power 
and precision can often only be achieved through research syntheses across multiple studies. The open 
data of  this study facilitate the inclusion of  the current results in future meta-regressions. Moreover, find-
ings and instruments of  this study can serve as possible starting points for future study designs.

We expected that the children would be able to rate their cognitive load differentially for the dimen-
sions under investigation. Based on our data, we cannot finally determine whether the multidimensional 
cognitive load measurement was successful. Although variations in the task demands affected the ratings 
on the intended load dimension, they also influenced the other dimension. Since ICL and ECL can hardly 
be varied independently from each other (Krieglstein et al., 2022), future research should verify the factor 
structure of  the instrument with a larger sample. Moreover, to provoke more pronounced effects for 

14 of  18
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DIGITAL INK AND DIFFERENTIATED SUBJECTIVE RATINGS FOR COGNITIVE  
LOAD MEASUREMENT IN MIDDLE CHILDHOOD

smartpen-based and subjective cognitive load measures, future studies should operationalize load varia-
tions using task versions that are extremely different in terms of  mental workload.

Regarding generalizability, relatively strong task-specific adaptations of  the wording would be neces-
sary to use the questionnaire in other contexts. Whether the psychometric quality would be affected by 
this needs to be examined in future research.

It also remains to be tested whether the results for the smartpen measures can be generalized to other 
sketching tasks. However, it is encouraging that the measures of  velocity and pressure exhibited similar 
effects in our standardized sketching tasks as in the according prior research on handwriting.

The identification of  reliable smartpen measures for cognitive load also contributes to using smart-
pens as helpful tool for people with special needs. Smartpens measures have been used for various 
diagnostic purposes: they were found to indicate developmental coordination disorders (Rosenblum & 
Livneh-Zirinski, 2008), dysgraphia (Rosenblum & Dror, 2016), autism spectrum disorder (Rosenblum 
et al., 2019), Parkinson's disease (Drotár et al., 2016) and cognitive impairment (Prange & Sonntag, 2022). 
Since cognitive (over)load is closely linked to cognitive impairment, future research should bring together 
findings on smartpen-based cognitive load indicators and cognitive deficits. Further, future studies on 
smartpen-based cognitive load measures should consider that writing process measures are also influ-
enced by interindividual prerequisites, deficits and special needs.

Recent research on computer mouse interaction as a related fine motor task also performed by hand 
found a link between task-irrelevant, rather unconscious mouse actions and cognitive workload (Cha & 
Min, 2022). Task-irrelevant behaviour can also appear during writing and sketching tasks, for example, in 
forms of  meaningless scribbling during cognitive information processing. The predictive power of  smart-
pen measures during task-irrelevant writing behaviour for cognitive states should be investigated in future 
studies. Moreover, Cha and Min (2022) point out that mouse behaviour might not only be influenced by 
cognitive but also by affective states. In line with this, research on computer mouse interaction (Schaaff  
et al., 2012) and writing process measures (Schrader & Kalyuga, 2020) clearly implies that pressure param-
eters are related to emotions. Future studies should investigate the transferability of  these results for the 
target group of  children to identify affective moderator variables and combine information on cognitive 
and affective states for multifactorial learner state analyses.

CONCLUSION

Our research has shown that younger children can self-assess cognitive load and report it on a subjective 
rating instrument. Digital ink, specifically, velocity and pressure measures, were substantially related to 
performance and difficulty of  the task, but barely with the individual cognitive load ratings. Regarding 
practical applications, smartpens allow for an efficient and non-intrusive, real-time cognitive load meas-
urement and precise performance tracking (Sepp, 2019). Therefore, smartpens are a promising technol-
ogy to support adaptive learning systems and research on learning analytics in children.
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