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ABSTRACT
Mobile eye tracking is an important tool in psychology and human-
centred interaction design for understanding how people process
visual scenes and user interfaces. However, analysing recordings
from mobile eye trackers, which typically include an egocentric
video of the scene and a gaze signal, is a time-consuming and largely
manual process. To address this challenge, we propose a web-based
annotation tool that leverages few-shot image classification and
interactive machine learning (IML) to accelerate the annotation
process. The tool allows users to efficiently map fixations to areas
of interest (AOI) in a video-editing-style interface. It includes an
IML component that generates suggestions and learns from user
feedback using a few-shot image classification model initialised
with a small number of images per AOI. Our goal is to improve the
efficiency and accuracy of fixation-to-AOI mapping in mobile eye
tracking.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; Empirical studies in HCI; • Computing methodologies →
Machine learning.
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1 INTRODUCTION
Mobile eye tracking studies often use areas of interest (AOIs) and vi-
sual attention to these AOIs to analyse and understand how people
process visual information. AOIs are specific regions in a scene or
interface that are of interest to the researcher. Visual attention refers
to the time a person pays attention to these regions. By measuring
visual attention to and transitions between AOIs during a study,
researchers can gain insights into which elements are most relevant
or appealing and how they may influence decision-making. This is
usually done based on fixation events because they approximate the
time spent processing the visual scene [10]. However, accurately
annotating mobile eye tracking data is a challenging and time-
consuming task, because scene videos taken with a head-mounted
eye tracking device are unique for every participant. Hence, efficient
fixation-to-AOI mapping techniques from remote eye tracking, like
keyframe-based annotation of dynamic AOIs in video-based stimuli
[14], do not scale. In practice, one or more annotators decide, per
fixation, whether an AOI was hit or not [13, 24]. A solution can be
found in attaching fiducial markers to target stimuli [3, 18, 20, 29],
but we aim at non-instrumented environments without obtrusive
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Figure 1: Screenshot of our intelligent user interface for semi-automatic annotation of mobile eye tracking data.

markers. Existing approaches for automatic or semi-automatic anal-
ysis of head-mounted eye tracking data use computer vision models
to map fixations to AOIs [6–8, 11, 12, 17, 19, 21–24, 28]. But these
approaches come with certain limitations. Most of them rely on
pre-trained computer vision models that do not allow for adapting
the underlying model to a certain target domain [6, 8, 17, 22, 24, 25].
These can be applied in very constrained settings only, i.e., if the
dataset used for training the machine learning model matches the
target domain. Other approaches suffer from a lack of flexibility.
They are based on a single, a priori model training or fine-tuning
step with no possibility to adapt the model during the annotation
process [11, 19, 28]. Kurzhals [12] presented a promising approach
that combines image clustering and human labour for annotating
mobile eye tracking data. Annotators interact with a cluster repre-
sentation of image patches extracted from the video stream for each
fixation. In contrast, we combine few-shot image classification with
human labour in a video-editing-style interface. We present a tool
for fixation-to-AOI mapping that combines automation, based on a
state-of-the-art few-shot image classification model and concepts
from interactive machine learning (IML) [2], with human labour in
an intelligent user interface.

2 INTERACTIVE FIXATION-TO-AOI MAPPING
We demonstrate a web-based tool for fixation-to-AOI mapping
which is an essential data processing step in research based on
mobile eye trackers. It allows practitioners to efficiently annotate
their recordings fixation-wise in a video-editing-like interface (see
figure 1). We integrate an IML service that learns from prior anno-
tations using a few-shot image classification model. It suggests AOI
labels for fixations and visualises its certainty per suggestion using
a colour-coding scheme. Annotators can easily confirm or correct
these suggestions. This feedback is used to re-train the underlying
model. Annotations and suggestions are stored in a database in our
backend (see figure 2).

2.1 User Interface
The user interface includes three main components: the top bar
displays information on the selected gaze recording and on the
annotation progress, a list on the left that shows all fixations and
their annotation state, and a video view on the right with a fix-
ation overlay and buttons for manual annotation (see figure 1).
When a fixation is selected from the list, the video view jumps
to the corresponding frame and shows the fixation position and
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Figure 2: Overview of the architecture of our interactive annotation system including a web-based user interface, the backend
that manages data storage, and the IML service.

the currently assigned AOI as an overlay. An AOI can be assigned
to the fixation by clicking one of the buttons or by pressing the
corresponding shortcut on the keyboard. A successful assignment
is visually confirmed by adding a green badge on the right of the
fixation’s list item. Our tool allows navigation through fixations
using the arrow keys and by video playback. The playback option
can be used to quickly check AOI suggestions which are displayed
as part of the fixation overlay. If multiple fixations hit the same
AOI, these can be annotated simultaneously. For this, the annotator
selects multiple fixations from the list using the shift and arrow
keys, which is consistent with multi-item selection in many user
interface frameworks and assigns them in the same way as a single
fixation item. The video frames, the fixations, and the fixation-to-
AOI mapping are retrieved from and managed by the backend of
our system. For demonstration purposes, we use an existing mobile
eye tracking dataset from the educational sciences domain which
includes gaze recordings from 48 participants. The dataset was
recorded at Saarland University with the aim of investigating the
effects of augmented reality (AR) support in a laboratory-based
learning scenario about electrical circuits on the learning outcomes
and processes of primary school children [1, preregsitered at Open
Science Framework]. Figure 1 shows a video frame from the head-
mounted camera from the AR support condition with the tablet
and the experiment setup in the foreground and the instructor in
the background. A prototype of the eyeNotate Tool can be accessed
via iml.dfki.de/demos/eyeNotate/.

2.2 Interactive Machine Learning Component
Our tool has an interactive machine learning (IML) component
that shall increase the efficiency of the fixation-to-AOI mapping
process. It is based on a few-shot image classification model, which
is initialised with a small number of images per AOI [26]. The model
takes the fixation point and a corresponding video frame as input,
crops an image patch around the fixation point, and classifies the
image patch similar to Barz et al. [4], Barz and Sonntag [5, 6]. The
model is used to generate AOI label suggestions for each fixation.
The availability of an AOI suggestion is indicated by a non-filled
badge at a fixation’s list item (see figure 1). Its outline colour encodes
the model’s confidence: Green, yellow, or red representing high

to low model confidence. The pre-configured thresholds can be
adjusted by the user through a slider in the top bar. If the slider is
moved towards high trust, the thresholds are decreased and more
suggestions will appear in green (and vice versa). An overview
with the number of items per confidence class is shown in the
top bar. Selected suggestions can also be confirmed by pressing
the return or space key. An incorrect suggestion can be corrected
by manually assigning another class. All annotations by the user,
including confirmative and corrective feedback, are used to re-train
the underlying few-shot image classification model. We expect that
the model will improve its performance in predicting the correct
AOI over time. The model training and inference run in parallel.

At the core of our IML component, we run a few-shot image
classification model that takes an image patch cropped around a
fixation point as input to decide whether the fixation hits one of
the defined AOIs or not. We employ a few-shot learning strategy
[26] to enable fast model adaptation and improvements based on
user-provided samples. Our approach is based on the idea of recon-
struction [15, 16, 30] where the class membership task is framed as a
problem of reconstructing feature maps. We have used a Feature Map
Reconstruction Network (FRN) [27] which classifies a target image
by reconstructing class associate feature maps of the image using
a set of support features. The support features are learned from a
set of images all belonging to the same class. For each query image,
the FRN attempts to reconstruct the feature map as a weighted sum
of the support features. The negative reconstruction error is used
as the class score, with smaller errors indicating that the query
image is more likely to belong to the same class as the support
features. The backbone of the FRN architecture is ResNet50 [9]. The
initial model is trained in a 10-shot-k-way manner, with 𝑘 being
the number of classes and using 10 images per class. To update the
classification model, we randomly select 10 images per class from
the pool of user-annotated images and use them for re-training.
Re-training is triggered whenever 10 new samples are available.

3 CONCLUSION
We demonstrated a tool for annotatingmobile eye tracking data that
combines machine learning with human input in a user-friendly
interface. The tool provides label suggestions based on a few-shot
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image classification model, which can be updated based on the
user’s feedback. Our goal is to make the annotation process more
efficient and effective by reducing the time and effort required for
manual annotation. We plan to conduct a user study to investigate
the efficiency and effectiveness of our approach.
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