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Figure 1: High-level overview of the proposed system. In this example, the 3D scene is reconstructed using a monocular depth
prediction method called AdelaiDepth [35], and the video object segmentation is performed using XMem with f-BRS [5, 25].

ABSTRACT
Mobile eye tracking studies involve analyzing areas of interest
(AOIs) and visual attention to these AOIs to understand how people
process visual information. However, accurately annotating the data
collected for user studies can be a challenging and time-consuming
task. Current approaches for automatically or semi-automatically
analyzing head-mounted eye tracking data in mobile eye tracking
studies have limitations, including a lack of annotation flexibility
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or the inability to adapt to specific target domains. To address this
problem, we present IMETA, an architecture for semi-automatic
fixation-to-AOI mapping. When an annotator assigns an AOI label
to a sequence of frames based on the respective fixation points, an
interactive video object segmentation method is used to estimate
the mask proposal of the AOI. Then, we use the 3D reconstruction
of the visual scene created from the eye tracking video to map these
AOI masks to 3D. The resulting 3D segmentation of the AOI can be
used to suggest labels for the rest of the video, with the suggestions
becoming increasingly accurate as more samples are provided by
an annotator using interactive machine learning (IML). IMETA has
the potential to reduce the annotation workload and speed up the
evaluation of mobile eye tracking studies.
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CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; Empirical studies in HCI; • Computing methodologies →
Machine learning.
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1 INTRODUCTION
The annotation of objects in videos is an important task for ana-
lyzing visual scenes and understanding the interactions and rela-
tionships between objects in a scene. It also provides training data
for machine learning models, which can be used to improve object
recognition and scene understanding tasks. However, traditional
annotation methods require extensive manual segmentation of ob-
jects, which can be time-consuming and error-prone. Mobile eye
tracking studies, which involve the use of head-mounted eye track-
ing devices to measure visual attention to specific areas of interest
(AOIs) in a scene, present additional challenges for annotation due
to the uniqueness of the scene videos for each participant and the
potential for sudden movements and unusual viewpoints of the
AOIs. Accurate annotation of mobile eye tracking data is therefore
a challenging and time-consuming task.

Current approaches for annotating AOIs in mobile eye tracking
data include manual annotation by one or more annotators [15, 30],
the use of fiducial markers attached to target stimuli [2, 17, 21, 36],
or the use of computer visionmodels [3, 7, 8, 13, 14, 16, 20, 22, 26, 28–
30, 33]. However, each of these approaches has its own limitations.
Manual annotation is tedious and susceptible to errors, the use of
fiducial markers is obtrusive and not suitable for uninstrumented
environments, and computer vision models may be limited by their
reliance on pre-trained models that cannot be adapted to a specific
target domain or a lack of flexibility with no possibility to adapt the
model during the annotation process [3, 7, 8, 13, 14, 16, 20, 22, 26, 28–
30, 33].

To address these limitations, we propose a novel interactive
machine learning approach for the semi-automatic annotation of
AOIs in mobile eye tracking data using a combination of interactive
video object segmentation and 3D reconstruction. A high-level
overview of how the proposed interaction system is expected to
work is shown in Figure 1. The eye tracking recordings displayed
in the figure are from a mobile eye tracking dataset collected at
Saarland University for the purpose of investigating the effects
of augmented reality (AR) support in a laboratory-based learning
scenario [1, preregsitered at Open Science Framework].

2 RELATEDWORK
Interactive video object segmentation is a method for segmenting
and tracking objects of interest in a video. It involves using user
input to guide the segmentation process and improve the accuracy
of the resulting object masks. In the context of semi-automatic
fixation-to-AOI mapping in mobile eye tracking studies, interactive
video object segmentation could be used to efficiently annotate
AOIs in the video by allowing the annotator to provide labels for a
sequence of frames marked with fixation positions, and using the
fixations to estimate and propagate the mask proposal of the AOI.

However, interactive video object segmentation has its limita-
tions. It can struggle to re-identify highly similar objects, and can
be sensitive to sudden camera movements, in such cases requiring
a large amount of user input [5, 6, 11, 31]. It may also only provide
reliable results under certain constraints, such as when the camera
is static [9, 12]. To overcome these limitations, we suggest using
3D scene reconstruction in addition to interactive video object
segmentation.

3D scene reconstruction is a process for creating a 3D model of a
real-world environment or scene from images or video. It involves
extracting geometric and semantic information from the images or
video and using this information to build a 3D representation of the
scene. There are various approaches to reconstruct 3D scenes from
posed RGB-D images [18], some that only require the existence of
depth or posed images besides RGB [19, 24, 34, 37], and a handful
that can work with monocular RGB videos only [4, 10, 27, 32].

3D scene reconstruction can address the issues with interactive
video object segmentation, such as re-identification, unusual view-
points, and spatial and temporal consistency. By reconstructing the
visual scene in 3D, we can map the AOI segments to 3D, minimizing
the impacts of these problems by splitting the video into shorter
segmentation tasks and aggregating the predicted AOI segments in
the 3D scene. The resulting 3D segmentation of the AOI can then
provide label suggestions for the rest of the video, streamlining the
annotation process. We propose an IML framework that combines
these technologies to tackle the limitations of current approaches
for annotating AOIs in mobile eye tracking videos.

3 INTERACTIVE MOBILE EYE TRACKING
ANNOTATION

Interactive Mobile Eye Tracking Annotation (IMETA) is a novel
approach for semi-automatic fixation-to-AOI mapping in videos
recorded by mobile eye trackers. The proposed architecture of
IMETA is shown in Figure 2. A web interface shall serve as a user
interface for IMETA and the logic itself is planned to be imple-
mented as an interactive machine learning service.

The method begins with a pre-processing step to reconstruct the
3D scene from the mobile eye tracker recordings. This step requires
camera poses and depth information for each frame, which can be
estimated using monocular scene reconstruction methods. If this
information is already recorded by the mobile eye tracker, this step
can be skipped.

Through the frontend, the annotator can label fixations and
correct AOI suggestions. The annotator is presented with an image
marked with fixation positions. When a new fixation is labeled,
a state-of-the-art interactive video object segmentation method,
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Figure 2: Proposed architecture of IMETA. It consists of a pre-processing step to reconstruct the 3D scene from the mobile eye
tracker recording, an interface for interactive fixation-to-AOI mapping, an interactive video object segmentation method to
estimate the mask proposal of the AOIs, and a module to map the AOI segments onto the 3D scene. The resulting 3D instance
segmentation of the AOIs can then be used to generate label suggestions for each fixation. The arrows indicate the flow of data
through the different components of the architecture.

called XMem [5], estimates the mask proposal for the fixation,
and propagates and aggregates the masks for the duration of the
fixation. These segments are then mapped onto the 3D scene to
create a 3D instance segmentation of the annotated AOI (i.e., the
attended object). By mapping the fixation positions onto the 3D
AOI segmentation and checking their corresponding label, we can
automatically label the rest of the video. The 3D segmentation can
be further refined by confirming or correcting label suggestions, and
by labeling additional fixations. Based on the available annotations,
the accuracy of the system is calculated, and the annotation can
be stopped when the desired threshold is reached. We expect that
by annotating only a handful of fixation sequences, the proposed
system can automatically determine the AOI labels for the rest
of the video. Furthermore, given a static environment, a single
annotated video could generalize for all recordings from the same
environment.

4 CONCLUSION
In this paper, we proposed IMETA, a novel system for semi-automatic
fixation-to-AOI mapping in videos recorded by mobile eye track-
ers. IMETA combines monocular 3D scene reconstruction with
interactive video object segmentation to annotate AOIs. By utiliz-
ing 3D reconstruction, IMETA aims to overcome the challenges
of traditional video annotation methods, such as the need for re-
identification, handling unusual viewpoints, and ensuring spatial
and temporal consistency. We believe that IMETA has the potential
to greatly reduce annotation workload for evaluating studies that
use mobile eye tracking videos.

However, the reliance on monocular 3D scene reconstruction
methods may be a potential limitation, as it may not always provide
accurate camera pose and depth estimates. Our future plans include
using it with an AR headsets that include eye tracking capabilities
or with head-mounted eye trackers equipped with RGB-D cam-
eras, to overcome the limitations of monocular 3D reconstruction
methods. The 3D reconstruction and segmentation of the visual
scene could be done in real-time by the experimenter using the
headset. Further, 3D scene reconstruction is typically constrained
to static environments. We plan to integrate a solution to enable
dynamic environment support similar to Kimera [23]. IMETA could
then serve as an interactive annotation tool for annotating AOIs
in mobile eye tracking studies on-the-fly. We plan to evaluate the
performance of IMETA through experiments and user studies.
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