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ABSTRACT

The world’s oceans are polluted with plastic waste and the detection of it is an im-
portant step toward removing it. Wolf et al. (2020) created a plastic waste dataset
to develop a plastic detection system. Our work aims to improve the machine
learning model by using Green Automated Machine Learning (AutoML). One as-
pect of Green-AutoML is to search for a machine learning pipeline, while also
minimizing the carbon footprint. In this work, we train five standard neural ar-
chitectures for image classification on the aforementioned plastic waste dataset.
Subsequently, their performance and carbon footprints are compared to an Effi-
cient Neural Architecture Search as a well-known AutoML approach. We show
the potential of Green-AutoML by outperforming the original plastic detection
system by 1.1% in accuracy and using 33 times fewer floating point operations
at inference, and only 29% of the carbon emissions of the best-known baseline.
This shows the large potential of AutoML on climate-change relevant applications
and at the same time contributes to more efficient modern Deep Learning systems,
saving substantial resources and reducing the carbon footprint.

1 INTRODUCTION

Plastic pollution in oceans has become a threat to ocean health, the health of marine species, and
food safety. Therefore, the UN set the conservation of the oceans as one of the Sustainable Develop-
ment Goals (Desa et al., 2016). The detection and quantification of plastic waste is the first step to
confronting this danger. Wolf et al. (2020) created a labeled dataset of polluted coastline images and
a system to detect floating plastic litter, see Figure 1 for an example. Their system uses a two-step
approach which first detects litter and then quantifies it. The work at hand aims to improve the first
part, i.e. the plastic detector, in terms of accuracy and carbon emissions.1

Figure 1: Example
image of the data

As discussed by Tornede et al. (2021) and Tu et al. (2022), Green Automated
Machine Learning (AutoML) has the potential to greatly contribute to effi-
ciently finding better predictive models with smaller carbon footprints. We
directly follow the call to action of Tu et al. (2022) by providing more evi-
dence and insights. Concretely, we use AutoML to find an improved plastic
detector. To this end, AutoML aims to find machine learning (ML) pipelines
automatically, which minimizes human effort and the need for expert knowl-
edge (Hutter et al., 2019; Bischl et al., 2023). Most AutoML methods, such
as Neural Architecture Search (NAS) (Elsken et al., 2019; White et al., 2023),
train many models which are later discarded or super-networks with parts be-
ing discarded, thus although the human effort is saved, the method in itself
is fairly resource-intensive. The field of Green Artificial Intelligence reduces
the energy consumption of machine learning models by taking the computa-
tional cost into account as an evaluation measure (Schwartz et al., 2020). Green-AutoML combines
these two objectives and aims at the best of both worlds. Previous research was mainly conducted
in resource-aware NAS, often motivated by hardware constraints, e.g., to deploy models on the
edge (Zhao et al., 2021; Benmeziane et al., 2021). However, recent research switched to a viewpoint

1We acknowledge personal communication with Wolf et al. (2020) who provided the dataset, the original
model, and insights into the problem domain as well as the development process of the system. This helped us
to identify important aspects that Green-AutoML can contribute to in this important application.
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of sustainability by aiming to reduce the carbon footprint of NAS, e.g., Bakhtiarifard et al. (2022)
and Dou et al. (2023) created first energy-aware benchmarks for AutoML, unfortunately without any
connection to climate-change relevant applications.

The aim of this work is to use Green-AutoML to create an improved plastic litter detection system in
terms of performance and energy consumption. The chosen method is Efficient Neural Architecture
Search (ENAS) (Pham et al., 2018). Although not considered state-of-the-art anymore, preliminary
experiments with other NAS approaches showed that ENAS can still be considered one of the most
efficient approaches and returns fairly small models. Moreover, the approach is compared to five
well-established neural architectures a human ML expert might use to solve the problem without
using AutoML. Finally, we show that while the chosen AutoML method is consuming more energy
in the model construction phase, it is more sustainable at scale. Imagine the entire coastline of the
world’s oceans would be screened for plastic litter, the large number of images would require a
model with low emissions at inference time.

2 METHODOLOGY

In this section, we provide a brief overview of the approach for determining an efficient architecture
for predicting plastic litter on coastlines.

2.1 DATA

The dataset contains 26 147 high geospatial resolution images taken in Cambodia by aerial surveys
with a drone labeled to eight classes: Litter - high, Litter - low, Organic debris, Other, Sand, Stones,
Vegetation, and Water. We refer to Wolf et al. (2020) for more details.

2.2 CARBON FOOTPRINT

To measure the CO2 emissions, estimations are conducted using the CodeCarbon emissions
tracker (Lacoste et al., 2019; Lottick et al., 2019). The emissions are estimated in grams of CO2

equivalent (gCO2eq). It is calculated as follows:

gCO2eq = 1000× Carbon Intensity × Power Usage

The Carbon Intensity of electricity used for computation refers to the amount of CO2 emitted per
kilowatt-hour of electricity in kilograms dependent on the energy mix at the time and location.
The power consumed by the computational infrastructure is referred to as Power Usage, which is
measured in kilowatt-hours. For an Nvidia GPU, this is calculated using the Nvidia Management
Library (NVIDIA Corporation, 2023).2

2.3 STANDARD ARCHITECTURES

Since the baseline detector by Wolf et al. (2020) is only one neural architecture to solve the prob-
lem, we also evaluate five more well-known architectures from PyTorch (Paszke et al., 2019) for
image classification: AlexNet (Krizhevsky et al., 2012), EfficientNetV2-S (Tan & Le, 2021), Mo-
bileNetV3small (Howard et al., 2019), ResNet18 (He et al., 2016) and VGG11 (Simonyan & Zis-
serman, 2014). For each model, the learning rate, the number of epochs, batch size, weight decay,
and dropout are tuned by random search for 60 trials, each with the validation data. Table 1 presents
the best-performing hyperparameters per model and the respective search space. Finally, the models
are trained and pruned using PyTorch’s global pruning with L1 unstructured pruning on all convolu-
tional and linear layers by 90% (Paszke et al., 2019) to reduce the CO2 emissions for classification.

2.4 EFFICIENT NEURAL ARCHITECTURE SEARCH

We use ENAS (Pham et al., 2018), as an efficient AutoML method, to build an improved plastic
detector. According to Elsken et al. (2019), applying NAS usually consists of a search space, a strat-
egy to optimize it, and a strategy estimating the performance of the sampled architectures. ENAS is

2For more details, see https://mlco2.github.io/codecarbon/methodology.html
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Table 1: Hyperparameter search space and the tuned settings for each architecture

Hyperparameter Range Scaling AlexNet EfficientNet MobileNet ResNet VGG
Learning Rate 0.0001 - 0.1 log 0.001 0.001 0.001 0.0001 0.001
Weight Decay 0.0001 - 0.1 log 0.0001 0.0001 0.0001 0.001 0.0001
Dropout 0.1 - 0.9 linear 0.5 - 0.5 - 0.9
Number of Epochs 10 - 100 linear 80 30 80 50 80
Batch size 8 - 64 log 8 32 8 8 64

a one-shot method; it trains a large super-network and extracts sub-networks as neural architectures
from it. ENAS uses reinforcement learning as a strategy, i.e., a controller searches for a sub-network
that maximizes the reward on the validation data, and the selected sub-network is trained to minimize
the loss on the training data. Because of shared weights, ENAS is fairly memory efficient.

The Python package Neural Network Intelligence (NNI) (Microsoft, 2021) provides an implemen-
tation of the ENAS search space and strategy. We set the search space as follows: width is set to 32,
the number of stacked cells to (3,3), and the ’dataset’ to ’imagenet’.3 All other hyperparameters are
left at their default values. The reward metric is set to the training loss. For the evaluation strategy
for each architecture and also the training of the final architecture, we use the classification defaults
with weight decay of 0.0001, 100 epochs, and a batch size of 32 for training. Additional hyperpa-
rameter optimization and pruning might further improve results (Bansal et al., 2022), but we have
not done so here.

3 EXPERIMENTS

The CO2 emissions were calculated as described in section 2.2. Each model was trained on an
RTXA6000 GPU. The location of the server is Kaiserslautern, Germany, and the experiments were
run in January and February 2023. The average CO2 emissions in Kaiserslautern at the time were
536 g/kWh 4. After training, each model was evaluated on the test set with the following metrics:
test accuracy, CO2 emissions consumed to classify the test set, and the number of floating point
operations (flops) consumed to classify one image. The implementation is available on GitHub 5.

3.1 COMPARING STANDARD ARCHITECTURES VS AUTOML FOR INFERENCE

Figure 2: Test accuracy vs. CO2 emissions on the test set

Figure 2 shows the accuracy and emissions on the test set for each model to provide a qualitative
impression and Table 2 provides the quantitative results. For the CNN by Wolf et al. (2020), the

3’Dataset’ can be set to ’cifar’ or ’imagenet’. The documentation of NNI states “The essential differences
are in “stem” cells[. . . ]. Choosing “imagenet” means more downsampling at the beginning of the network.”

4According to the ”SWK Stadtwerke Kaiserslautern” https://www.swk-kl.de/
produkte-services/service/energietraegermix

5The code is publicly available on GitHub: https://github.com/DFKI-NI/green_automl_
for_plastic_litter_detection
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Table 2: Showing different metrics comparing predictive performance, flops and emissions.

Architecture Test Accuracy Flops Emissions on Test set
(in gCO2eq)

CNN of Wolf et al. (2020) 0.840 803 371 952 N/A

AlexNet 0.847 250 774 464 1.44
EfficientNet 0.847 941 679 616 3.95
MobileNet 0.851 19 857 408 0.49
ResNet 0.859 593 817 600 2.04
VGG 0.889 2 563 809 280 12.87

ENAS 0.851 24 103 936 0.14

emission data is not available. Interestingly, the accuracy varies only a little, whereas the flops and
CO2 emission cover a large range. All models outperform the human baseline in accuracy. VGG is
the best in accuracy but also by far the largest considering flops and CO2 emissions. AlexNet and
EfficientNet are slightly worse in accuracy than ENAS but are a lot larger and thus less efficient.
While MobileNet and ENAS have the same accuracy, MobileNet is slightly lower in flops than
ENAS, but it produces considerably more CO2 emissions. Although not being optimized for it,
ENAS is lowest in CO2 emissions, while achieving considerable accuracy. Compared to the CNN
baseline, the flops used by ENAS are reduced by a factor of around 33. To this end, when considering
accuracy, flops and CO2 emission combined, ENAS built one of the most promising models.

3.2 DISCUSSING THE CARBON FOOTPRINT OF TRAINING

The disadvantage of AutoML is its large resource consumption in the model creation phase. How-
ever, when regarding the model’s CO2 emissions at scale, the lower emissions in the inference phase
compensate for the high resource usage during training. The length of the world’s coastline is ap-
proximately 1.6 million km (World Resources Institute, 2004-2023). Based on a single image size
of 20 cm2 and a water coverage ratio of 10 meters per meter of coastline (Wolf et al., 2020), an
estimated 408.5 billion images require classification.

Figure 3: CO2 emissions on the test set per number of images including training.

Figure 3 shows the total CO2 emissions of the models as a function of the number of images that
are classified by the model. The function can be described as follows:

total CO2 emissions(#images) = CO2 emissions training + #images × CO2 emissions test set
size test set

As expected, ENAS starts as the highest since the NAS process takes up more energy than training
a single, known architecture. However, ENAS ends as the lowest in CO2. It passes VGG at around
156 000 images. EfficientNet, ResNet, and AlexNet follow at 556 000, 1.14 million, and 1.66 million
images, respectively. MobileNet is also quite efficient in classifying and is only surpassed by ENAS
at around 4.12 million images. When considering the estimate of 408.5 billion images, the difference
between ENAS and MobileNet lies in around 27.3 million gCO2eq emissions, i.e., the ENAS model
would consume only around 29% of the emissions that MobileNet would use to classify the world’s
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coastline. This shows that the AutoML approach is more sustainable at scale and pays off even if it
were only to be used on 0.001% of the coastlines compared to hand-designed solutions.

3.3 LIMITATIONS AND FUTURE WORK

Our study focused on the CO2 emissions of the model alone, but we recognize that the process of
data collection, preprocessing, and algorithm implementation are also significant sources of emis-
sions. According to personal communication with Wolf et al. (2020), data collection was a crucial
and significant part of the project. The collection process took place in various locations and in-
volved transportation emissions, as well as the emissions of the usage and manufacturing of the
hardware used to capture the images, such as drones. Attention should be paid to the implementa-
tion of the algorithm. Before the data can be used, labeling and preprocessing need to be performed.
In the development phase of the original model, many different settings were experimented with,
which again used up energy. Future research should consider estimating the emissions associated
with the entire research process.

Moreover, the CO2 emissions depend on the energy mix and the hardware used for model train-
ing and execution. To reduce emissions, periods of low energy demand or high renewable energy
availability can be identified for model training. Additionally, the choice of processor, programming
language, and libraries can impact CO2 emissions. Comparative studies of different processors and
libraries could be conducted in future research.

In addition, the method used so far, i.e. ENAS, is no longer state-of-the-art in AutoML. ENAS has
not explicitly searched for an energy-efficient model, but the ENAS search space appears to be well
suited for that. Multi-objective optimization on CO2 emissions (Bakhtiarifard et al., 2022) or other
specific methods (Wang et al., 2019) are also promising directions for future work.

Another interesting aspect is the utility of a developed model in relation to its CO2 emissions. How
much CO2 is the application worth? In this work, we assumed that one would want to classify the
shorelines of the world’s oceans. In most applications, however, such an upper bound cannot be
determined easily. Estimating the net worth of an application could be done through a CO2 budget
calculator that takes hardware components into account as well as environmental harm, prospected
usage, and other factors. Possibly, the CO2 compensated by the application can also be considered.

Lastly, there are other aspects besides CO2 emissions to consider, such as other greenhouse gases,
nuclear waste, and e-waste produced by technology. Additionally, there might be better ways to
calculate CO2 emissions. We used CodeCarbon but that library has some limitations in the way that
it calculates the CO2 equivalent. That is, the life-cycle emissions of the computing infrastructure
are not taken into account, and the energy mix is estimated based on the country or city, rather than
being directly measured.

4 CONCLUSION

In this work, we demonstrated the potential of Green-AutoML as a key technology for the efficient
development of efficient models for climate-change-related applications. This opens up further paths
towards real Green-AutoML systems that so far are only independently studied in terms of efficient
development, efficient models, or important applications, but not jointly. In particular, we studied
ways to obtain an improved plastic detector compared with Wolf et al. (2020). To the best of our
knowledge, we are the first to show that additional CO2 emissions spent by AutoML methods are
compensated by the lower emissions consumed at inference time if the model is applied frequently.
Future work includes the development of an AutoML algorithm optimizing for energy efficiency
and considering the overall resource consumption of the entire process.
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