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Abstract: A critical part of Automated Material Handling Systems (AMHS) is the task allocation and
dispatching strategy employed. In order to better understand and investigate this component, we here
present an extensive experimental evaluation of three different approaches with randomly generated,
as well as custom designed, environment configurations. While previous studies typically focused on
use cases based on highly constrained navigation capabilities (e.g., overhead hoist transport systems),
our evaluation is built around highly mobile, free-ranging vehicles, i.e., Autonomous Mobile Robots
(AMR) that are gaining popularity in a broad range of applications. Consequently, our experiments are
conducted using a microscopic agent-based simulation, instead of the more common discrete-event
simulation model. Dispatching methods often are built around the assumption of the asynchronous
evaluation of an event-based model, i.e., vehicles trigger a cascade of individual dispatching decisions,
e.g., when reaching intersections. We find that this does not translate very well to a fleet of highly
mobile systems that can change direction at any time. With this in mind, we present formulations
of well known dispatching approaches that are better suited for a synchronous evaluation of the
dispatching decisions. The formulations are based on the Stable Marriage Problem (SMP) and the
Linear Sum Assignment Problem (LSAP). We use matching and assignment algorithms to compute
the actual dispatching decisions. The selected algorithms are evaluated in a multi-agent simulation
environment. To integrate a centralised fleet management, a digital twin concept is proposed and
implemented. By this approach, the fleet management is independent of the implementation of the
specific agents, allowing to quickly adapt to other simulation-based or real application scenarios. For
the experimental evaluation, two new performance measures related to the efficiency of a material
handling system are proposed, Travel Efficiency and Throughput Effort. The experimental evaluation
indicates that reassignment mechanisms in the dispatching method can help to increase the overall
efficiency of the fleet. We did not find significant differences in absolute performance in terms
of throughput rate. Additionally, the difference in performance between SMP- and LSAP-based
dispatching with reassignment seems negligible. We conclude with a discussion, where we consider
potential confounding factors and relate the findings to previously reported results found in the
literature.

Keywords: vehicle dispatching; agent-based simulation; digital twin; industry 4.0

1. Introduction
1.1. Motivation and Problem Statement

Automation and the digital transformation of workflows are becoming an increasingly
important factor in today’s work environments. The physical and digital integration
of machines, material, data, and workforce is being pushed forth under the keyword
Industry 4.0. The reduction in costs and increasing flexibility, speed, and quality are the
leading promises. In order to deliver on these promises, Industry 4.0 applications involve
interconnected devices, cloud services, advanced automation, and Artificial Intelligence
(AI) technologies [1,2]. Thereby, any relevant detail of the involved physical entities in the
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environment also has a Digital Twin (DT) representation. Changes to the physical object
are tracked and synchronised with the DT. Changes on the DT will be considered during
the processing of the physical object [3]. Zeb et al. [4] describe a functional digital twin
that actually represents a simulation, which is initialised from the most recent state of the
environment tracked in the DT. It is deployed to explore system behaviours and evaluate
the effects of measures and to predict and control the connected risks. The availability of the
actual state of the production environment in a machine readable form enables computer
systems to support or take over responsibility in decision-making and robotic systems to
execute physical tasks, especially in form of autonomous material handling.

An important role in the implementation of efficient Industry 4.0 production envi-
ronments comes to the automation of the intralogistics. The digital integration enables
Automated Material Handling Systems (AMHS), e.g., via fleets of Autonomous Mobile
Robots (AMR), to provide for the manufacturing processes effectively, flexibly and with low
coordination overhead [5–8]. Through the application of Artificial Intelligence methods,
the system can automatically adapt to emerging situations and optimise its behaviour as
required. Already today, those industries whose identity mostly revolves around logis-
tics are especially able to exploit the massive scaling effects of autonomous robotic fleets
(e.g., [9,10]). Yet, automated material handling is still an active research field. Common
research questions are the evaluation and benchmarking of different factory layouts, num-
bers of vehicles deployed, dispatching strategies or related factors [11], often before the
background of a specific case study.

Coelho et al. [12] employ a simulation to evaluate the performance of three configura-
tions regarding the number of pickers in the supermarket (i.e., a central storage area from
which material is distributed) and behavioural adaptations for the Automated Guided
Vehicle (AGV) during operation. They calculate a benefit in terms of different metrics for
those configurations. Ma et al. [13] report an evaluation with a discrete-event simulation
(DES) for trading off numbers of vehicles, layouts, idle/charging policies with performance
indicators. Other recent approaches incorporate machine learning algorithms, e.g., for the
estimation of travel times to achieve better-informed scheduling decisions [14], or load
balancing within the factory through the adoption of entropy-based calculations to improve
overall system performance [15]. Liu et al. [16] propose to use a genetic algorithm to factor
various heuristics into a meta-heuristic, here, to take into account stochastic variations
in transport time and to improve compliance with required windows of delivery time.
Instead of a practical evaluation of the methods, e.g., in a simulation, they compare the
methods based on fitness functions directly calculated from the produced task assignments.
Similar research questions are actively being discussed in the field of on-demand mobility,
taxi dispatching, or ride-hailing systems. Here, the layout of the navigation graph usually
cannot be adjusted, but the same mechanisms apply, e.g., for order matching, vehicle
dispatching or idle vehicle repositioning [17,18].

We find that many previous works put a focus on layouts that facilitate highly con-
strained traffic networks, e.g., limiting vehicle traffic along unidirectional edges, no over-
taking, etc. These restrictions and assumptions can be explained by the observation that
vehicle navigation used to be bound to rail systems (e.g., Overhead Hoist Transport, OHT)
or guide paths for many of the considered use cases. As a result, many experimental evalua-
tions are performed using event-based simulation models, and dispatching approaches are
formulated with event-based triggering mechanisms in mind (c.f., Table 1). This does not
translate very well to a fleet of highly mobile systems that can change direction at any time.
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Table 1. Comparison of previous evaluation setups regarding the modelled Automated Material
Handling System (AMHS) (Automated Guided Vehicle, AGV; Overhead Hoist Transport, OHT;
Autonomous Mobile Robot, AMR), its navigation constraints, and the employed simulation model
(Discrete-Event Simulation, DES; Agent-Based Model, ABM).

Source AMHS Type Navigation Graph Simulation Model

[19] AGV unidirectional/bidirectional DES
[20] AGV unidirectional/bidirectional DES
[21] AGV unidirectional DES
[22,23] OHT unidirectional ABM
[24] OHT unidirectional DES
[15] AGV unidirectional ABM
[6] AGV unidirectional/bidirectional DES
[16] AMR unconstrained unknown

1.2. Proposed Approach

With this in mind, as our main contributions we present adapted formulations of well
known dispatching approaches, specifically to make them better suited for a synchronous
evaluation of dispatching decisions. For the validation of this approach, we present an
agent-based simulation testbed and a modular DT, whose role it is to provide the interface
between the target environment and the dispatching algorithm. We present an extensive
experimental evaluation with a broad range of target application environments, from which
we can draw more general insights about the performance of the methods, than would be
possible with only a single target use case scenario (c.f., Figure 1).

Figure 1. Dispatching method formulation and design of experimental evaluation.

Based on the literature research, we select and adapt the MOD STTF method [20]
for our experimental evaluation, both with reassignment feature (MOD STTF) and for
comparison without (STTF). As stated before, methods found in the literature are typically
designed around event-based triggers and proceed with an asynchronous evaluation of
dispatching decisions. This does not translate well to continuous agent-based models or
physical implementations with a fleet of AMR, where the specific events, designed around
navigation constraints, are not available. Therefore, we introduce a timer-based mechanism
to evaluate the dispatching decisions cyclicly in a synchronised fashion. We formulate
the dispatching problem in terms of the Stable Marriage Problem (SMP), which yields
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equivalent results to the original MOD STTF formulation, and the Linear Sum Assignment
Problem, which performs a global optimisation according to the selected dispatching rule.
The methods can then be implemented using the specific algorithms available to solve
these problems.

With our experimental evaluation we demonstrate the viability of the approach, which
is the adaptation and application of the described methods to the domain of AMR-based
AMHS, the presented modular simulation testbed, and the DT interface. We assess the
performance of the approaches in a broad range of operation scenarios, i.e., the frequency
and spatial distribution of transport requests, the fleet utilisation, and the size and structure
of the environment. In order to achieve this, we use the following variations on the
environment parameters.

• The makespan is dominated by the travel time vs. processing duration,
• The vehicle utilisation is either high or low,
• Different degrees of complexity regarding agent navigation and spatial distribution of

stations are considered.

In our earlier work [25], we presented the testbed environment that includes an agent-
based simulation and a digital twin. We will use this simulation environment for our
experimental evaluation. The digital twin represents the backend for this simulation that
encapsulates and provides access to its data and controls.

Section 2 gives a brief literature overview and lays out the selected approaches for
Task Allocation and Vehicle Dispatching. Section 3 provides the detailed description of
the proposed digital twin concept and implementation. Section 4 presents the simulation
environment and how it is embedded in the overall system architecture. The experimental
evaluation is given in Section 5. Concluding remarks and notes on future research directions
can be found in Section 6.

2. Task Allocation and Dispatching

This section first provides a general introduction into the topic of task allocation and
dispatching, followed by a selection of methods used within this work. Finally, the selected
methods and how they are implemented is described in the corresponding subsections.

The dispatching of tasks across the available fleet of agents is one of the cornerstones
of an autonomous intralogistics system. Our simulated environment produces one type
of product on parallel workstations. If a new production job is assigned to a workstation,
the required parts are identified. Move requests are issued to fetch and deliver those parts
to the workstation. Once completed, another move request is issued to fetch and deliver
the product from the workstation to the output buffer storage. These move requests are
assigned to the available vehicles based on the specific dispatching policy employed. These
algorithms facilitate heuristics in order to identify and assign the agent to a task that seems
most suitable to accomplish it efficiently. Goal of the optimisation is an increase in the
plant’s overall throughput, or conversely, the minimisation of the mean duration between
shipments at any of the environment’s configured output storage. The specifics of the
implemented dispatching policy contributes to the overall performance, e.g., regarding
empty travel time, pick-up durations, or the overall makespans. To this end, we evaluate
different approaches in different environment configurations for comparison. We would
like to gain insights not only about the relative performance of the approaches compared to
each other, but also how they perform in response to different environment configurations.

Vehicle dispatching in itself is a well-studied problem in the fields of logistics at
warehouses or container terminals, and taxi operations. Different approaches exist, some of
which support multiple loads to be transported, shared rides, reassignment, or guarantees
on the delivery time. Egbelu and Tanchoco [26] is without a doubt one of the central
sources on AGV dispatching in a job shop environment. They presented a number of rules
according to which matching decisions would be made, e.g., Shortest Travel Time First
(STTF), whereby the vehicle would be assigned to a job that would travel to the pick-up
location in the shortest time. They distinguished vehicle initiated and work centre initiated
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task assignment (dispatching) rules, implying different rules could be employed whenever a
vehicle becomes available (again) versus a new move request is generated at a workstation.
Each rule calculates a priority according to which a vehicle should pick a task from the set
of available move requests, or a workstation to claim service from a vehicle from the set of
available vehicles, respectively.

Later works started to refine these rules. Bozer and Yen [20] propose methods that
support preempting task execution in order to redispatch tasks to other agents becoming
available later (Modified Shortest Travel Time First, MOD STTF), and another method
providing vehicles with task queues to let them participate in the assignment procedure
even while they are still busy, i.e., to facilitate a predictive consideration of future vehicle
availability (Bidding-Based Dynamic Dispatching, B2D2). While previously dispatching
decisions would only be triggered upon insertion or completion of a move request, they
proposed to review the assignments of vehicles until they are actually committed to their
assignment. Where this commitment would be calculated based on the remaining travel
distance. They also let vehicles travel uncommitted to a parking point, in case they are not
directly assigned another task. With the employed dispatching rule, decisions are based on
the greedy (Greedy, in the sense that the closest vehicle is always preferred, disregarding
the overall sum of distances travelled by all the vehicles (c.f., Section 2.2).) minimisation of
travel time for individual vehicles. In their implementation, the trigger for reevaluation
of the assignment rules is the vehicle passing intersection points along their path. Thus,
the distinction according to the initiation of the rule evaluation by vehicles or work centres
becomes irrelevant.

The idea of bidding- or auction-based mechanisms for dispatching was picked up
by several authors, as Koenig et al. [27] show in their survey. They give a good overview
about several methods employing bidding mechanisms for task negotiation, but they also
point out a potential shortcoming of the greedy assignment evaluation, i.e., one out of two
agents might be assigned with priority to one out of two tasks, while the other agent might
be entirely unsuitable to fulfill the remaining task.

The topic is also studied heavily for applications, such as container shipping terminals.
Common extensions in that field involve multi-load carrying capabilities or the learning of
agent preferences [28–30]. Ride-sharing and taxi operations are other important fields of
application [31–34].

2.1. Modified Shortest Travel Time First

The Modified Shortest Travel Time First (MOD STTF) algorithm was originally pro-
posed by Bozer and Yen [20]. Therein, the STTF rule is employed, which was presented
and investigated earlier by Egbelu and Tanchoco [26]. By this rule, the priority for an
assignment is given by the remaining distance an agent needs to travel in order to pick up
a load, such that the lowest estimated travel time always wins the assignment.

The modification that was later added (i.e., the MOD part in the name) revolves
around the concept of uncommitted assignment; thereby agents could be assigned a task
tentatively. They would then start to travel towards the assigned pick up location, but could
be reassigned to other tasks or released by other agents, that become available later at
a closer distance. The window during which this reassignment can occur is denoted as
uncommitted travel. It is open until the remaining empty travel distance falls below a
configurable threshold value, at which point the agent is then committed to the assignment.
If this value is set to an infinite positive value we obtain the standard STTF dispatching
(without reassignment) as a special case. If there are no constraints regarding navigation
capabilities or computational performance to consider, it seems sensible to set it to zero to
always allow reassignment in favour of a better match. This is intended to react to:

• New loads or move requests that are added, which the agent could reach quicker,
• Or likewise other agents that become available, which are able to pick up and execute

the task earlier than the agent that was originally (tentatively) assigned to it.
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According to the original formulation, if a new move request is added, one of the
unassigned vehicles is assigned according to the STTF rule. The current task assignment
shall be revisited for each agent individually whenever certain events occur, i.e.,

• An agent completes its task or is released from an uncommitted task,
• An agent passes by certain locations while it is not committed to a task.

While they acknowledge the performance could potentially be improved by more
frequent reevaluation of the rule, they argue the benefit would not justify the addi-
tional complexity.

As can be seen from the above described trigger mechanism for the re-evaluation of
dispatching decisions, the method is designed around applications that fit an event-based
model, e.g., due to navigation constraints imposed onto the agents. This assumption does
not hold for our target application of an AMHS facilitating free-ranging autonomous mobile
robots (AMR). Our target application uses a microscopic agent-based model. Therefore, the
agents ability to change their path is not restricted to discrete locations, so the dispatching
decisions do not need to be synchronised to these events either. Additionally, the exact
point where a vehicle "travels through a station or intersection" is hard to track in this environ-
ment and can not be detected precisely. Therefore, we opted to implement the triggering
mechanism based on timer events, and reconsider the assignment for all unassigned and
uncommitted agents simultaneously instead of asynchronously for individual agents. Thus,
to apply the method to the domain of AMR, the algorithm is adapted based on two different
formulations, the Stable Marriage Problem (SMP) and the Linear Sum Assignment Problem
(LSAP). The following subsections present the specific methods.

2.2. Stable Marriage Problem

As we are re-evaluating all uncommitted assignments simultaneously, we can use
a stable matching algorithm to compute the assignments. In fact, we can formulate this
setting in terms of a Stable Marriage Problem (SMP). Thereby a stable matching (bijection)
is sought that matches the elements of two disjoint sets according to mutually stated
preferences. Here, at each evaluation step, we wish to match all idle or uncommitted
agents ai ∈ Aidle ∪ Auncommitted with any one unassigned or uncommitted move request
rj ∈ Runassigned ∪ Runcommitted. The preference of an agent ai towards a move request rj is
derived from the travel distance τij, such that a move request ranks higher in preference,
the lower the associated travel distance τij. Symmetrically, the preference of a move request
rj towards an agent ai is received in the same way. Thereby the matching is said to be stable
in the sense that no pair of agent and move request could be formed that both rank each
other higher in preference than their assigned matches.

The solution to this formulation can be obtained by the application of the Gale–Shapley
Algorithm [35]. According to this algorithm stable matching between two equal sized
sets of suitors and reviewers are formed iteratively. New matches are formed tentatively
by iterating the suitors’ preference lists in order. During this process previously formed
matches are compared to newly proposed matches until all suitors eventually find a
match. If during this procedure previously matched suitors are released by more preferable
candidates to the reviewer, they are enqueued again to propose to the next preferable
reviewer (c.f., Algorithm 1).

This matching is equivalent to the outcome of the asynchronous evaluation of the STTF
assignment rule, as thereby agents would be released and reassigned until the matching
would arrive at the same stable state in the same way. In order to extend this formulation to
resemble the B2D2 method, one would just need to add vehicles committed to their move
request to the input set ai ∈ Acommitted, whose preference would be derived from the travel
distance to complete their current task, plus the empty travel distance to pick up the next.

The original formulation of the SMP and the presented solution algorithm assumes
both sets are equal in size. In our case, that would correspond to an equal number of agents
and move requests. This assumption will obviously not hold true in practice. McVitie and
Wilson [36] investigate this situation and propose different strategies to handle it. They
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recognise that the algorithm’s solution speed degrades significantly when the number of
suitors exceeds the number of reviewers. In that case the preference lists of the unmatched
suitors need to be iterated exhaustively before they can conclude they will not receive a
match. One of the approaches they propose is to swap the role of the two sets depending
on their size, such that the smaller set is put into the role of the suitor and the larger acts
as the reviewer. They note that, by doing this, a different stable solution may be returned
(female-optimal vs. male-optimal). We assume the solutions will not actually differ in our case,
due to the symmetry in the preference calculation we employ for both sets. Therefore, we
integrated this mechanism to achieve the best efficiency for our implementation.

Algorithm 1: Gale–Shapley Algorithm
Input : Suitors, Reviewers
Output : Assignment
// Iterate suitors until all are matched
UnassignedSuitors← Suitors
for thisSuitor ← popfront(UnassignedSuitors) do

// Check reviewers in order of decreasing preference
for reviewer ← popfront(preferences(thisSuitor)) do

prevSuitor ← Assignment(reviewer)
if ∃prevSuitor then

thisPre f erence← preference(reviewer, thisSuitor)
prevPre f erence← preference(reviewer, prevSuitor)
if prevPre f erence ≥ thisPre f erence then

// Previous assignment is more preferable,
// skip to next reviewer
continue

end
// New assignment is more preferable,
// re-enqueue previous suitor
pushback(UnassignedSuitors, prevSuitor)

end
// Assign match tentatively,
// proceed with next suitor
Assignment(reviewer)← thisSuitor
break

end
end

As Bozer and Yen [20] describe, unassigned vehicles are sent to a designated parking
point, where they will wait for new assignments. The number and location of these points
will have an impact on the performance of the fleet. It makes sense to distribute the vehicles
at a central location, or (if those are predictable) in the vicinity of the pick-up positions of
incoming move requests.

2.3. Linear Sum Assignment Problem

The formulation as a Linear Sum Assignment Problem (LSAP) [37,38] can be used as
an alternative method to the SMP described above. The probability that vehicles have to
cross their ways in order to pick up tasks nearby, intersecting with paths of other vehicles
(c.f. Figure 2a), can be reduced with the LSAP formulation compared to SMP. We found
this effect described in the literature (e.g., Kümmel [39]). However, how much this effect
actually influences the overall performance in a continuous AMR-based application is not
well studied. Figure 2b provides numbers to the example. The matrix shows the distance
measures for the combinations, that would be used as the cost function. The highlighted
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combination would be picked by the algorithm according to the derived preference lists
produced in Figure 2c. According to the overall sum of travelled distance, the inverted
combination would represent a (globally) more efficient solution to the problem.

(a) Example configuration: spatial distribution of two agents and tasks.

Pick-up Location Agent 1 Agent 2

Task 1 2 5
Task 2 1 2

(b) Cost matrix.

Entity Preference List

Agent 1 Task 2, Task 1
Agent 2 Task 2, Task 1
Task 1 Agent 1, Agent 2
Task 2 Agent 1, Agent 2

(c) Preference lists.

Figure 2. Example configuration that demonstrates navigation conflicts due to task assignment based
on STTF rule (solid arrows). The assignment would favour matches based on individual preference,
instead of globally optimal sum of travel times (dashed arrows). The cost matrix and preference lists
associated to the example are given. The combination that results from the greedy assignment based
on the STTF rule (highlighted) is globally suboptimal.

In fact, we found that other authors have used this approach before to address the AGV
dispatching problem [21,23,24]. In particular, the approach presented by Kim et al. [23]
shares similarity to the one described below, in that they also formulate the problem as an
assignment problem and use the same reassignment policy as defined with MOD STTF,
i.e., to consider both idle and uncommitted vehicles eligible for dispatching.

Here, we start with a cost matrix that is populated with the distances τij between the
agents ai and the move requests rj. The objective is to find the optimal assignment of agents
to move requests, in order to minimise the overall sum of distance travelled. It is commonly
formulated as a zero-one linear programming problem, e.g.,

min
n

∑
i=1

n

∑
j=1

τijxij with xij

{
1 if agent i is assigned to move request j
0 otherwise

such that

n

∑
i=1

xij = 1 j = 1, 2, . . . , n

n

∑
j=1

xij = 1 i = 1, 2, . . . , n

xij ∈ {0, 1} i, j = 1, 2, . . . , n

One popular solution approach is by using the so called Hungarian method, which is
what most authors state to use. For our application, we found the implementation provided
by the scipy library [40] very useful, which claims to provide an implementation based on
the Jonker–Volgenant algorithm [41].

Additional flexibility or adjustments to the application scenario are commonly added
by extending the function that is used for the population of the cost matrix. Thereby the
approach can incorporate more complex constraints or requirements, such as due dates,
load balancing etc.
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We implemented the reassignment mechanism and the idle behaviour in the same
way as described in the previous Section 2.2. That is, vehicles can be released or reassigned
until their assignment is committed, which happens when they reach a specified threshold
distance. We also employed the same approach to idle vehicle positioning as described
there. That is, unassigned vehicles are sent to a central parking location to await future
incoming move requests.

3. Digital Twin Representation

In this work, the main purpose of the Digital Twin (DT) is to decouple the application-
specific physical entities and environment from the fleet management. The DT reflects the
current state of the environment and provides an interface to communicate state and actions
between environment and dispatching algorithms. Therefore, the physical environment,
either a simulated or a real-world application, has to be interfaced to the DT. Within the
next paragraphs a short general introduction into the topic of DT is given. The Sections
describe the relevant set of parameters our DT implementation is designed to track for the
given application.

The DT provides the basis for storage and retrieval of any application-relevant infor-
mation about a physical or virtual entity that is required for operation or analytics at a
facility [3]. Other authors emphasise the significance of the DT as a tool to aid decision-
making regarding supply chain management [42] or product life cycle management [43].
It serves as the interface and central point of access for any services the user wishes to
build around the physical production environment or entity. Implementation-wise, the DT
will necessarily be tightly integrated with the facility’s Enterprise Resource Planning (ERP)
solution. Sometimes the implementation will even be provided by the ERP vendor or at
least interface with it to acquire the relevant information. At last, the DT will be interfacing
with a Manufacturing Execution System (MES) that actually controls the operation of the
intralogistics system [44].

We found studies regarding the specific case of DTs for manufacturing systems and
intralogistics. Jiang et al. [45] propose the conceptualisation of the relevant processes around
several basic elements, including controller, executor, buffer, logistics path, etc. Following the
notation defined in the overview by Jones et al. [3], for our implementation we specify
several types of entities and processes and the environment, within which the former exist
and operate. The below specification provides the description of the DT implementation,
which is an integral part of the setup for our application and experimental evaluation. We
define all the relevant entities, parameters, and processes that need to be twinned for the
successful integration with the dispatching methods and provide details about the technical
implementation of the twinning procedure, i.e., the act of synchronisation of the physical
environment with the virtual twin. Note that in the context of this paper, the physical
environment is represented by an agent-based simulation model. Due to the modularity
that is achieved by adopting this DT approach and model, the transfer to an application
with a real-world application is straight-forward. The design of the DT that is described
below was presented before in our earlier publication [25]. In the following we provide an
updated version of that description.

3.1. Application Instance

We define the Digital Twin of the whole environment as a graph structure. Figure 3
shows a graphical visualisation of a simple example environment. Different types of agents
are visualised as blocks or circles with an arrow to indicate their orientation. The agents
can use the associated navigation graph for route planning. In the visualisation, the nodes
and edges are visualised as circles and lines.
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Figure 3. Visualisation of an example environment configuration. Displayed are the areas for storage
of workpieces in light grey (left and right) and assembly (centre), that are partially enclosed by
obstacles (walls). Additionally, a number of agents are shown (rectangles and circles with arrows
indicating the orientation) and the edges and vertices of the navigation graph, that are used to support
the agents’ navigation (darker grey circles and dashed lines).

3.2. Structural Layout

The structural layout of the environment, i.e., walls and areas, can be described based
on an actual floor plan of the facility or manually arranged using a web-based editor. We
defined different area types to differentiate logically between different spaces, for example
for picking up items or for production areas. They are only used as a visual aid, but they
could be used in a more complex scenario, for example it could be included in planning to
bring certain items not directly to an agent but in the general area this agent is stationed.

While walls are generally not traversable, the other areas can be traversed unless
blocked by temporary obstructions, e.g., doors or mobile entities. Navigation planning
might consider to include restrictions on the area type, e.g., in order to avoid transport
travel through the workspace of production processes.

3.3. Navigation Graph

In extension of the structure of the physical environment, the digital twin representa-
tion specifies a navigation graph that mobile agents can use for efficient motion planning.
When the assigned goal position for an agent’s task is not in direct line of sight to the agent,
i.e., when an obstacle needs to be circumnavigated, a graph search algorithm will be used
(here: Dijkstra) to find the shortest path along the navigation graph to the goal position.
It will then use the nodes along this path as waypoints for the navigation towards the
goal position.

The navigation graph can be designed and provided manually, or created using a
probabilistic roadmap algorithm [46] or other approaches for automatic generation of
navigation graphs [47].

3.4. Processes and Tasks

The business processes in our environment are modelled around an assembly process
that requires a number of input parts and produces an output part. The actual assembly
process can take place at the locations of specific workstations, where worker agents
can manufacture one item at a time. For this purpose, the required input parts have to be
transported to these locations by dedicated transportation agents. Below, Figure 4 visualises
the task tree of the production process, modelled as a Petri Net [48].
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Figure 4. Petri net reflecting the task structure for the manufacturing processes in an example
application environment.

For the actual implementation, we distinguish the task types idle, move-to, pick-up,
put-down, and assemble. Each of these tasks typically have an expected non-zero duration,
which could actually be infinite, e.g., in case of deadlocks. Tasks of the types pick-up, put-
down, and assemble take the identifiers of the components that are supposed to be affected
by the given action. In addition, tasks of type move-to also specify the target coordinates.
To simplify the visualisation, the model presented above does not include the transitional
states that would reflect the associated action execution of the transitions Transport and
Assembly. Below, Figure 5 provides the actual model for these processes too.

(a) Petri net for the Transportation process.

(b) Petri net for the Assembly process.

Figure 5. Petri nets for the subprocesses in the environment.

Preconditions for the execution of these processes is the ability of the agent to actually
execute them, e.g.,

• The availability of the specified parts in the vicinity of the agent is checked before
task execution.
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• Only assembly agents are able to execute the assemble action, while, on the other
hand, only transportation agents can move. Assembly agents are modelled as being
permanently stationary.

• The capability of an agent to carry one or many instances of a load item can be
constrained arbitrarily. In our implementation, only one item of any kind can be
picked up by a transportation agent. Assembly agents can pick up one item of each
type for the execution of the assembly process.

The task instances are created and persisted in the environment’s DT and can then be
assigned to agents for execution.

A new task starts with the state ”queued” which means that it has been assigned to an
agent and will be executed in the near future, probably at the ”planned_start” timestamp.
When it is getting executed it changes its state to ”started”. There should always be only
one task for each agent in the ”started” state. After the execution, the task changes to
the success-state if it was ”successful” or ”failed” if something goes wrong. It can also be
cancelled by the user. For logging purposes, we store those tasks and assign them the

”cancelled” state.

3.5. Components and Modules

The environment allows the definition of any parts that play a role in the manu-
facturing process, either as components, tools, material, or supplements. Complex part
types can include a tree of child components that was factored into the construction of the
specific part at hand. In the specific implementation we distinguish the part types wing
and wing movable, which combine into wing assembled. This very simple task tree stands
representative of the much more complex tree of production steps and requirements in a
real world scenario. It should be, however, sufficient to demonstrate the capabilities of the
implemented testbed and for the evaluation of the selected approaches.

A component is either a workpiece that needs to get transported and processed or the
final product that needs to be transported to the despawn position which can be a place to
store the component before it gets transported elsewhere.

3.6. Agents

Each environment can contain multiple agents, described by their pose and type, their
current and subsequent tasks and the currently transported payload. To reduce redundancy
in a fleet of agents of the same model we can store most data in agent type that the single
agent instance can overwrite. The agent type can be selected from a number of predefined
agent types, that can be configured separately. The agent type is used to specify the generic
properties and capabilities of the agent, such as whether or not it can transport or assemble
certain parts, and also to select the graphical model that is used in the visualisation of the
environment. The agent type can be selected from a number of predefined agent types, that
can be configured separately.

The agent also carries the information which tasks are currently allocated to it (if any).
During operation, one or more tasks can be added to the agent’s task list, that it will execute
sequentially, ordered by their planned start time, until the list is exhausted.

3.7. Persistence Layer

We implemented our DT using a document-oriented NoSQL database system for
persistence, i.e., a MongoDB instance. Each of the above described entities are represented
as documents in dedicated collections within this database. We chose to build our im-
plementation on top of a MongoDB database, because capabilities to stream changes to
clients directly and its built-in support for representing GeoJSON and geospatial queries are
readily available. We acknowledge that other backend systems (e.g., Relational Database
Management Systems, RDBMS) might work just as good.

For the act of twinning, the database can be interfaced from Python via an asyn-
chronous programming interface that provides the required domain-specific functionalities,
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e.g., regarding reading and updating properties of agents, their assigned tasks and the
environment structure itself. Specific functions allow the planner to update the agents’ task
plans and others enable the agent implementation to query, execute, and cycle to the next
task, once the current goal has been completed. The data model allows the representation of
several separate environments in parallel, distinguished by an environment_id identifier.

4. Agent-Based Simulation

Simulations are the standard tool to evaluate the performance and to investigate
the behaviour of AGV dispatching systems. They enable the assessment of different
configurations, policies or management directives, without incurring the associated costs
for a real world implementation. In our case, the simulation will be used to assess inherent
properties of selected algorithms related to multiple environments, artificially constructed
to investigate relevant situations and to provoke interesting behaviours. The testbed we
developed for this evaluation is implemented in a modular fashion, so we can attach and
replace planning and dispatching algorithms, visualisation frontends, and, perspectively,
the simulation engine. Even the substitution of the simulation with an actual facility
is possible.

In the following Section 4.1, we first describe how the simulation is integrated with the
DT. Section 4.2 then lays out how the various elements and dynamics of the environment
are modelled in detail. Although the design of the simulator still largely resembles the state
we described in one of our earlier works [25], we here present the updated and more recent
state for completeness.

4.1. Integration with the Digital Twin

We implemented the simulation as a modular testbed environment, that would allow
us to tackle different research problems both jointly and individually. The three main
components, namely the digital twin, the simulation, and the task allocation logic, are
interfaced in a way such that we can easily swap out one for another implementation
(c.f., Figure 6). The digital twin of the environment is represented by a database, a dispatch-
ing algorithm performs the task allocation based on the state of the environment, and the
simulator evaluates the task execution. The simulation and the task allocation software are
both retrieving and updating the DT, i.e., the state of the database continuously.

Figure 6. Modular components of the system architecture. Both the multi-agent simulation and the
multi-agent planner directly interface only with the database used to track the state of the environment.

The modularity enables us to integrate different simulation backends or various task
allocation approaches easily. It will also make the transition to an actual physical production
environment straight-forward, because they share the DT as the common interface.

Our DT implementation already facilitates the necessary interfaces for the synchroni-
sation with the state updates of the respective environment. A small convenience layer was
added in between to simplify the call semantics of the raw database model API. For the
quick initialisation of the experiment runs, a script was set up to parse the desired structure
of the environment from a configuration file and initialise the simulation, as well as the DT
accordingly. The general procedure would operate as follows.
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1. Launch DT database.
2. Initialise the DT from the configuration file according to the experiment definition.
3. Initialise the simulation from the current state of the DT.
4. Run the simulation loop, which updates the DT accordingly.
5. Run the task allocation loop, which interacts with the simulation via the DT.
6. Wait until the experiment completes.

4.2. Simulation Characteristics

Applications investigating Task Allocation problems often facilitate DES-based models
(e.g., [13,49–51]). Thereby, any changes to the environment (especially vehicle movements)
occur by temporally and spatially discretised steps along the navigation graph. While this
greatly simplifies the required computations for the model updates, this abstracts away
several dynamics that we wished to not neglect perspectively. In contrast, we implemented
the simulation using an agent-based model with a microscopic approach. We found it
promising to have the system behaviour to model the actual dynamics in a real facility
more closely. Following this approach also enables us to investigate related problems too,
e.g., the decentralised navigation aspects, avoidance of collisions, and reactive approaches
to respond to congestion (c.f., De Ryck et al. [8]).

After the DT is initialised, updates to its state are computed at a fixed rate by the
simulator. The updates are then fed back to the DT. In principle, the simulation can run
faster than real time. We chose to synchronise it with the wall time for the purpose of
visualisation however.

The simulation is integrated out of two main components, the agent navigation
backend and the task handlers. Both are triggered from a main loop at the desired interval
period. During each iteration, first the updates by the navigation backend are calculated
and updated to the DT. Then, the task handlers are run for each agent. These check the
task completion status, e.g., whether the agent has arrived at the goal position, and would
terminate the task accordingly and if available, proceed with the next. The actual task
handlers are explained in more detail in the following subsections.

4.2.1. Tracking of Agents and Parts

We chose to feed the actual ground truth states of agents and components into the
DT. In practice, the facility would need to employ special mechanisms to track agents and
material, which would report their poses only with limited accuracy. However, Real-Time
Location Systems (RTLS) are readily available, and, given the highly digitised setting we
describe, we would assume that inventory will be tracked with the help of such a system.
This, can be combined with local refinement mechanisms, e.g., agents would employ a
Simultaneous Localisation and Mapping (SLAM) algorithm augmented by this global
pose estimate, such that we can, therefore, consider this problem outside of the scope of
this work.

4.2.2. Agent Navigation and Obstacle Avoidance

Agents need to navigate the environment in order to provide effective transportation
of material. Many approaches exist for the control and coordination of AMR systems.
The most distinctive characteristic is that of centralised versus decentralised coordination or
control [8]. While the central control server that coordinates the entire fleet of the facility
was the predominant form of implementation, recent works increasingly seem to embrace
the decentralised approach due to expected improvements regarding scalability, flexibility,
and robustness [8,52,53].

In our implementation, agent motion is simulated using a non-holonomic, differen-
tial drive kinematics model. In order to move towards their goals, they can adapt their
velocity. Pose updates are calculated accordingly and communicated to the centralised
environment representation.
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When an agent receives a new move request it will first look up the pose of the corre-
sponding navigation goal. Then it will find the required immediate movement direction
using the environment’s navigation graph and the static navigation obstacles defined in
the DT. The current agent pose and the goal pose are matched onto the navigation graph
and the shortest path is calculated using a graph search algorithm. For this purpose, we
use an implementation of Dijkstra’s algorithm. The agent will then use the roadmap nodes
along the path as waypoints towards the goal. If the goal pose is found in direct line of
sight, the agent will head directly towards the actual goal pose.

We integrated the collision-free agent navigation scheme Optimal Reciprocal Collision
Avoidance (ORCA) provided by the RVO2 library for collision avoidance and conflict
resolution [54]. The theoretical background is described in Snape et al. [55] and van den
Berg et al. [56]. The basic principle is the continuous adaptation of the agent’s linear and
angular velocity in order to avoid collisions with mobile and stationary obstacles along
their predicted relative trajectories. Thereby each agent slightly adjusts their own speed
and heading towards a value outside the so called Velocity Obstacles [57] the other entities
represent. Depending on the parameterisation of the time step, temporal horizons, and
safety margins, we can rely on a collision-free multi-agent navigation within the simulation.

The selected approach provides a sufficient baseline operation in configurations with
little congestion or navigation constraints. However, during the experiments it became
obvious, that these circumstances can lead to deadlocks in crowded environments. Other
approaches include priority-based schemes or swarm behaviours to mitigate this [53,58].

4.2.3. Part Dynamics

As the simulation models only the internal logistics of the facility, we needed to find a
suitable abstraction with the external interfaces for providing material and consuming the
output of the products. We defined this abstraction at the buffer storage, where parts from
the outside world are unloaded, or delivered to, and in analogy, where the manufactured
output of the plant is prepared for shipment or further processing elsewhere.

This abstraction is modelled as special locations throughout the environment, at which
material is generated and, thus, introduced into the production flow. We refer to this type
of location as a component spawn point. They can be configured such that they produce their
assigned type of material at a desired rate. Similarly, we call the special location at which
readily manufactured products are consumed component despawn point. At these locations,
items of the matching type will be collected and dematerialised at the configured rate.

The configuration allows to simulate different scenarios, which might be worth con-
sidering in specific investigations. For our analyses, we chose to configure both to produce
and collect items at a fixed rate. In order to avoid overflowing the input storage area with
superfluous parts, new material is only created, when none is nearby.

5. Experiments

In order to gain insights about how the different dispatching approaches actually
behave when employed under various conditions, we evaluated a number of artificial
experiments with different environmental properties. Most studies we found in our litera-
ture review evaluate newly proposed algorithms against a baseline approach in a specific
environment setting designed after very specific case studies. While this allows to draw
insights valid for this specific environment configuration at hand, we would like to present
a more detailed picture of the algorithms’ performance. In order to accomplish this, we
distinguish the environments according to the following characteristics.

• The makespan of the products is either dominated by the processing time versus
transport time (i.e., denoted P/T ratio [19]).

• The time spent by the vehicles is dominated by travel time versus idle waiting time
(i.e., denoted by vehicle utilisation).

• The distances between stations are homogeneous versus heterogeneous (i.e., concern-
ing the existence of isolated remote stations).
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• A high complexity of the navigation graph with walls and corridors versus uncon-
strained navigation on an empty plane.

In the following, we first describe the generation and configuration of scenarios for the
experiments in Section 5.1. Then, we describe the performance metrics according to which
the performance will be evaluated in Section 5.2. In Section 5.3, we present the results of
our experiment and conclude with a discussion in Section 5.4.

5.1. Scenario Classification and Generation

The relevant characteristics for the performance evaluation are P/T ratio, vehicle utilisa-
tion and layout homogeneity. We implemented a script that is able to generate environments
randomly according to these criteria.

5.1.1. P/T Ratio

The P/T ratio was proposed by Kim and Tanchocoj [19] to quantify the so called
criticality of the transport system for the system performance. It calculates the ratio of
average processing time per operation t̄processing to average transport time per trip t̄transport.
The load pick-up and drop-off times are added to those times, but the vehicles’ empty
travel or idle times are not. Multiple transports during the makespan of a single product are
factored into the average value individually. For a makespan incorporating n processing
steps and m transports, we thus arrive at the following formulation.

P/T ratio =
m ∑n

i=0 tprocessing,i

n ∑m
j=0 ttransport,j

(1)

In order to generate environments with a desired effective P/T ratio, we can adjust
the expected processing time for the given configuration. For their simulation studies Kim
and Tanchocoj [19], Kim et al. [59], the authors used P/T ratio values of 5 to 20. We chose
to use a value of 5 to correspond to a high P/T ratio, indicating that processing time tends
to be the bottle neck; and a value of 1 to correspond to a low P/T ratio, indicating that
transportation time tends to dominate the makespan. We chose to use lower values, as we
expect to receive more interesting results from the perspective of the transportation system
this way.

The average transportation time can be calculated from the average distance between
the buffer storage and the assembly stations, under the assumption of a constant average
velocity. Then we can calculate the average processing time accordingly, in order to arrive
at a value for the P/T ratio in the desired range.

5.1.2. Vehicle Utilisation

The vehicle utilisation can be adjusted by modifying the number of agents available to
dispatch. This criterion does display some association with the aforementioned P/T ratio,
as for the same number of vehicles, a lower P/T ratio would generally increase the vehicle
utilisation. Because idle and waiting times are not tracked in that criterion, we can adjust
the vehicle utilisation by the number of vehicles available for dispatch, without affecting
the P/T ratio.

For the purpose of our experiments we define high vehicle utilisation to correspond to
little to no vehicle idle times, while low vehicle utilisation would correspond to a larger
amount of idle time. If there are fewer agents to fulfill the same amount of tasks, the more
work would fall onto the individual, until, in our case, at some point the vehicle utilisation
would saturate at a value of one. This is where each agent will never be idle, but always
find an open task to pick up. For the purpose of this evaluation, we aimed at high vehicle
utilisations greater than 0.95, and low vehicle utilisations of smaller than 0.9. We adjusted
the numbers of agents until we found the actual vehicle utilisation observed in test runs to
correspond to our declared expectations.
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We started our search with agent numbers derived from the number of assembly
stations in the environment and the P/T ratio as below Table 2 indicates.

Table 2. Deployed numbers of vehicles per assembly station to achieve different variations in vehicle
utilisation in relation to P/T ratio for experiment configuration.

Vehicle Utilisation P/T Ratio
Low: 1 High: 5

high 1 0.2
low 2 0.4

5.1.3. Layout Homogeneity

The homogeneity of the layout corresponds to the spread of the distribution of travel
distances between nodes in the navigation graph. In a homogeneous environment all nodes
are located at similar distance to each other. Our definition of a heterogeneous environment,
in contrast, implies that some nodes are situated at a much further distance to the rest of
the graph. These nodes are outliers so to say.

In order to achieve this, we used a simple custom algorithm to distribute the stations
on a plane. The first station is placed at the origin of the environment. For the placement
of each subsequent station we determine the centre of the environment using the median
coordinates of the cluster of stations. Then a random angle α ∈ [0, 2π) is chosen at which the
station is attempted to be placed at a distance rplacement according to the following formula.

~pi+1 = ~pmedian,i + rplacement

(
cos α
sin α

)
(2)

Placement fails if this position is closer than a minimum distance to any previously
placed station. Then a small increment is added to the placement radius and the iteration is
repeated with another random angle. In case the placement succeeds, the radius is reset to
its original value. This process is repeated until the desired number of stations were placed.

The list of placed coordinates can be shuffled to avoid patterns in the relative proximity
of special stations (i.e., parking position and input/output storage). Without this step, these
stations would always be placed near each other, as they are always assigned to the first
positions in the output list. In order to evaluate this effect we added this configuration
under the name Pseudorandom to the list of layout configurations.

For the heterogeneous configuration, we used the same procedure to add a few more
stations at a relatively large radius (routlier = 10rplacement). Afterwards the same number of
stations is dropped from the previously obtained intermediate result. We chose to let only
assembly stations appear in these outlier positions. Otherwise the outcome of the results
would be dominated too much from the fact of which type of station would be placed
remotely. For the random configurations we chose to designate a number of two (out of ten)
assembly stations as outliers. Figure 7 shows examples of the random environments we
obtain this way. Notably, these environments do not contain walls, such that the vehicles
can navigate on straight lines between the stations.
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Figure 7. Example random environments.
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5.2. Performance Metrics

Beamon [60] describe a number of measures that can help to gauge the effectiveness
and the efficiency of manufacturing systems as a whole and material handling systems
in particular. For our evaluation we chose to track multiple measures to acquire detailed
insights about the utilisation of both assembly stations and the vehicle fleet, as well as
regarding the overall system performance. The selected methods are described in the
following paragraphs.

5.2.1. Throughput

We figured the most straight-forward measure to evaluate the system performance
would be the throughput rshipped in terms of the (average) number of shipped products
nshipped per time ∆t, as follows.

rshipped =
nshipped

∆t
(3)

If desired, one can derive the average flowtime from this value, i.e., the time it takes
to produce a single product. The required input data can be collected easily within our
framework and it gives a good overall impression of the aggregated system performance,
including all involved factors.

5.2.2. Vehicle Travel Efficiency

For the evaluation of the fleet efficiency we propose a measure derived from the total
vehicle travel distance. A few relevant metrics are presented in Beamon [60] already, e.g., total
amounts or ratios calculated from empty and loaded vehicle travel. We found convincing
arguments in the criticism of these measures. Therefore, a larger vehicle utilisation or
consequently larger amounts of (loaded) vehicle travel do not necessarily correspond to
better system performance. Thus, these metrics alone (utilisation and travel distance) could
hardly be considered consistent with the actual goals of a production facility.

Therefore, we propose a measure that presents a figure of the invested effort relative to
the actual requested task. Similarly to how the Value Added Efficiency [60] measures the ratio
of productive time divided by spent time, for the purpose of our evaluation, we define the
Vehicle Travel Efficiency ηtravel as the ratio of the minimum distance loads were requested to
be moved drequested divided by the total amount of loaded dloaded and empty dempty distance
travelled to satisfy the requirements.

ηtravel =
drequested

dloaded + dempty
(4)

The requested transport distance we define as the euclidean distance between origin
and destination of the move request. We calculate this statistic over the whole fleet and all
requested transports.

5.2.3. Throughput Effort

Similarly, we propose a second measure that aims to give a better picture of the
performance of the transportation system. Here, we put the effort in terms of total distance
travelled into relation to the facility’s output in terms of throughput nshipped. We define the
throughput effort TE as follows.

TE =
dloaded + dempty

nshipped
(5)
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5.3. Experimental Evaluation

The experiments are conducted according to the following procedure. We run a set of
each dispatching method for each run configuration. We have implemented the following
approaches that employ the same cost function (i.e., the distance between vehicle and
pick-up point of a move request), the same reassignment policy (distance-based commit
threshold), and the same idle vehicle positioning scheme (central parking points). For
comparison, we add a method to the evaluation that does not allow reassignment, which
corresponds to the original STTF formulation. The only difference is that we let idle vehicles
travel uncommitted to the same parking points as with the other methods.

• SMP-based dispatching with reassignment (MOD STTF) as described in Section 2.2,
• LSAP-based dispatching with reassignment as described in Section 2.3, and
• SMP-based dispatching without reassignment (STTF), by configuring an infinite com-

mit distance threshold.

The environment definitions for the run configurations are determined by the specific
layout and the combinations of P/T ratio and vehicle utilisation (high and low, as described
in Section 5.1). While the layout is fixed for the custom environments, we generate a
new environment layout for each set of method evaluations and repeat this procedure for
N = 100 runs.

5.3.1. Tracking of Performance Metrics

As suggested by Bechtsis et al. [6], Kim and Tanchocoj [19], we let the system stabilise
for an initialisation period after the start of the experiment run before we begin to track
data for the above-mentioned metrics of evaluation (warming period). When this period
ends, we initialise the starting values of the trackers and start to run the update loop. Each
run spans a duration of 15 or 30 min. We found that the custom configurations with a high
P/T ratio required more time to converge to terminal values for the performance metrics,
due to the lower volume of transports that is taking place. Therefore, these configurations
are set to run for the longer time period.

We track these statistics by querying the experiment database (i.e., the digital twin)
from a separate process in an update cycle at a fixed rate. At every iteration of this update
loop, we evaluate whether vehicles did move, assembly stations were occupied, tasks
were completed, and parts shipped. Based on these numbers, the above described metrics
are calculated.

The values are recorded as a time series that is expected to converge to some value
for each configuration. As some of the metrics tend to show spikes and fluctuations
around specific events, we calculate a mean value over the last 300 seconds to determine
the outcome value for each run. Statistical significance is analysed using Welch’s t-Test
(two-sided), with a p < 0.05.

5.3.2. Random Environments

For the evaluation, we use randomly generated environment configurations in accor-
dance with all combinations of the above described characteristics: layout homogeneity,
P/T ratio, and vehicle utilisation (c.f. Section 5.1). The run configurations and the corre-
sponding aggregated experiment results can be found in Table 3. The observations we
draw from these results are presented in the following and discussed in Section 5.4.
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Table 3. Experiment run configurations and results (mean values and standard deviation) for random layout with varying compactness, P/T ratio and vehicle
utilisation. Entries typeset in bold face are significantly better than the other methods; entries typeset in italics are significantly worse; entries marked with an
asterisk (*) are significantly better or worse than only one of the other methods (two-sided Welch’s t-Test, p < 0.05).

ID Layout P/T Ratio Vehicle
Utilisation Method Throughput Total Travelled Distance Travel

Efficiency Throughput Effort

1a Random, homogeneous Low Low STTF 11.161 ± 1.236 20761.680 ± 1047.617 0.459 ± 0.025 197.684 ± 17.493
SMP 11.158 ± 1.275 19262.971 ± 1121.363 0.486 ± 0.026 183.544 ± 16.823
LSAP 11.337 ± 1.106 19797.229 ± 1038.545 0.488 ± 0.026 185.417 ± 17.377

1b Random, homogeneous Low High STTF * 8.779 ± 0.794 13680.104 ± 305.938 0.555 ± 0.037 * 165.896 ± 18.968
SMP 8.830 ± 0.993 13533.635 ± 330.924 0.554 ± 0.044 163.985 ± 22.361
LSAP * 9.040 ± 0.826 13502.728 ± 299.939 0.576 ± 0.040 * 159.007 ± 17.855

2a Random, homogeneous High Low STTF * 4.347 ± 0.317 8588.156 ± 273.222 0.436 ± 0.023 209.104 ± 14.457
SMP * 4.219 ± 0.294 8104.583 ± 315.185 0.451 ± 0.025 203.178 ± 12.950
LSAP 4.288 ± 0.311 8211.191 ± 281.293 0.452 ± 0.022 202.741 ± 14.412

2b Random, homogeneous High High STTF 3.873 ± 0.303 6357.876 ± 117.071 0.521 ± 0.022 * 174.139 ± 15.288
SMP 3.857 ± 0.360 6175.416 ± 133.402 0.528 ± 0.031 170.228 ± 16.721
LSAP 3.907 ± 0.361 6213.036 ± 129.481 0.533 ± 0.028 * 169.051 ± 16.613

3a Random, heterogeneous Low Low STTF 8.870 ± 0.686 21012.921 ± 881.238 0.474 ± 0.020 250.750 ± 18.382
SMP 8.773 ± 0.746 20075.962 ± 1181.685 0.493 ± 0.022 242.283 ± 18.396
LSAP 8.860 ± 0.614 20326.877 ± 950.286 0.497 ± 0.020 242.665 ± 17.594

3b Random, heterogeneous Low High STTF 6.651 ± 0.500 14503.515 ± 191.597 0.543 ± 0.029 231.370 ± 20.493
SMP 7.177 ± 0.634 14210.794 ± 225.944 0.578 ± 0.036 210.648 ± 22.508
LSAP 7.188 ± 0.535 14235.488 ± 204.584 0.589 ± 0.031 210.103 ± 18.839

4a Random, heterogeneous High Low STTF * 3.156 ± 0.247 8376.131 ± 289.323 0.441 ± 0.016 281.675 ± 19.978
SMP 3.173 ± 0.229 8146.303 ± 295.392 0.457 ± 0.018 272.300 ± 18.916
LSAP * 3.233 ± 0.228 8183.529 ± 293.946 0.457 ± 0.016 268.536 ± 20.019

4b Random, heterogeneous High High STTF 2.719 ± 0.221 6566.425 ± 139.664 0.494 ± 0.019 256.344 ± 19.806
SMP 2.789 ± 0.275 6323.421 ± 201.663 0.520 ± 0.022 241.048 ± 20.601
LSAP 2.779 ± 0.252 6352.495 ± 190.592 0.517 ± 0.020 242.861 ± 20.421
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Table 3. Cont.

ID Layout P/T Ratio Vehicle
Utilisation Method Throughput Total Travelled Distance Travel Efficiency Throughput Effort

5a Pseudorandom Low Low STTF 12.879 ± 1.033 21286.354 ± 783.250 0.480 ± 0.014 174.947 ± 11.259
SMP 12.861 ± 1.011 20245.555 ± 742.402 0.499 ± 0.016 166.704 ± 11.844
LSAP 13.038 ± 1.011 20214.539 ± 728.698 0.501 ± 0.013 164.245 ± 12.528

5b Pseudorandom Low High STTF 9.740 ± 0.671 13316.138 ± 249.436 0.594 ± 0.017 145.000 ± 13.789
SMP 10.017 ± 0.694 13133.049 ± 256.683 0.611 ± 0.024 139.039 ± 13.244
LSAP 10.237 ± 0.656 13064.809 ± 243.917 0.619 ± 0.021 135.207 ± 11.617

6a Pseudorandom High Low STTF 4.739 ± 0.310 8504.851 ± 233.476 0.444 ± 0.019 189.687 ± 10.347
SMP 4.711 ± 0.301 8000.677 ± 296.529 0.466 ± 0.019 179.492 ± 12.094
LSAP 4.693 ± 0.325 7982.351 ± 249.713 0.471 ± 0.021 179.909 ± 12.027

6b Pseudorandom High High STTF 4.337 ± 0.306 6224.724 ± 106.318 0.549 ± 0.012 152.148 ± 13.376
SMP 4.429 ± 0.340 6087.419 ± 129.220 0.574 ± 0.015 145.826 ± 13.575
LSAP 4.467 ± 0.331 6117.970 ± 100.459 0.572 ± 0.013 145.256 ± 13.115
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General Observations

Looking at the differences between different run configurations we observe a strong
relationship between the utilisation of the vehicle fleet and the output performance in
terms of throughput and efficiency. A higher vehicle utilisation results in a decrease in
throughput and an increase in efficiency (higher travel efficiency, lower throughput effort).

Regarding the throughput rate, within run configurations we notice some significant
differences between the methods. The only configuration, where one method clearly
outperforms the other two is 5b, where the LSAP method scores significantly better than
both STTF and SMP. For the other configurations we see no significantly best performance.
In particular, related to a high vehicle utilisation and a low P/T ratio (3b, 5b), the STTF
method performs significantly worse than the other methods. A similar pattern can be
observed with configuration 1b, but here the difference is significant only between STTF and
LSAP. For most configurations with high vehicle utilisation and a high P/T ratio however
(2b, 4b), no clear difference could be obtained between the methods. As an exception, we
obtain a small but significant difference with configuration 6b, where STTF performs worse
than the other two. Most configurations with low vehicle utilisation show no clear outliers
in terms of throughput performance (1a, 3a, 5a, 6a). We see significant differences only
between the respective best and worst performances with configurations 2a and 4a. Here,
STTF performs significantly better than only SMP (2a), and significantly worse than only
LSAP (4a).

For all configurations, we observe that the STTF method generates significantly more
traffic in general. Consequently, STTF also scores worse with the efficiency-related perfor-
mance measures, with a lower travel efficiency and a higher throughput effort. For most
configurations, this difference is significant. The only exceptions to this are configurations
1b and 2b, where the difference is only significant between STTF and LSAP.

The performance of the LSAP method regarding the efficiency-related measures are
generally better than or equal to that of SMP. The SMP method scores best with the total
travelled distance metric, which seems to be correlated with a lower throughput rate and,
thus, does not lead to better relative efficiency scores.

We notice no clear difference to the above described observations with the pseudo-
random layout configuration (that is, the parking positions, as well as input and output
storage are systematically located near each other). Only for the configuration 5b, with low
P/T ratio and high vehicle utilisation, we observe a significantly superior performance by
the LSAP method across all metrics but the travelled distance, and a significantly inferior
performance by the STTF method for all performance metrics. Here too, in general, we
observe a clear benefit in terms of efficiency with LSAP and SMP when compared to STTF.
For the other configurations (5a, 6a, 6b), no clear difference was observed between the
former two methods.

5.3.3. Custom Environments

We compare this to a small number of handcrafted layouts (c.f., Figure 8). In contrast
to the random environments, navigation within these configurations is restricted by walls,
which consequently facilitates navigation conflicts and congestion. Additionally, these
environments are intentionally structured in specific ways to simulate certain general
characteristics.

Custom 1 In this environment the navigation graph is very broad. Distances between
the stations are relatively short and navigation is possible along many paths in
parallel. The input storages are located on the left side, while the output storage
is located on the right. In order to navigate from the output storage (common
drop-off location) to the input storage (common pick-up location), the vehicles
need to pass the assembly stations (common pick-up locations). The idle posi-
tions are located centrally between the assembly stations. From these last two
conditions, we expect transports to prioritise the transports from the assembly
stations to the output storage for high vehicle utilisations.
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Custom 2 The general structure is similar to the Custom 1 environment. Only the assembly
stations are located along two long corridors, such that traffic will concentrate
along there. The idle positions are again located between the assembly stations.
Here, we again assume that vehicles will prioritise transports originating from
the assembly stations. Here, the emphasis on navigation conflicts is increased
slightly, which might give an advantage to the LSAP approach according to the
hypothesis postulated in Section 2.3.

Custom 3 The environment is very similar to Custom 2, but here the input storage are
located between the assembly stations and the output storage. This way, we
assume that transports, especially those facilitating reassignment, will prioritise
the delivery of input parts and thus lead to a larger assembly utilisation and
throughput. Thus, we would expect a larger advantage of the reassignment-
based dispatching.
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Figure 8. Custom environments. Light blue coloured areas represent input/output storage. Greyish
areas represent assembly stations. Purple areas/lines represent walls. Thin grey dots and lines
indicate the navigation graph (nodes and edges).

The experiment variations regarding the target values for P/T ratio and vehicle utilisa-
tion correspond to those defined before (c.f., Section 5.1). The evaluated run configurations
and the corresponding results can be found in Table 4.

General Observations

As we also noticed before in Section 5.3.2, we received a strong relationship between
the utilisation of the vehicle fleet and the output performance in terms of throughput
and efficiency. Here too, other things being equal, a higher vehicle utilisation results
in a decrease in throughput and an increase in efficiency (higher travel efficiency, lower
throughput effort).

For the Custom 1 layout we notice that LSAP achieves the best performance for low
P/T ratios independent of the vehicle utilisation (7a, 7b). STTF method scores significantly
better than the others with configuration 8b, featuring high P/T ratio and high vehicle
utilisation. The SMP method scores significantly worse than the others with configurations
7a, 8a, and 8b. Regarding the total travelled distance, the SMP method scores best for
all four configurations. As before, STTF scores worst on this metric. As to the efficiency-
related scores we note that, as before, STTF achieves significantly lowest values for most
configurations (7a, 7b, 8a), the only exception being configuration 8b (high P/T ratio, high
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vehicle utilisation), where it scores best. The LSAP method scores significantly better
at both scores with configurations 7a, 7b (low P/T ratio). With configuration 8a, LSAP
outperforms SMP only at the throughput effort, but not at the travel efficiency.

The Custom 2 layout indicates the best throughput performance with the STTF method
for configurations 9a, 10a, and 10b, but worst performance for configuration 9b. The
SMP method achieves significantly lowest scores with configurations 9a, 10a (low vehicle
utilisation). LSAP scores best with configuration 9b (low P/T ratio, high vehicle utilisation).
Regarding the total travelled distance, STTF scores worst for all configurations. Here, STTF
performs best only for configuration 9a. The efficiency-related metrics do not show a clear
results here. For configurations 9a and 10a we find LSAP significantly outperforms the
other two methods, and STTF being outperformed by the other two. Configuration 10b
(high P/T ratio, high vehicle utilisation), on the other hand, shows best performance on
the side of STTF for both scores in contrast, here SMP being lowest. Additionally, for
configuration 9b (low P/T ratio, high vehicle utilisation), we observe best performance by
STTF in terms of travel efficiency (worst here: SMP), but lowest performance in terms of
throughput effort (best here: LSAP).

Regarding Custom 3 layout, STTF performs significantly worst throughput-wise at
configurations 11a and 12b, but best at configuration 12a. For the configurations 11b
and 12a, SMP achieves the lowest throughput performance, whereas it scores best at
configuration 11a. The total travelled distance demonstrates the same result as before,
with STTF scoring lowest for all configurations. Here, best performance is achieved by
LSAP for configuration 11b and SMP for configuration 12a. With the efficiency scores, we
reproduce the pattern of worst performance achieved by STTF only for configurations 11a,
12a, and 12b. Configuration 11b does not show a clearly worst performance regarding the
travel efficiency, here SMP scores worst with the throughput effort. The best efficiency
scores are achieved by SMP for configurations 11a, 12b (both only significant for travel
efficiency), and 12a (both scores). Best efficiency with configuration 11b is achieved by the
LSAP method.

The reassignment-based methods SMP and LSAP tend to outperform STTF especially
on the efficiency scores, but for some configurations we observe the opposite effect. Com-
pared against each other, we find that LSAP scores better than SMP, but this again does not
hold for all configurations. LSAP and STTF tend to outperform SMP in terms of throughput
rate for most, but not for all configurations.

5.4. Discussion

In general we demonstrated the successful application of the presented method formu-
lations for AGV dispatching to the domain of AMR-based AMHS. With the adjustment to
the triggering mechanism we were able to dispatch the vehicles independent of event-based
triggers. We demonstrated the suitability of the modular DT interface to allow for the inter-
action of the dispatching algorithms with the target environment, which was represented
by an agent-based simulation for this evaluation. We are not aware of previous studies that
presented a related similar application and investigation regarding this domain before.

The results of the experimental evaluation indicate that none of the presented methods
clearly outperforms the others independent of the environmental and operational setting.
We identified some relationships that have an influence on the observed performance
characteristics, which we will discuss below.
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Table 4. Experiment run configurations and results (mean values and standard deviation) for different custom layouts with varying P/T ratio and vehicle utilisation.
Entries typeset in bold face are significantly better than the other methods; entries typeset in italics are significantly worse (two-sided Welch’s t-Test, p < 0.05).

ID Layout P/T Ratio Vehicle Utilisation Method Throughput Total Travelled Distance Travel Efficiency Throughput Effort

7a Custom 1 Low Low STTF 7.049 ± 0.082 17033.533 ± 115.754 0.388 ± 0.003 254.615 ± 2.923
SMP 6.688 ± 0.076 16090.131 ± 133.817 0.391 ± 0.003 253.484 ± 2.716
LSAP 7.103 ± 0.072 16925.475 ± 120.085 0.393 ± 0.003 251.076 ± 2.382

7b Custom 1 Low High STTF 5.021 ± 0.069 11390.737 ± 31.318 0.412 ± 0.005 239.142 ± 3.283
SMP 5.024 ± 0.075 11280.797 ± 42.300 0.416 ± 0.004 236.694 ± 3.560
LSAP 5.116 ± 0.062 11291.923 ± 36.160 0.424 ± 0.004 232.636 ± 2.786

8a Custom 1 High Low STTF 3.168 ± 0.027 19835.327 ± 163.384 0.381 ± 0.004 255.785 ± 3.170
SMP 3.072 ± 0.031 18937.697 ± 212.304 0.390 ± 0.004 251.757 ± 3.033
LSAP 3.167 ± 0.034 19433.974 ± 148.317 0.389 ± 0.003 250.583 ± 2.835

8b Custom 1 High High STTF 2.590 ± 0.032 14697.560 ± 46.144 0.420 ± 0.003 231.784 ± 2.832
SMP 2.437 ± 0.050 14115.601 ± 222.631 0.414 ± 0.004 236.675 ± 3.370
LSAP 2.509 ± 0.046 14336.829 ± 151.047 0.418 ± 0.003 233.478 ± 3.243

9a Custom 2 Low Low STTF 5.702 ± 0.172 16413.436 ± 338.958 0.331 ± 0.006 303.418 ± 6.594
SMP 5.469 ± 0.110 15244.047 ± 252.284 0.334 ± 0.005 293.812 ± 5.588
LSAP 5.659 ± 0.120 15526.577 ± 257.915 0.341 ± 0.005 289.197 ± 4.904

9b Custom 2 Low High STTF 4.163 ± 0.102 11117.251 ± 51.001 0.371 ± 0.005 281.668 ± 6.964
SMP 4.221 ± 0.099 10939.330 ± 76.650 0.359 ± 0.005 273.352 ± 6.075
LSAP 4.309 ± 0.101 10958.066 ± 65.727 0.367 ± 0.005 268.146 ± 6.070

10a Custom 2 High Low STTF 2.704 ± 0.014 19911.928 ± 190.178 0.321 ± 0.003 300.786 ± 3.229
SMP 2.638 ± 0.036 19071.070 ± 320.373 0.328 ± 0.004 295.236 ± 3.209
LSAP 2.670 ± 0.028 19055.368 ± 254.640 0.332 ± 0.003 291.516 ± 3.233

10b Custom 2 High High STTF 2.226 ± 0.023 14510.323 ± 75.381 0.371 ± 0.003 266.231 ± 2.315
SMP 2.136 ± 0.049 14067.319 ± 239.584 0.359 ± 0.003 269.060 ± 2.759
LSAP 2.146 ± 0.045 14064.195 ± 226.746 0.362 ± 0.003 267.802 ± 2.538
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Table 4. Cont.

ID Layout P/T Ratio Vehicle Utilisation Method Throughput Total Travelled Distance Travel Efficiency Throughput Effort

11a Custom 3 Low Low STTF 6.461 ± 0.183 16507.787 ± 289.716 0.395 ± 0.007 269.322 ± 7.096
SMP 6.636 ± 0.113 16079.754 ± 298.170 0.419 ± 0.006 255.359 ± 5.107
LSAP 6.602 ± 0.112 16060.706 ± 269.011 0.414 ± 0.006 256.373 ± 5.344

11b Custom 3 Low High STTF 4.824 ± 0.106 10818.640 ± 53.430 0.480 ± 0.008 236.500 ± 5.494
SMP 4.732 ± 0.103 10793.823 ± 58.644 0.479 ± 0.007 240.519 ± 5.250
LSAP 4.848 ± 0.117 10772.672 ± 76.030 0.483 ± 0.007 234.335 ± 5.590

12a Custom 3 High Low STTF 2.597 ± 0.016 19009.812 ± 317.116 0.354 ± 0.006 299.021 ± 5.803
SMP 2.568 ± 0.024 17447.097 ± 437.971 0.396 ± 0.013 277.525 ± 6.769
LSAP 2.586 ± 0.018 18115.463 ± 505.119 0.377 ± 0.013 286.071 ± 7.972

12b Custom 3 High High STTF 2.318 ± 0.021 14141.857 ± 63.204 0.428 ± 0.003 249.208 ± 2.298
SMP 2.350 ± 0.025 13919.971 ± 95.202 0.445 ± 0.005 241.985 ± 2.516
LSAP 2.348 ± 0.025 13942.287 ± 88.966 0.442 ± 0.004 242.592 ± 2.341



Appl. Sci. 2023, 13, 6171 27 of 32

5.4.1. Efficiency-Related Performance Metrics

We find the proposed efficiency-related performance metrics Travel Efficiency and
Throughput Effort add a valuable dimension for the comparison of the methods, which
he considered absolute measures of performance and effort do not provide. Beamon [60]
already state the need for incorporating multiple measures for performance analysis and
decision-making. The previously available metrics did not capture the efficiency of an
AMHS directly. With our evaluation we could show that the proposed measures provide a
suitable means to assess this relationship.

5.4.2. Evaluation of Vehicle Reassignment

For the random layouts, most configurations do not indicate significant differences in
terms of throughput performance between the reassignment-based methods (keys SMP
and LSAP) and the method, which does not facilitate reassignment (STTF). We observe
some exceptions to this, where one or both of the reassignment-based methods would
outperform the STTF method without, which seems to be linked to high vehicle utilisations.
This matches our assumption that with increased fleet utilisation any increase in efficiency
becomes relevant to maximise the absolute system performance. Correspondingly, we
did measure a clear tendency that the reassignment mechanism would benefit the overall
efficiency of the transportation system. Thus, the associated scores were reliably better with
reassignment (SMP and LSAP) than they were without (STTF).

As soon as the vehicle utilisation is high enough that not every trip starts and ends in
the parking position, and the volume of transportation is large and spatially interleaved
enough, we expect to see a benefit to reassignment. While we originally expected this
benefit to also manifest in the throughput rate, we can explain this by the structure of the
problem. The previous evaluations in the literature mainly focused on stations with infinite
input/output queues, evaluating performance measures such as mean load waiting time
(i.e., the average time it takes to pick something back up), often restricting navigation to a
graph (or even one or two loops only) that can be traversed unidirectionally (e.g., Bozer
and Yen [20]). Under these conditions, the adoption of a heuristic or cost function based on
the shortest travel time to pick-up for dispatching seems sensible. However, both metrics
(mean load waiting time and shortest travel time first) do not reflect the actual throughput
performance especially considering multi-step assembly processes, and, as such, cannot
be expected to result in increased throughput performance either. We were able to skew
the implicit prioritisation characteristics implicitly by layout design (c.f. pseudorandom
random layout), i.e., by co-locating the vehicle parking positions and the input/output
storage. A better approach would probably involve multi-attribute cost functions, which is
in line with previous research.

In addition, we designed a number of specific fixed custom layouts according to
certain considerations, in an attempt to reflect actual conditions in realistic environments
a bit better. Although the results we obtained with these custom layouts indicated the
same tendencies, they were not as clear as we expected. Here, we observed statistical
differences in throughput, but we could not make out a clear pattern as to why these would
occur. The results of several configurations with the SMP method display both lowest
throughput performance and lowest travelled distance. This seems to suggest that the result
for the lower throughput performance is not inefficient use of the vehicle fleet, but rather
ineffective fleet use. Additionally, with several configurations of the custom layouts the STTF
method without reassignment would outperform the others, as well at the throughput but
occasionally also at the efficiency scores. We suspect confounding factors play into these
effects, e.g., the implicit task prioritisation effect described above, or issues with oscillations
of (re-)assignments that are especially prevalent with the more complex custom navigation
graphs. Interestingly this pattern does not manifest with the random environments, so we
expect this effect to be highly specific to the specific layout configurations.

In some cases, we noticed oscillations in the assignments. This issue manifested
especially, when we first used the straight-line distance for the dispatching decision, but the
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vehicles would need to follow the navigation graph instead, and thus multiple vehicles
at the parking position would constantly swap assignment. With the calculation of the
distance along the navigation graph, this problem occurred much less frequently. However,
in hindsight, the integration of an additional (small) cost term to account for the cost of
switching the assignment might be sensible.

In general, occasionally vehicles would need to travel detours when their assignment
was changed en-route. This can look especially dramatic, when vehicles almost reach
half-way to their destination and are then called back into the opposite direction. Probably
this effect would not be too obvious in environments with a very restricted navigation
graph, e.g., with a loop layout. This certainly counteracts potentially higher efficiency
gains, but, as the data indicates, is still superior versus keeping the original assignments.
For almost all configurations, vehicle reassignment reduces the total travelled distance
significantly. Instead, this signifies the importance of incorporating predictive capabilities
in the dispatching decisions, i.e., by considering future vehicle availability and future task
insertion predictively. For this case, we assume that later reassignment would very rarely
be required in the first place.

5.4.3. Comparison between LSAP- and SMP-Based Dispatching with Reassignment

We could not identify a strong difference in performance between the two reassignment-
based approaches LSAP and SMP in general. We noticed differences only for some of the
random and custom environment layout configurations, that indicate a tendency that LSAP
tends to outperform SMP for some configurations. However, the effect size is too small
or the causing conditions too specific to stand out more clearly. To our knowledge these
methods were previously not compared directly to each other.

A related investigation by Kim et al. [23] indicates the superiority of the LSAP-based
approach, which might be due to the navigation constraints that stem from the OHT-based
AMHS their work is focused on. That is, vehicles are bound to single-lane unidirectional
traffic along the flow path and are unable to overtake others during pick-up and put-down
operations. Constraints that would resemble or even amplify the negative impact of the
navigation conflicts are described in Section 2.3. However, they do not compare their
approach to MOD STTF directly, and the difference they report must at least partially
be attributed also to the different approaches regarding vehicle pool and reassignment
policy they chose to implement for their first reassignment-based method [22]. As these
navigation constraints do not affect AMR-based AMHS in the same way, it seems safe to
assume that the impact of this effect would be much smaller for our application, which is
in line with our observations.

5.4.4. Layout-Specific Implicit Task Prioritisation

It seems that, by the single-attribute STTF dispatching rule, an implicit prioritisation
of different types of jobs is imposed by the structural layout of the environment. By
the proximity of certain pick-up locations to common drop-off locations, vehicles tend
to prioritise the jobs located there, over those located at a further distance. Then, when
vehicles need to pass the input storage frequently after delivering a part, they tend to
implicitly prioritise the input part delivery over the output part removal. When they
instead need to pass many assembly stations on their way to the input storage, they will
tend to prioritise removal of output parts over the input part delivery, which may thus
affect the assembly utilisation negatively.

6. Conclusions

We presented formulations and experimental evaluations of three different approaches
to the vehicle dispatching problem for a fleet of autonomous mobile robots, based on the
Stable Marriage Problem (SMP) and the Linear Sum Assignment Problem (LSAP). These
formulations make the approaches particularly well suited for a synchronous computation
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of dispatching decisions for the whole fleet instead of cascading asynchronous dispatching
decisions for each individual vehicle.

We compare the relative performance of the methods in a broad range of environment
configurations, covering differences in terms of floorplan or factory layout, transportation
volume (P/T ratio), and capacity of the material handling system (vehicle utilisation). The
evaluation focuses specifically on Automated Material Handling Systems (AMHS) based
on Autonomous Mobile Robots (AMR), contrasting systems that are highly-constrained
by unidirectional guide/flow paths which are much more commonly investigated. For
this, we use our own testbed simulation, which was designed and implemented based
on an agent-based model (ABM) around a digital twin representation as a backend. The
digital twin bridges the fleet management with the execution layer of the individual agents.
Overall, the methods were adapted and applied to the AMR domain successfully. From our
experimental evaluation, we conclude that the approach is suitable for many real-world
applications. For our experimental evaluation, we tracked the absolute performance
measures throughput rate and total travelled distance. In addition, we proposed two metrics
related to the efficiency of the transportation system, Travel Efficiency, which puts total
travelled distance in relation to the requested transport distance, and Throughput Effort
which represents the average travel distance per throughput unit.

Generally, the results are quite similar for a broad range of environment configurations.
We found that consistently, for each method individually, a lower vehicle utilisation results
in a larger throughput rate. That is, throughput can be significantly improved by not
operating the vehicle fleet near full capacity or maximum utilisation. This comes at the
cost of some decline in efficiency however, which we found to increase with higher vehicle
utilisation. We showed that the methods facilitating the reassignment window can indeed
improve the efficiency of the transport system, but not so much the actual throughput.
Instead, while we found that for most settings the method without reassignment would
generally perform worse in terms of total travelled distance, we noticed that often it would
also score better at the throughput rate. Contrary to our initial assumption we observed that
for most settings, there is no significant difference between the LSAP and SMP formulation
with reassignment.

In particular, the random environments show a clear tendency towards the above-
mentioned observations. We identified some peculiarities with the custom layouts, where
we were able to reproduce issues probably related to the employed dispatching rule
(minimum distance to the pick-up location). While this rule optimises for the average
load waiting time, it does not necessarily lead to a better system performance. Instead, we
found that the structural layout of the environment can dictate implicit job prioritisation,
which can be amplified by reassignment. That is, when the input storages are located in
the vicinity of common drop-off locations (e.g., the output storage), the delivery of input
parts would be prioritised. In contrast, when the vehicles would need to travel along the
assembly stations on their way to the input storage, they would implicitly prioritise the
delivery of output products. The method without reassignment would be less affected,
as the time window for this effect to occur would be much smaller.

All in all, we identify several potential angles of approach for further improvements.
We found the dispatching heuristic needs to reflect the system performance accurately,
which is in line with common criticism of single-attribute dispatching heuristics. Regarding
a practical implementation with AMR, this heuristic should take into account costs that stem
from kinematic constraints, e.g., effort required for vehicle heading change. We are not sure
if all performance-related considerations can be factored into a single cost value though, or if
one should envision, e.g., a multi-stage dispatching architecture for differently prioritised
jobs. In addition to the consistency of the cost function, another important consideration
is the dispatching latency. In particular, when the margin around the decision boundary
between assignments is small, real-time constraints become relevant, to prevent negative
impact by decisions based on an outdated state of the environment. From following
the simulation execution, we noticed potential improvements to the system efficiency by



Appl. Sci. 2023, 13, 6171 30 of 32

the introduction of predictive capabilities, i.e., regarding future vehicle availability and
demand forecast.

Overall, the problem of agent dispatching is a very important topic, relevant to a
wide array of applications. This goes far beyond material handling systems or factory
intralogistics alone. This can cover taxi dispatching, on-demand mobility, delivery drones,
customer service, the coordination of first responders in search and rescue applications or
even sports team games. Thus, we are eager to integrate our approach via the modular
digital twin backend with an actual application scenario.
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