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Abstract—Autonomous underwater docking is a necessary
requirement for achieving long-term term residency for Au-
tonomous Underwater Vehicles (AUVs). In this work, we propose
a docking method that is capable of achieving robust docking by
proposing a state machine and extending our localization frame-
work with visual features from Apriltag marker measurements
and USBL 2D position measurements. In total we executed 201
docking sequences of which 194 were succesful, thus yielding a
total success rate of 96.5%. To further test the robustness of the
proposed method, multiple experiments were conducted where
feedback from visual markers was actively denied during the
approach of the vehicle to its designated docking station. Our
results show that the proposed method was able to complete 73
successful docking maneuvers out of 76 attempts (96%) without
any visual aiding.

Index Terms—AUV, autonomous docking, under-ice explo-
ration, localization

I. INTRODUCTION

Autonomous under-ice exploration has been gaining traction
throughout the last 2 decades, with a particular interest into
the search of life under the surface of icy moons [1], [2].
When using Autonomous Underwater Vehicles (AUVs) in
such scenarios, it is crucial to make sure that the AUV is able
to return to its home-base, usually a docking station [3]. This is
especially a challenge as the docking station is the only place
for the AUV to be retrieved again due to the impossibility to
simply surface. When considering long-term operations, the
AUV is also supposed to recharge and upload collected data
at the docking station.

This work describes our implementation and correspond-
ing experiments towards robustifying autonomous underwater
docking as crucial part of long-term under-ice exploration.

For this we extend our existing localization framework [4]
by integrating delayed Ultra Short Baseline (USBL) position
measurements for homing and visual feature measurements for
near-range localization in addition to the already used Inertial
Measurement Unit (IMU), Doppler Velocity Log (DVL), ac-
tuator based forces and torques and pressure sensor measure-
ment integration. In contrast to pure visual servoing docking
methods, our approach leverages all sensor measurements to
improve the AUVs global state estimation and then allows to

This work was funded by the Federal Ministry for Economic Affairs and
Climate Action (BMWK), under the project the EurEx-LUNa (grant no.
50NA2002).

Fig. 1. Exploration AUV Deepleng [5] after successful docking.

either use the a priori knowledge on the pose of the docking
station or the relative docking station pose estimation for
finishing the docking process.

Further, we introduce an easily extendable docking algo-
rithm which allows usage of additional perception measures
for confirmation of successful docking. We propose a state
machine implementation (Fig. 4) that covers the complete
progress of homing, approaching and finishing docking. The
implementation aims to be easily extendable for future robust-
ness check extensions.

To validate our results, we present a series of real-world
experiments in our test basin. For this we used our AUV
Deepleng [5] (Fig. 1) and a prototype docking station (Fig.
6) which is equipped with a ring of six Apriltag [6] markers
for mid-range (5 − 10 m) localization and a smaller marker
in the center of the docking cone for near-range (< 5 m)
localization and docking progress validation. For long-range
positioning an Evologics R 18/34 USBL Modem was used.

A. Related Work

Several works have attempted autonomous docking for un-
derwater vehicles using various designs and techniques in the
past years. A docking system that relies on USBL aiding was
developed in [7]. The AUV was equipped with a reverse USBL
in its nose allowing bearing and range measurement with
respect to its beacon that is placed at a fixed location in the area



of survey. The docking station is conically shaped with 2 m
entrance diameter, compared to a 54 cm diameter of the AUV.
A docking method for a hovering type AUV was developed
in a previous work [8], which relied on visual aiding from a
number markers mounted onto the docking station. A docking
method based on acoustic and visual positioning for a hovering
type AUV was developed in [9]. This system is comprised of
an approach mode relying on acoustic position, ground speed,
attitude and depth. As the AUV is in visual range to the station,
the docking is switched to visual aiding using LED markers. In
[10], two complementary methods were developed to achieve
docking, where the first consists of a range-only localization
providing feedback for the AUV approach. The second method
is based on active visual markers providing high accuracy
measurements in close range. A stereo-vision based docking
method with active markers was developed in [11]. To test
the robustness of this method, a test was conducted in a pool
while simulating a switch from day to night. Further readings
on AUV docking can be found in [12]–[15].

II. LOCALIZATION

For the localization of the AUV an Unscented Kalman Filter
(UKF) based Inertial Navigation System (INS) was utilized
[4]. To improve the docking robustness and reliability, the filter
was extended by integrating delayed USBL measurements as
well as visual feature measurements. The USBL position mea-
surements ensure successful homing of the vehicle after a long
mission duration, that typically suffers from a growing drift of
the position estimation during the dead reckoning navigation.
USBL measurements need special treatment because they will
arrive delayed as they are acoustic measurements that depend
on the velocity of sound in the water medium. In distances of
multiple kilometers between modem and AUV, this can lead
to delays of multiple seconds and thus differences of multiple
meters between measured position and actual position.

To further robustify the docking process, especially in
terms of the alignment to the docking cone, artificial Apriltag
markers are used. In particular their corner features are used
as measurements to additionally aid the pose estimation in
the proximity of the docking cone. We extended the UKF
filter based INS described in [4] by a measurement model for
marker based visual features and by the integration of delayed
USBL measurements.

A. Visual Feature and Apriltag Marker Integration

In order to aid the pose estimation using the corner features
of an Apriltag, the marker poses in the navigation frame
have to be known. For this, their absolute poses are initially
determined using a calibration process. Since each marker pose
will be associated with an uncertainty after the calibration
process we temporally augment the state of the filter by the
calibrated marker pose in the navigation frame, allowing to
reflect its pose and respective uncertainty in the measurement
update for each corner feature.

The filter state is augmented by pn
m ∈ R3 and ϕn

m ∈ SO(3),
the position and orientation of an Apriltag marker in the nav-

igation frame. The augmentation is removed and the original
size of the filter state is restored after the integration of the
corner features for this marker. As described in [16] the filter
operates on a locally mapped neighborhood of the manifold
SO(3) in R3 and the manifold S2 in R2.

The measurement model for the marker based corner fea-
tures is defined as:
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where pm
i is the position of the marker corner point with

index i in the marker frame, Cn
m,t is the coordinate transfor-

mation from the marker to the navigation frame (given by the
augmented filter state), Cb

n,t is the coordinate transformation
from the navigation to the body frame at time t and Cc

b is the
static coordinate transformation from the body to the camera
frame. νm ∼ N (0, Σm) is a zero-mean normal distributed
random variable, where Σm is the uncertainty of the feature
measurement. ẑm(t) ∈ S2, the surface of the unit sphere. The
⊞ operator in equation (1) is a manifold based addition, as
defined in [16].

Each corner point of the Apriltag marker is integrated using
the same measurement model, while the marker corner point
pm
i is selected depending on the corner index i of the feature.

The corner points are defined by the type and size of the
utilized marker. In case of the Apriltag marker, 4 corner points
are integrated using the measurement model in equation (1).
The corner feature measurements itself are undistorted and
normalized from the image domain and then also represented
in S2.

B. USBL Measurement Integration

The second extension to our localization stack was the
integration of USBL measurements. As measurements we use
2-dimensional position measurements. USBL measurements
have to be treated specially because it uses acoustic signals
for positioning, meaning a delay of the measurement on signal
arrival at the vehicle. For integrating them into our UKF we
chose a similar approach to the proposed method solution
E from Mandt et al. [17]. During runtime, we buffer all
estimated states until a configured duration in the past. This
buffer duration can be derived from the maximum range of
the USBL and speed of sound. On USBL signal arrival, the
measurement timestamp is matched to a past state of the UKF.
Then the positional difference between the delayed state and
the current state is added to the measurement to transform it
into a real-time measurement:

ep(t, t− k) = p(t)− p(t− k)
zm(t) = zm(t− k) + ep

(2)

In this case ep denotes the positional error of the delayed state
and current state position p(t − k), p(t) ∈ R2 at timestamp
t − k, with k being the delay between the current time and



Fig. 2. Simple representation of the relevant software components within the
software architecture for the docking algorithm.

the measurement time. The artificial real-time measurement
zm(t) is then calculated by simply adding this positional error
ep to the delayed measurement zm(t − k). This can be done
under the assumption that the error of the pose estimation is
not growing substantially in the time between the two states
[17]. This assumption is true in the case of the AUV Deepleng,
as it is using high-quality dead reckoning sensors. Then the
transformed USBL measurement is simply integrated as a 2D
measurement into the UKF. The measurement model ẑm(t) is
the current 2D position estimate p(t):

ẑm(t) = p(t) (3)

III. DOCKING ALGORITHM

To complement the abilities of the AUV to precisely localize
itself and return back safely into the docking station, a docking
algorithm was implemented. It is used within a Behaviortree-
based [18] mission execution framework which starts the
docking process as well as handling potential error states.

It is crucial for the docking algorithm to be able to handle
potential failure cases that might occur during the docking
process and take into account additional observation measures
to the reliance to the localization component. With this it is
able to detect if it misses the docking cone or gets stuck during
the approach.

In figure 2, a simple representation of our AUV software
architecture and its relevant components for the docking algo-
rithm are visualized. The localization component was already
introduced in the previous section. The details of the docking
algorithm, as well as the used guidance and control component
are introduced next.

A. Guidance and Control

The guidance system is comprised of a simple point-to-point
method based on line-of-sight. Each waypoint command is a
6D pose (xd, yd, zd, ϕd, θd, ψd) that is given as input to the
controller, where xd, yd and zd represent the desired position,
and ϕd, θd and ψd the corresponding Euler angle orientation.
Given the current pose and velocity of the AUV, a control
method based on a Proportional-Integral-Derivative (PID) with
feedback linearization is used to control the vehicle to the

desired position following a line-of-sight guidance scheme as
in [19].

B. Docking Algorithm State Machine

The docking algorithm is implemented as a state machine
as shown in figure 4. For better reproducibility the algorithm
is also summarized in algorithm 1. It consists of 5 states which
can be grouped into:

1) Preparation Stage
• Wait for Docking Command
• Starting Docking

2) Docking Stage
• Docking in Progress
• Finishing Docking
• Docking Completed

The algorithm differentiates between the Docking in
Progress and Finishing Docking states, as this allows to alter
corresponding docking condition checks and behavior of the
vehicle during the approach. In detail this means, that if the
vehicle is already inside of the docking cone but not docked
yet (as shown in figure 1), only minimal visual monitoring is
needed and the vehicle can simply thrust forwards until it is
docked. Additionally there is a Docking Error State which as
of now is a general state that the state machine transitions
to on any error occurring during the docking process. In
the current iteration of the algorithm there is no difference
between different error states.

In the preparation stage and after receiving the docking
command, the algorithm initializes necessary parameters. This
includes reading of the docking station pose in the local
navigation frame as well as parameters for different checks
during the docking process. Pose error threshold parameters
are used to determine when a waypoint in the trajectory
is reached as well as additional parameters for when the
vehicle considers itself to transition to the Finishing Docking
and Docking Completed states. Additionally error handling
and detection parameters are defined and configured such
as detection of the AUV getting stuck in the docking cone.
After configuration, the docking trajectory is planned. In the
current iteration of the algorithm a simple docking trajectory
is planned. For this the vehicle first aligns its orientation,
followed by aligning its depth, as well as its horizontal position
(y-axis) relative to the docking cone. After alignment the
vehicle will move forwards in a previously configured step
size, e.g. 0.3m. Then, the state machine will transition to the
Docking in Progress state.

During docking, the following sequence is executed:
1) Check, if vehicle is inside of the cone
2) Calculate and check the docking conditions score
3) Check, if current trajectory waypoint was reached (and

proceed to next waypoint)
4) Output current waypoint pose command to the controller
In the first step, the algorithm checks if the vehicle is already

inside of the cone. In the current iteration of the algorithm
this means that the current distance to the docking goal pose



Algorithm 1 Docking Algorithm
Require: Start Docking Command

state ← Start Docking
Initialize Parameters
Plan Docking Trajectory
state ← Docking in Progress
while state == Docking in Progress do

Read newest pose sample
if Docking Conditions score < threshold then

state ← Docking Error State
return

end if
if nose inside of cone then

state ← Finishing Docking
end if
if current waypoint reached then

Proceed to next waypoint in trajectory
end if
Write pose command to guidance and control compo-

nent
end while
while state == Finishing Docking do

Read newest pose sample
if Finishing Docking Conditions score < threshold then

state ← Docking Error State
return

end if
if Docking Completed then

state ← Docking Completed
end if
if current waypoint reached then

Proceed to next waypoint in trajectory
end if

Write pose command to guidance and control compo-
nent
end while

is checked. As the dimensions as well as the absolute pose
of the docking station is known, the checking of the distance
proofed to be a well-working condition under the assumption
that the vehicle localization is accurate enough and the dis-
tance parameters are configured properly under consideration
of potential error margins. If this check succeeds, the state
machine transitions to the Finishing Docking state.

After that, the algorithm calculates and checks the docking
condition score by summing up the retrieved scores of the
corresponding checker components. The implemented docking
condition score system is one of the key features of this im-
plementation and is explained in more detail in the following
subsection. In the current implementation only two docking
conditions are used. First it is checked if the apriltag marker
that is placed in the center of the docking cone can be seen
by the front camera of the vehicle. The docking condition

Fig. 3. 3D representation of the docking cone.

score is 1.0, if the vehicle sees the marker in the currently
available image frame. If the marker can not be seen, the
score degrades by a pre-configured value with each image
frame that does not include the apriltag marker. As second
condition it is checked whether the vehicle is within a defined
glideslope. The glideslope is a pre-configured cone-shaped
virtual body as shown in figure 3, which is measured by
knowing the dimensions and angles of the docking cone. The
docking condition score is 1.0 (and thus holds) if the nose of
the vehicle is inside of this virtual body. If the sum of these
scores is below the configured docking threshold, the docking
process is aborted and the state machine transitions to the
Docking Error State. In the last two steps the algorithm checks
whether the current waypoint of the trajectory was reached and
outputs the current pose command to the controller.

The Finishing Docking state is structured in a very similar
way to its previous state. The core differences are that it
allows to utilize different docking condition states and it
checks whether docking is completed. In the currently used
implementation only the apriltag marker check condition is
used. The docking process is considered complete (and thus
a transition to the Docking Completed state) if the vehicle is
within a configured distance threshold to the goal pose and
the vehicle is not moving anymore.

C. Docking Condition Score Feature

The key feature of the proposed docking algorithm is the
usage of a score-based docking condition system. In detail
this means, that docking conditions checks that are used
for ensuring success of the docking process are modeled as
probability-based components. This means that each docking
condition, e.g. the visibility of the docking marker in the
center of the docking station, outputs a so-called score value
in range [0, 1]. The reason for this is the possibility to not only
support boolean-typed docking conditions (which translate to
scores of 0.0 and 1.0 respectively) but also probability-based
docking conditions such as outputs of classification neural
networks. The docking scores can then be used by the docking
algorithm to determine either a total score (by summing up)
or a docking probability (normalization of the total score).
Whether the vehicle should proceed docking or abort can then
be determined by either tuning and setting a configuration



Fig. 4. State Machine representation of the proposed docking algorithm
implementation.

TABLE I
COMPARISON BETWEEN LOCALIZATION SOLUTIONS SHOWING THE MEAN

ERROR, STANDARD DEVIATION AND MAX ERROR

Version Mean Error Standard
Deviation

Max Error

Dead Reckoning 5.2759 4.6931 16.04568
Dead Reckoning
+ Markers

3.1603 2.1335 8.7491

Dead Reckoning
+ USBL

0.6487 0.9040 5.6105

Full Localization 0.6760 0.9180 5.8587

parameter or also give potential to apply a behavior learning
based method.

In context of the docking algorithm these docking condi-
tions are handled as dynamic inputs and can be differentiated
in docking and finishing docking conditions. In the current
iteration of implementation the scores are simply summed up.
Therefore it is necessary to know the maximum possible score
to configure a meaningful threshold. If no threshold was set,
it is assumed that all conditions must have the full score (1.0)
to continue docking.

IV. LOCALIZATION EVALUATION

For evaluation of the newly implemented measurement
integration functionalities an under-ice dataset [20] was used.
The dataset [21] was recorded on a recent field trip with the
AUV Deepleng to Abisko, Sweden. To show the improvements
of state estimation accuracy we compare the pure dead-
reckoning mode consisting of IMU, DVL and pressure sensor
measurements with integration of only markers and USBL
respectively and the full localization integrating both marker
measurements and USBL 2D position measurements. For eval-
uating the position performance of the localization component,
we measure mean error, standard deviation and max error
compared to the USBL measurements as only pseudo-ground-
truth available. The positional errors are given in meters. The
results are presented in table I. The corresponding visualization
is presented in figure 5.

Fig. 5. Comparison of different versions of the pose estimation on Deepleng
Abisko Dataset. [20], [21]

As both the values in table I and the visualization in figure
5 show, both versions with integrated USBL outperform the
other two versions heavily across all metrics. The version with
only the USBL is even slightly better than the one with the
marker integration. These results were expected, especially
if the same USBL measurements, that are also integrated
into the UKF are used as pseudo-ground-truth measurements
to evaluate their performance. The difference between the
USBL only and the Full Localization versions are observed
because of measurement errors in the absolute poses and
transformations of the apriltag markers to the USBL base
station.

Although it was not possible to evaluate the orientation error
of the newly implemented measurement functions with the
dataset. Though preliminary results from tests in our basin
suggest improvements at least for rather short-term missions.
Its impact in long-term missions remain to be evaluated in
future work. With the availability and visibility of Apriltag
markers after homing, it is even possible to re-initialize the
pose estimation to further improve docking success probabil-
ity.

V. DOCKING EXPERIMENTS AND EVALUATION

To evaluate the performance and robustness specifically,
a number of experiments were conducted. The goal of the
experiments were to show the robustness of the algorithm
and implemented software architecture in a controlled envi-
ronment. For this a multitude of docking trials with traveling
to different waypoints between the individual docking attempts
were executed. Following the experiment setup and configu-
rations are described in more detail as well as the different
experiments and their outcome.

A. Experiment Setup

The conducted docking experiments focus on evaluating
the robustness of the proposed docking algorithm. For this



Fig. 6. Docking station mounted in our test basin.

multiple series of waypoint and docking actions were exe-
cuted. One series consists of multiple sequences in which
the vehicle would traverse to a pre-defined waypoint in our
basin and then return to the docking station and dock. These
sequences are repeated between 2-10 times per series and there
were 10 sequences per series, with 5 different waypoints and
2 different target depths. These waypoints were chosen to
simulate different approaching angles to the docking station
and are shown in figure 7. Additionally there were two types
of experiments, one using marker detection integration into the
pose estimation as well as for visual docking assurance and the
other one was complete artificial marker occlusion meaning
that the pose estimator was using only IMU, DVL and pressure
samples for dead reckoning and the docking algorithm was
blindly docking.

The docking station is mounted at the edge of our test basin
as shown in figure 6. We opted to not use USBL position
samples for localization in these experiments due to the lack
of a reliable outlier detection for our USBL samples.

B. Docking without Marker Occlusions

In the first series of experiments the docking algorithm
was evaluated with integration of marker detection into the
localization component and the docking algorithm. Across all
of the (logged) experiments a total of 125 docking sequences
were executed, 121 of them successful, yielding a success
rate of 96.8%. In figure 7 we show such a series of docking
sequences, consisting of 2x5 waypoints and a total of 20
docking sequences.

Two of the 4 unsuccessful attempts were due to unrecover-
able (and unfortunately not retracable) execution errors of the
used middleware framework Robot Construction Kit (ROCK)
[22]. One failed docking attempt was due to the vehicle getting
stuck in the arms of the docking cone and not detecting it
properly due to misconfigured parameters concerning the stuck
detection. And the last failed attempt was due to a DVL outlier
during returnal from a waypoint to the docking station without
any apriltag markers in sight. Thus the localization component
was not able to recover this jump of the position estimation.
As this error occurred during one of the very first series of

Fig. 7. Standard 2x10 Waypoint docking experiment series without marker
occlusion

experiments, this error was resolved by adding a simple DVL
measurement outlier rejection which rejects any measurement
that would mean a physically impossible increase of the
vehicle velocity using information on the hydrodynamic model
of the AUV.

Besides of the logged experiments, many more success-
ful docking sequences were executed, possibly pushing the
success rate even higher than the logged 96.8%. With fixing
of the two docking and localization software related errors,
we showed that the proposed docking framework is highly
robust on availability of apriltag marker detections and under
consideration of different failure cases.

C. Docking with Marker Occlusions

To further show the robustness and reliability of the pro-
posed docking algorithm an artificial marker occlusion com-
ponent was added to the experiments. In detail this means, that
all marker detections are hold back and neither integrated into
the localization component nor used for visual confirmation for
the docking algorithm. For this, the docking condition score
parameters had to be adapted to solely rely on the glideslope
score. The goal of these experiments were to evaluate the
behavior of the docking algorithm even under increasing
positional and rotational drift of the pose estimation. One
series was executed until the occurrence of an error which
needed intervention of an operator.

In total, 3 series of experiments with artificial marker
occlusion were executed during the evaluation process. Again
all series contained the 10 different waypoints, with each
being traversed up to 10 times. In the first series, the vehicle
was able to dock successfully for 25 consecutive times. At
the 26th attempt the vehicle got stuck in the docking cone,



was not able to detect this error and therefore the series
had to be aborted. In the second series the vehicle was able
to successfully dock for 14 consecutive times. In the last
attempt the main thruster threw an unrecoverable exception
(unrecoverable without completely restarting the system) thus
the experiment had to be aborted. In the last series the vehicle
was able to dock for 34 consecutive times, failing at the 35th
attempt. The reason for this was, again, a poorly configured
parameter for the stuck detection as well as a drift in depth
estimation due to changes in the atmospheric pressure. In total
this yields 73 successful attempts out of 76 total attempts,
meaning a success rate of approximately 96%.

VI. DISCUSSION

In this paper we proposed an extension to our localiza-
tion framework by integrating visual features from apriltag
marker measurements and USBL 2D position measurements.
Our results showed clearly their influence on the localization
performance and improved accuracy by reducing the mean
error from 5.2759m to 0.65m and max error from 16m to
5.6m compared to only using the dead reckoning approach.
During the docking experiments in our basin, only the marker
integration was used, performing really well and not causing
any unsuccessful docking attempts. As of now, we still have to
evaluate the performance of the localization using the USBL
in real-life experiments, especially the interaction between lo-
calization and control. While replaying the collected dataset, it
was observed that the pose estimates inhibited a jittering effect
on retrieval of USBL data, jumping by multiple centimeters,
which could lead to unstable behavior of the vehicle during
traversal. Additionally it remains to be tested how the usage of
the markers influences the orientation estimation during long-
term missions as there is no ground truth data available for
orientation within the dataset. Though first tests in our basin
seem promising in that regard.

In the conducted experiments, we showed that the proposed
docking algorithm is highly robust in experiments in our basin.
Even on occlusion of markers and on slight positional and
orientation drift, the docking algorithm is still able to dock in
most cases. Most failures were due to poorly tuned configu-
ration parameters or unpredicted system errors independent
from the docking algorithm or localization itself. Still the
docking algorithm remains to be tested after traversal of longer
range trajectories which can lead to additional drift than easily
doable during the experiments within the scope of this paper.

VII. OUTLOOK

In the next steps, the proposed methods and implemen-
tations have to be tested in real world long-term missions.
For this, a number of experiments are planned in a nearby
lake of Bremen as well as another field trip to Abisko to
test the AUV and the implemented methods in the under-ice
scenario. Further we want to investigate whether the correction
of the orientation estimate on returnal to the docking station
is accurate enough for docking the AUV after a long-term

mission or if the pose estimator has to be re-initialized after
returning to the station and visibility of the visual markers.

Additionally, using apriltag markers for visual confirmations
works perfectly in clear and perfect conditions under water,
though is highly unreliable in darker or turbid water. For this,
deep-learning based approaches could help detect the complete
docking station as it is a static and well-known object which
is more easily observable than potentially small markers that
are attached to the docking station.
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