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Abstract— Millions of metric tons of plastic waste enter the 

ocean every year, posing a stress to the marine environment. 

Out of the rivers that are assessed to be responsible for 80% of 

the riverine plastic emissions, more than hundred are located in 

Indonesia. Indonesia is estimated to be the fifth most relevant 

riverine plastic waste source, indicating the importance of the 

country as a research area. Within this research, an open source 

deep learning based plastic waste assessment system was further 

improved, and applied to the Indonesian rivers Citarum, 

Cisadane and Tukad Saba. The systems key improvements were 

(i) training of the neural networks with much larger and more 

diverse plastic waste data sets, (ii) an adjusted classification 

system to make the waste assessment results more easily 

comparable to other waste monitoring methodologies, and (iii) 

waste assessment results were georeferenced for facilitating 

comparisons with other plastic litter monitoring methodologies 

and complementing net trawl surveys, field campaigns and 

clean-up activities. The improved deep learning based litter 

detection system had an overall accuracy of 83% for detecting 

litter in aquatic environments. The key findings of the research 

show that the system can be used for assessing waste type 

compositions, potentially identifying waste sources or plastic 

litter accumulation zones and empowering stakeholders with 

actionable information on a local and regional scale. 

Keywords— Artificial Intelligence, Plastic Waste Monitoring, 

Convolutional Neural Network, Drone Survey, Indonesia 

I. INTRODUCTION  

The annual production of plastics worldwide is still on the 
rise, and large amounts of plastic waste is being accumulated 
in the environment year by year. Jambeck et al. estimated that 
4.8 to 12.7 million metric tonnes (MT) entered the oceans in 
the year 2010 [1], and Borelle et al. estimated that 19 to 23 
million MT of plastics entered aquatic environments in 2016, 
still predicting growth in these plastics emissions, even if 
ambitious commitments set by governments will be 
implemented [2].  

The aquatic environment is affected by plastic pollution in 
various ways, and due to plastics durable characteristics the 
impacts lead to long-term pollution [3, 4]. The impacts to the 
environment are diverse and include ingestion by animals, 
entanglement, chemical leaching and accumulation of toxic 

effects through microplastics uptake, breakdown into 
microplastics that may compromise also and human health, 
and the direct impacts on human livelihoods, for example 
through increased flood risk by blockage of urban drainage 
systems or negatively affecting tourism [4]. 

The most relevant sources for plastic waste emissions into 
the ocean are located in Asia, with model estimations by 
Jambeck et al. [1] suggesting China emitting the highest 
amount of plastic litter, followed by Indonesia. Recent 
modeling efforts for identifying riverine plastic emissions, 
Indonesia is estimated to be the fifth highest plastic waste 
emissions contributor globally [5], indicating the importance 
of the country as a research area. 

More evidence-based data on plastic waste in the aquatic 
environment is needed for calibration of waste emission 
models, or provide actionable information to local authorities, 
waste management companies or even citizen science 
projects. Different monitoring types for plastic pollution in the 
environment exist: plastic tracking, active sampling, passive 
sampling, visual observations and citizen science [4]. The 
monitoring using visual observations also includes the 
machine learning based analysis of satellite imagery for 
detection or quantification of plastic litter [6, 7] or plastic litter 
detection drone imagery [8–10]. This study focuses on the 
waste quantification and waste type classification, where very 
high resolution is needed, which can be provided even with 
consumer electronic drones. Methodologies for plastic waste 
detection using the drone platform exist, where machine 
learning algorithms such as random forest, support vector 
machine, k-nearest neighbor and convolutional neural 
network (CNN) or other deep learning based methods are 
applied [8–12]. 

In this study, the methodology of the improved artificial 
intelligence (AI) based waste assessment is outlined, the 
survey area of the Indonesian river sites is described, and the 
results are given and discussed. The methodology of the waste 
assessment is based on the initial work by Wolf et al. [12], 
which used an AI-based waste assessment system for plastic 
litter detection in Cambodia. The waste assessment system 
described in this work is trained on plastic litter data sets that 
are up to six times larger and show plastic waste in much more 
diverse settings and originating from multiple ASEAN and 
European countries. The waste type classification system was 
revised for increased comparison capabilities with other 
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plastic litter monitoring methodologies. Furthermore, the AI 
models’ architectures and training details were adjusted. The 
waste assessment outputs were georeferenced and provided as 
shapefiles, so policymakers and authorities are enabled to 
perform further geospatial analysis on GIS software. The 
waste assessment was applied to the highly relevant rivers for 
plastic litter emission Cisadane and Citarum [5], both located 
in west Java, Indonesia, also the Tukad Saba located in Bali, 
Indonesia was surveyed. The evaluations of the AI models are 
outlined, key findings from the survey for waste composition 
analysis are given and waste assessment examples are 
provided. The results are discussed, and finally an outlook 
with further work is given. 

II. METHODOLOGY 

In this section the improvements of the AI-based plastic 
litter detection system are outlined, the updated plastic litter 
classification system is explained and the georeferencing of 
the waste assessment outputs is described. 

A. Improved AI-based plastic litter detection 

The method for the improved waste assessment is based 
on the plastic waste detection and quantification system 
(APLASTIC-Q) [12], which analyses imagery in a two-step 
approach to detect waste (PLD CNN) and consequently 
classify waste types (PLQ CNN) with two different CNNs.  

The two CNNs of the open source APLASTIC-Q system 
[13] share similar architectures as described in the paper [12], 
except these changes. (i) Instead of the two dense layers that 
follow the four 2D convolutional layers, an additional 512 
neuron dense layer was added before the output layer. The 
architectures use the same activation functions [14] and 
dropout layers [15]. (ii) Furthermore, due to additional classes 
in both novel datasets, the number of output neurons was 
increased for both CNNs. The PLD CNN was trained on eight 
classes, i.e. two extra classes organic debris and stones, and 
the PLQ CNN has 24 classes instead of 18, described in detail 
in Section II.B. Hence the PLD CNN has eight output neurons, 
and the PLQ CNN has 24. (iii) The input shape for both CNNs 
were increased to 128x128x3 from 100x100x3 (PLD CNN) 
and to 64x64x3 from 50x50x3 (PLD CNN). The 100-pixel 
edge length of the original tile size corresponds spatially to 
20cm, which was often too small to capture larger garbage 
objects, such as Styrofoam food packaging. Therefore, the 
next power of 2 number 128 was used, which spatially 
corresponds to 25.6cm, which is an area increase of 63% 
compared to the original tile sizes. The edge length of the PLQ 
CNN tiles is required to be half of the length of the PLD CNN 
tiles, which resulted in 64x64x3.  

The samples of both data sets were increased to 26,147 
(PLD CNN) and 36,241 (PLQ CNN) and show plastic waste 
in the aquatic environment from ASEAN (see Section III.C) 
and European countries. Both datasets have been split into 
train (70%), validation (15%) and test (15%) data sets for 
training. The plastic waste samples mostly consisted of 
imagery with macroplastics in rivers, shores, beaches, 
accumulated in front of river dams or other artificial barriers 
and macroplastics trapped in vegetation. Compared with the 
dataset sizes of the original version of the APLASTIC-Q 
system with 6,892 for PLD CNN, and 6,026 for PLQ CNN, 
the data set was increased by a factor of 3.8 and 6.0, 
respectively. 

The CNNs have been trained for 125 epochs (PLD CNN) 
and for 150 epochs (PLQ CNN). These epoch values were 
chosen after the training of both CNNs with larger epoch 
values, and the identification of the epoch ranges where the 
loss curves were increasing implying overfitting of the 
models. Besides the training details described in [12], L2 
regularization [16] was added to the dense layers to reduce 
overfitting during optimization. 

B. Improved plastic litter classification system 

To capture a more nuanced image of the plastic waste 
situation with AI-based litter monitoring, and for better 
aligning these waste assessments with other methodologies, 
an improved waste classification system with regard to [12] 
was needed. 

To address this, the classes of the PLQ CNN were adjusted 
to the following requirements. (1) Being able to capture the 
macroplastics that make up a large proportion in field surveys 
(such Top 10 items collected from [17]). (2) Enable a 
comparison of AI-based waste assessment to field survey 
results that were conducted in the same survey areas. (3) 
Waste classes have to be detectable by humans in the very 
high resolution RGB imagers (~0.2 cm Ground Sampling 
Distance GSD) to enable the annotation of real world data. 
Because of this, small or narrow items (such as cigarette butts 
and straws) out of the global Top 10 items [17] could not be 
added to the PLQ CNN class system. 

To fulfill these requirements, the following class system 
for the PLQ CNN was established (Table 1). It consists of 15 
plastic classes, 4 non-plastic waste classes, and 5 non-waste 
classes. The non-waste classes were necessary to enable the 
PLQ CNN a waste assessment correction in case of false 
positive plastic detection or overestimation of littered area of 
the PLD CNN. Out of the plastic waste classes, Low Density 
Polyethylen (LDPE) bags, Polyethylene Terephthalate (PET) 
bottles multilayer wrappers (both size classes), polystyrene 
items (both size classes) and other small plastics (also include 
plastic fragments were the most common in the surveyed 
areas, with respect to establish Top 10 waste items. Other 
waste items such as fishing gear or Pharmaceuticals and 
Personal Care Products (PPCP) items were rarely observed in 
the conducted drone monitoring surveys. However, it is likely 
that they play a more important role in other aquatic 
environments, such as suggested by Morales-Caselles [18]. 

TABLE I.  19 WASTE TYPE CLASSES OF PLQ-CNN, WITH 24 CLASSES 

IN TOTAL (NON-WASTE CLASSES DEPICTED IN GREY). 

PLQ-CNN classes Material 

Bags LDPE robust Plastic 

Bags LDPE light Plastic 

Bags PET robust Plastic 

Wrappers < 10cm Plastic 

Wrappers > 10cm Plastic 

Bottles PET Plastic 

Polysterene < 20cm (mostly 

food packaging) 
Plastic 

Polystyrene > 20cm Plastic 

PPCP: bottle, medical waste, 

other 
Plastic 

Fishing gear Plastic 

Cups, cup lids, caps Plastic 

Other small plastics Plastic 

Other large plastic waste items Plastic 

Rubber Rubber 

Metal Metal 
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PLQ-CNN classes Material 

Glass Glass 

Other (waste) Undefined 

Sand  

Vegetation  

Wood  

Water  

Other (non-waste)  

 

C. Georeferencing of waste assessment 

When running the previous plastic waste assessment with 
APLASTIC-Q, geospatial information of the input image was 
lost and hence, the PLD/PLQ CNN output only represented 
the detected classifications without any spatial reference. 
However, locating the classification data in a spatial reference 
system is crucial to better identify plastic litter in the real 
world and to assess the performance of the detection 
algorithm.  

First, the PLD/PLQ CNN output is saved in a raster format 
having the same ratio as the input image. The input image is 
downsampled to the resolution of the PLD/PLQ CNN output 
image using the GDAL library [19]. The next step is to 
retrieve the geospatial information of the downsampled input 
image including the coordinate reference system (projected or 
geographic coordinates) and the geotransform, which is an 
affine transformation from the image coordinate space. 
Finally, the geospatial information of the input image can be 
applied to the PLD/PLQ CNN output data, resulting in a 
referenced output.  

To make further analysis of the spatial data, it is desirable 
to convert the georeferenced output data of the waste 
assessment to a shapefile, as shapefiles store location and 
attribute information in a data frame as geographic features. 
For this purpose, each waste type of the APLASTIC-Q output 
data is masked and polygons for each waste type are created. 
With GeoPandas [20], all features are concatenated into one 
data frame and saved as a shapefile. 

III. SURVEY AREA 

In this section the drone survey procedure is outlined, the 
survey area in Indonesia is described. Also, other application 
countries of APLASTIC-Q are shown. 

A. Drone survey procedure 

A DJI Phantom 4 Pro 2 drone was used for surveying. The 
drone is equipped with a CMOS RGB (Red, Green, Blue) 
camera sensor with 20MP. To monitor plastic waste in rivers 
using drones, drones were deployed in 2 different flying 
altitudes: 60 – 100m (Level A) and 6-8m (Level B). In Level 
A imagery, an area 250m upstream and 250m downstream of 
a located point of interest were covered, resulting in a 
minimum distance of 500m. Within this transect, an area with 
a width of 100m, transition from river to the land in the 
riverbank area was covered. Therefore, an area of at least 
500m x 100m was covered following the course of the rivers. 
The achieved GSD for an altitude of 75m was 2cm. Both 
Level A and Level B imagery are captured providing 80% 
side- and overlap. Level A acquisition was done to obtain the 
general visualization in each surveyed locations and allow the 
identification of waste accumulation areas to be surveyed in 
the next step.  

The Level B GSD of the imagery was around 0.2cm. For 
Level B, the drone had to be operated manually due to low 

flight altitude. Sites surveyed from Level B usually had a 
coverage of around 100m², which captured plastic waste 
accumulations at the riverbanks with moderate or high 
volume. Level B acquisition was done to obtain very high-
resolution imagery of waste accumulations that enable the 
distinction between waste types; the Level B data was used for 
waste assessment with the APLASTIC-Q system. Data 
processing for both Level A and Level B was done Pix4D 
software to create orthoimages. 

B. Survey area in Indonesia 

Three rivers were monitored by the PT. LAPI ITB from 
the Bandung Institute of Technology in Indonesia with the 
aforementioned drone survey procedure: Cisadane River and 
Citarum River, both located in the west of Java, and Saba, 
located on Bali. Both Cisadane and Citarum play an important 
role in their communities and ecosystems around it but are 
both reported to be heavily polluted [21, 22]. The sources of 
pollution include both domestic and industrial waste. For the 
Citarum river, the contribution of pollution load from 
domestic waste was assessed to be 83.5%, followed by 
industrial waste 6.6% [23]. 

Drone monitoring was conducted in the Cisadane River 
from 9 – 11 April 2022, where a total number of six sites were 
monitored with Level B acquisition type. These Level B sites 
were located at the shore of the river mouth with vegetation 
dominated background (Fig. 1 A). Drone monitoring for the 
Citarum River sites was conducted from 22 – 24 April 2022, 
with a total of three Level B sites monitored. The Citarum 
Level B sites were also taken near the river mouth, but in an 
urban setting (Fig. 1 B). The drone monitoring of the Tukad 
Saba River was conducted from 13 – 15 May 2022, with a 
total of four Level B sites, also taken within a rather urban 
setting (Fig. 1 C). 



 

   

 
 

Fig. 1: Overview imagery of the three surveyed river mouths. (A) shows 
estuary of Cisadane River. Excerpt of underlying Level A imagery with five 

Level B plastic waste hotspots. Plastic waste hotspots show large waste 

accumulations at or near the shore, litter trapped in vegetation and waste that 
was previously burned. (B) shows mouth of Citarum River mouth with 

imagery taken in an urban setting. (C) shows mouth of Tukad Saba River. 

C. AI waste assessment conducted in Southeast Asia 

Plastic waste assessment based on the APLASTIC-Q 
system [12] was conducted in the Asian countries Cambodia 
(2019), with follow-up projects in Vietnam (2020-2021), the 
Philippines (2020-2021), and recently in Indonesia (2022) 
(Fig. 2). Within Europe, the AI-based plastic waste 
assessment was also used: in Germany (2021), in context of 
the 2021 European floods and in Bosnia and Herzegowina 
(2021), for monitoring plastic litter accumulated at the 
Visegrad dam at the Drina river. The diverse application 
background of the APLASTIC-Q system in terms of countries 
also captured plastic litter in various situation types: large 
waste accumulations, litter trapped in vegetation, plastics at 
beaches, and floating plastics. 

 

Fig. 2: Map with waste assessment projects conducted in Southeast Asia. 

River names are shown for Indonesia, city names are shown for the other 

countries. Other relevant rivers involved in the survey projects are Pasig 

River (the Philippines), Mekong (Cambodia) and Red River system (Viet 
Nam). 

IV. RESULTS 

In this section the training results of the two CNNs are 
shown, together with a detailed classification report. The key 
findings of the survey are outlined and examples from the 
georeferenced waste assessment are given. 

A. Training of plastic waste detection and waste type 

classification CNNs 

After training of the PLD and PLQ CNNs, the overall 
accuracies on the test data were 83% and 58%, respectively. 
The train and validation loss and accuracy are depicted in 
Fig.3. The overall accuracies of the PLD and PLQ CNNs of 
the original publication were 83% and 71%, respectively, 
translating to stagnant overall accuracies for PLD CNN and a 
decrease of 13% for PLQ CNN. However, both improved 
PLD and PLQ CNNs show better waste assessments to new 
real-world data compared with the old CNNs. The weighted 
average of the PLD CNN calculated with 3922 test samples 
was for precision 82%, for recall 83%, and the f1-score was 
82%. The weighted average of the PLQ CNN calculated with 
5438 test samples was for precision 59%, for recall 58%, and 
the f1-score was 55%. 

 

Fig. 3: Loss and accuracy curve of CNN training. 



 

   

The confusion matrices of both PLD and PLQ CNN are 
depicted in Fig. 4. The PLD CNN performed with the highest 
f1-score on the non-waste classes ‘Water’ (0.96), ‘Vegetation’ 
(0.91) and ‘Organic debris’ (0.87). Followed by ‘Litter – high’ 
and ‘Stones’ (both 0.86), ‘Other’ (0.71), ‘Sand’ (0.70) and 
lastly ‘Litter – low’ (0.48).  

The confusion matrix of the PLQ CNN shows that for a 
total of ten waste type classes, the test samples have not been 
classified correctly (or only once) by the classifier. These ten 
waste type classes consist of the seven plastic classes ‘Bags 
LDPE robust, ‘Bags PET robust’, ‘PPCP bottle’, ‘PPCP 
medical waste’, ‘PPCP other’, ‘Fishing gear’, ‘Caps and cup 
lids’, and the three non-plastic waste classes ‘Rubber’, ‘Metal’ 
and ‘Glass’. The other waste type classes were classified with 
an f1-score of at least 0.34 (non-plastic ‘Other (waste)’). The 
test samples of the ‘Bottles PET’ were classified with the 
highest f1-score (0.63), followed by ‘Polysterene < 20cm’ 
(0.55), ‘Polysterene > 20cm’ and ‘Other small plastics’ (both 
0.50), ‘Other large plastic waste items’ (0.45), ‘Wrappers < 
10cm’ (0.43), ‘Wrappers > 10cm’ (0.37) and ‘Bags LDPE 
light’ (0.36). Waste type classes that essentially represent the 
same waste type, like ‘Polysterene < 20cm’ and ‘Polysterene 
> 20cm’ or ‘Wrappers < 10cm’ and ‘Wrappers > 10cm’, show 
high frequency in being mixed up by the classifier.  

For most classes, the precision and recall values are similar 
with a maximum deviation of 0.1. However, for some classes 
the range between recall and precision is higher: the waste 
type class ‘Bags LDPE light’ is classified with a precision of 
0.25 and a recall of 0.68 and the class ‘Other large plastic 
waste items’ is classified with a precision value of 0.83 and a 
recall value of 0.31. In addition, the two non-waste classes 
‘Sand’ and ‘Wood’ show a significantly lower precision value 
than the recall value: 0.46 vs. 0.81 and 0.60 vs. 0.85 for the 
categories ‘Sand’ and ‘Wood’ respectively. 

 

Fig. 4: Confusion matrices of PLD CNN and PLQ CNN. 

B. Georeferenced AI-based waste assessment in Indonesia 

The Level B imagery was analyzed with the improved 
waste assessment system described in this paper. The results 
in terms of waste shares for the most relevant waste categories 
of the three different surveyed rivers are depicted in Table II. 
Some of the waste categories – plastic bags, plastic wrappers, 
polystyrene items, plastic bottles and other small plastics – 
represent multiple waste type classes; for example, 
‘Polystyrene items’ comprises of the waste type classes 
‘Polysterene < 20cm’ and ‘Polysterene < 20cm’.  

The shares of the waste categories detected in the Cisadane 
river mouth generally were either the lowest shares for the 
category from all three river sites (plastic bags, plastic 
wrappers, plastic bottles) or the highest of all river sites 
(polystyrene items and other small plastics), shown in Table 
II. Plastic bags, plastic wrappers and plastic bottles are 
consistent with typical household waste, which likely links to 
the urban environment at the Citarum and Tukad Saba River 
mouths. Polystyrene items are capable of floating longer 
distances compared with other plastic waste items, and the 
waste category of other small plastics also comprises of 
weathered waste fragments amongst waste items; this could 
indicate that the survey sites of Cisadane are more likely to 
represent plastic litter sinks rather than plastic litter sources 
compared with the other river sites. 

TABLE II.  WASTE CATEGORIES THAT MADE UP THE LARGEST SHARES 

IN THE SURVEY SITES. 

Waste categories Cisadane Citarum Tukad Saba 

Plastic bags 6% 13% 15% 

Plastic wrappers 8% 11% 20% 

Polystyrene items 20% 11% 14% 

Plastic bottles 9% 14% 13% 

Other small plastics 48% 28% 33% 

Sum 91% 77% 95% 

 

The georeferencing of the plastic waste assessment output 
was successfully implemented. Example results of the 
georeferenced waste assessment are depicted in Fig. 5. The 
output can be loaded as a shapefile that stores the geographic 
features in geographic information system software such as 
QGIS. 



 

   

 

Fig. 5: Monitored accumulated plastic waste located at Cisadane river mouth 

near Jakarta, Indonesia. A shows georeferenced AI-based plastic litter 

detection for litter trapped in vegetation, B shows georeferenced waste type 
classification for littered areas. Similar waste assessment is shown below for 

a previously lit-up garbage pile: Plastic litter detection (C) and waste type 

classification (D).  

V. DISCUSSION 

The plastic waste detection system is fueled with a 
manifold real world plastic waste data set from Southeast Asia 
and Europe. The algorithm can analyze large georeferenced 
TIFF files in a few minutes, and 20MP images in less than ten 
seconds, using a standard laptop. By georeferencing the output 
data of APLASTIC-Q, geographic information is added 

improving the evaluation of the performance of APLASTIC-
Q. Additionally, the georeferenced data facilitates 
comparisons between the results of other plastic litter 
detection algorithms. Providing the output data as shapefiles, 
policymakers, authorities etc. are enabled to perform further 
geospatial analysis on GIS software. 

The methodology described is limited to detecting plastic 
waste on the surface. The depth of waste was estimated 
empirically, which could lead to under or over estimations of 
waste volume estimates in some situations. Waste items found 
in the environment can be heavily weathered through physical 
forces, through UV-light exposure or can be covered with dirt 
as well. This challenging real-world data is making a 
significant number of waste items in the imagery 
unrecognizable, which should be considered for evaluation the 
overall accuracy of the waste type classifier PLQ CNN. 

The overall accuracies of PLD and PLQ CNN indicate 
similar or worse performance of the classifiers compared with 
the original publication. However, the data sets show plastic 
waste in much more diverse settings and with increased non-
waste classes and waste type classes. This leads to a more 
challenging optimization task presented in this study, making 
the original accuracies and the accuracies that were achieved 
in this study not directly comparable. 

Some classes of the PLQ CNN were classified with a 
significantly lower precision score than their recall score. This 
indicates that the PLQ CNN is biased towards certain classes: 
‘Bags LDPE light’, ‘Sand’ and ‘Wood’. Several waste type 
classes were barely detected at all. When interpretating the AI-
based waste assessments, these characteristics should be 
considered by the user. 

Waste assessment was done for three rivers – Citarum, 
Cisadane and Tukad Saba – and the key findings about the 
waste type composition for these different rivers were 
presented. These results may indicate that the surveyed areas 
are points of plastic waste sources or accumulation zones, 
potentially enabling policy makers for better tailored actions 
against the plastic waste problem on a local and regional level. 

VI. CONCLUSION AND FUTURE WORK 

The aim of this research was to quantify the amount and 
the various types of aquatic plastic debris and identify areas of 
high waste discharge and accumulation of plastic waste on a 
regional scale. Rivers with a high expected waste discharge 
were examined: Cisadane River, Citarum River, and Tukad 
Saba River. The machine learning algorithm APLASTIC-Q 
was applied for the identification of plastic pollution, its 
quantification and classification into several plastic types. 

In this paper, an improved waste assessment methodology 
is described with the focus on utilizing cheap, accessible, and 
user-friendly consumer electronic drones combined with a 
limited computing power for the AI-based image analysis. 
The two-step approach of the drone survey with surveying the 
overview first and then capturing the waste hotspots in very 
high resolution afterwards, is straight forward to reproduce.  

In the future, the enhanced APLASTIC-Q will be used as 
a tool for regular plastic waste assessment in Southeast Asian 
Countries as part of clean up missions. In addition, it is 
planned to further improve the quality of the algorithm by 
enlarging the dataset using images from different climate 
zones. Furthermore, APLASTIC-Q can also be used as 
backbone for a bridge monitoring tool using stationary 



 

   

cameras for continuous mobilized surface floating plastic 
waste monitoring to assess riverine plastic waste emissions 
over time [24]. and for a mobile system using unmanned 
surface vehicles (USV) [25]. The AI-based waste assessment 
could also help in the future to calibrate modeling efforts for 
estimating plastic loads leading into the ocean, or providing 
actionable information to policymakers [4].   
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