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ARTICLE INFO ABSTRACT

Keywords: Non-destructive evaluation of aircraft production is optimised and digitalised with Industry 4.0. The aircraft
NDT structures produced using fibre metal laminate are traditionally inspected using water-coupled ultrasound
NDE 4.0

scans and manually evaluated. This article proposes Machine Learning models to examine the defects in
ultrasonic scans of A380 aircraft components. The proposed approach includes embedded image feature
extraction methods and classifiers to learn defects in the scan images. The proposed algorithm is evaluated
by benchmarking embedded classifiers and further promoted to research with an industry-based certification

Aircraft production
Quality control
Machine learning

Fop process. The HoG-Linear SVM classifier has outperformed SURF-Decision Fine Tree in detecting potential
defects. The certification process uses the Probability of Detection function, substantiating that the HoG-Linear
SVM classifier detects minor defects. The experimental trials prove that the proposed method will be helpful to
examiners in the quality control and assurance of aircraft production, thus leading to significant contributions
to non-destructive evaluation 4.0.

1. Introduction proposed work can be vital in the automated offline-QA to scruti-

nise FML aircraft production [8] and adapt to other aircraft materials
Ultrasonic Testing (UT) is a typical Non-destructive Testing (NDT) like aluminium, thermoplastic fibre [9] and Carbon Fibre Reinforced

method for examining the structural components for aircraft produc- Plastic (CFRP) [10]. The proposed research aims: to understand and
tion. Manufacturing aircraft made of Fibre Metal Laminates (FML) prepare ultrasonic scans of aircraft FML (raw data) provided by the
includes cascaded steps such as placement of aluminium, glass prepreg, aircraft industry and pre-process data (convert raw data to images)

adhesive, doublers, stringers, vacuum bagging and curing in an au-
toclave [1]. Quality Control (QC) is performed first at the layup of
the component (without stringers) after curing and the quality as-
sessment is visually evaluated [2]. The manually performed examina-
tion of anomalies is very time-consuming. In addition, [3] conducted
NDT inspection using a manual UT phased array for Glass Reinforced
(GLARE®) FML of A380, it lacked the high capacity of data and
additionally an evaluation software. So, Non-Destructive Evaluation
(NDE) 4.0 helps streamline processes, increase quality and lower costs
in aircraft production with an automated Quality Assurance (QA) [4].

Traditionally, the quality control of FML is performed by an expe-
rienced examiner after the final production of an aircraft structure [5].
But, with the implementation of Machine Learning (ML) techniques, 2. Learning defects
defects can be identified instantaneously to help the examiner [6,
7]. So, the primary motivation was to develop an automated QA in
aircraft production by implementing a Machine Learning algorithm.
The quality analysis process in the proposed method consists of pre-
analysing the sensor data acquisition to classify the features according
to the defects and good qualities. The proposed approach reduces the
examiner’s workload, expensive repairs and manufacturing waste. The

to gain feasibility for the proposed method. Additionally, implement
embedded Machine Learning classifiers with image feature extrac-
tion techniques to achieve the best defect detection rate and further
interpret industry-based certification process to evaluate this approach.
The remainder of the paper is structured as follows: Section 2
describes the proposed Machine Learning model and its pipeline. Sec-
tion 3 illustrates the proposed model’s data interpretations with exper-
imental results and Section 4 discusses the industry-based inferences
to evaluate the proposed approach. Finally, Section 5 summarises the
proposed method and explores the scope for further improvements.

Machine Learning is a subset of Artificial Intelligence (AI), deal-
ing with data acquired from sensors for learning the data-generating
distribution. There are three primary techniques: supervised learning
— data needs to be labelled (each data point tagged to belong to a
particular class) for training, mainly used for classification (predicts
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discrete labels) and regression (predicts a continuous quantity). Next,
unsupervised learning — requires no data labels for training; dimension-
ality reduction and clustering are the two significant methodologies.
Following is reinforcement learning — the agent (training) sends an
action (a move causing change) to the environment (real or virtual
world) and in-return environment sends the state and its reward (eval-
uation of the action, either positive or negative) for the agent; real-time
decisions and gaming models are its prototypes. Additionally, semi-
supervised learning is a combination of supervised and unsupervised
learning methodologies.

Supervised learning examples [11] include Support Vector Ma-
chine (SVM) [12], Decision Trees [13,14], Random Forest (RF) [15],
k-Nearest Neighbour (k-NN) [16], Naive Bayes [17], Linear Discrim-
inant Analysis (LDA) [18] and Logistic Regression [19]. The Fuzzy
C-means (FCM) [20], k-means [21] and Principal Component Analysis
(PCA) [22] are a few state-of-the-art unsupervised learning techniques.
SVM predicts classes based on an optimal hyperplane creating margins
to find similar features from each class and classifies them together.
Decision Trees predict a class by learning the decision rules from the
data features of that class. Random Forest combines the outcome of
multiple Decision Trees into a prediction. k-Nearest Neighbour predicts
using the proximity of k nearest data points for classification. Naive
Bayes classifies based on the probability of data points applying Bayes’
theorem. Using Fisher’s algorithm, LDA finds a linear combination
of data features to characterise different classes. Logistic regression
finds the probability of an event occurring, such as voted or no vote,
based on the data variables. Fuzzy C-means is similar to k-means but
is a soft clustering where a data point can belong to one or more
clusters. k-means is a hard clustering that partitions data points into
k clusters, each belonging to one cluster with the nearest mean value.
PCA reduces data dimensionality and increases its interpretability with
less information loss.

Deep Learning is a subset of Machine Learning applied to im-
ages, videos, text and other data formats. It comprises multi-layer
Artificial Neural Networks (ANN) [23]. Deep Neural Network (DNN)
has many hidden layers of neural networks to perform classification
and regressions. The state-of-the-art neural networks are Radial Ba-
sis Function (RBF) [24], Autoencoders (AEC) [25], Multi-Layer Per-
ceptron (MLP) [26], VGG-F [27], Fast R-CNN [28], ResNet v2 [29],
Transformer [30].

The Machine Learning algorithm often includes a feature extrac-
tion process depending on the input data type to improve its perfor-
mance [31]. A few state-of-the-art image feature extraction methods are
Local Binary Patterns (LBP) [32], Maximally Stable Extremal Regions
(MSER) [33], KAZE [34], Speeded Up Robust Features (SURF) [35],
Histogram of Oriented Gradients (HoG) [36]. LBP labels pixels in an
image by thresholding each pixel neighbourhood, resulting in a binary
number to encode local texture information. For blob detection, the
MSER method uses co-variant regions in corresponding grey-level cells
in images. KAZE works on non-linear scale space and determinants
of the Hessian matrix with the local difference binary descriptor to
detect multi-scale corner features from the scale space. SURF detects
interest points and local neighbourhoods to match, finds features in
the Gaussian scale space, can distinguish between background and
foreground features in an image, finds blob features and is partially
influenced by Scale-Invariant Feature Transform (SIFT) [37]. HoG is
a feature descriptor that describes the image features by calculating
the frequency of gradients oriented in localised parts of an image; it
encodes local shape information.

The previous research methods that use Machine Learning for NDT
data defect analysis are as follows, [38] for UT C-mode scanning acous-
tic microscopy (C-SAM) in integrated circuits using the Mumford-Shah
model for grayscale image processing and SVM for defect classification
with 80% of recognition rate. This technique needs more training data
to improve classification accuracy. The research of [39] implemented
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crack shape estimation with height, length and depth parameters us-
ing Eddy Current and SVM for regression (SVR) with RBF kernel in
conductive materials. It achieved a maximum error rate of 0.3 mm in
defect length, but height and depth detection needed more training.
Following, [40] used an ANN, MLP (with back-propagation) and SVR
(with RBF kernel) for crack defect classification. SVR outperformed
MLP with a maximum error rate of 0.8 mm on a 5 mm crack length,
but height and depth parameters needed more SVR model tuning.
Dynamic PCA, k-NN, MLP, RBF and SVM were implemented by [41]
for defect depth in infrared NDT in CFRP composite material. The
MLP outperformed RBF and SVM for complex composite, whereas the
dynamic PCA and k-NN could estimate defect depth on plane composite
and detection limit for classifiers. The NDT data of oil or gas pipeline
defects were detected by [42] using LDA, MLP, SVR, RBF, PCA, k-NN
and SVR outperformed all other methods with 98.28%. SVM and ANN
were trained by [43] with NDT rail data for real-time defect processing
and SVM outperformed ANN with 97% of accuracy. For fabric defect
image analysis, [44] implemented AdaBoost [45] and HoG for feature
extraction with SVM for classification. This method identified most de-
fects with fewer false rejection rates. The SVM and ANN classified NDT
data of construction structures by [46] with Fast Fourier Transforms
(FFT) and RBF for feature extraction, SVM outperformed ANN with
93% accuracy.

Aerospace structure defects were classified based on their shapes
(Shape Geometric Descriptor (SGD)) using J48 Decision Tree [47],
MLP, Naive Bayes classifiers with Content-Based Image Retrieval (CBIR)
and SGD for feature extraction in the research of [48]. MLP out-
performed J48 Decision Tress (96%) and Naive Bayes (95%) with
98% accuracy. Another research [49] trained J48 Decision Trees and
Random Forest to determine weld quality in NDT data of Shielded
Metal Arc Welding (SMAW) of carbon steel plates. Random Forest
outperformed J48 Decision Trees (70.78%) with 88.69% of accuracy.
Automatic NDT aircraft defects were diagnosed by [50] using SVM
and SURF with AlexNet [51] and VGG-F Deep Neural Network as
feature extraction methods. SVM gained the highest accuracy of 96%
with the SURF for Region of Interest (Rol) selection. The mobile panel
surface defects were inspected by [52] with LBP and HoG feature
extractors that trained Naive Bayes and SVM. The HoG-SVM classifier
outperformed all other feature extractors and Naive Bayes with >90%
average accuracy. Random Forest with Rol classified defects on alloys
and achieved >90% accuracy [53].

An Aeronautics Engine Radiographic Testing Inspection System
Net (AE-RTISNet) with Fast R-CNN was developed to inspect defects
in aeronautical engines [54]. It contains Rol as a feature extractor
and obtained a mean average precision (mAP) of 90% compared
to YOLO [55]. The Aluminium Conductor Composite Core (ACCC)
with NDT X-ray images was analysed for defects using Inception
ResNet v2 [56]. This Deep Neural Network, Inception ResNet v2,
maintained 97.01% accuracy compared with Res2Net-18 (96.28%)
and ResNet-v2-50 (96.15%) after data augmentation. Random For-
est, RBF-SVM, hidden Markov model (HMM) [57] were implemented
by [58] for training with autoencoders-FFT, low-pass filtering and
PCA for feature extractions to measure defects in aerospace CFRP
aluminium plates. AEC-PCA outperformed all other classifiers with
>0.9 clustering scores. Convolution Neural Networks (CNN) deter-
mined aerospace NDT defects using spot classifiers in research of [59]
and the Indirect spot CNN classifier outperformed the Direct spot
CNN classifier with 98% of accuracy. Another CNN approach [60]
was developed to detect defects in NDT data of stainless steel and
welded Gas Tungsten Arc Welding (GTAW) or Shielded Metal Arc
Welding (SMAW) joints. This CNN resembles VGG-16 and gained a
Probability of Detection (POD) of agys9s = 2.1 mm, where a is the
defect size and 90/95 denotes 90% POD with 95% of CNN model
confidence. An ANN was developed by [61] to monitor defects in
NDT data of mechanical, aerospace and civil structures consisting of
aluminium and magnesium alloys and inferred >95% of precision.
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Table 1

A brief literature survey (ordered by publication year)
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Source

NDT data

Feature extraction

Machine learning

Performance analysis

Zhang et al. (2005) [38]

Integrated Circuits

Mumford-Shah model

SVM

Recognition rate: 80%

Bernieri et al. (2006) [39] Conductive materials Rol SVM regression (SVR) with Maximum error rate (length): 0.3
RBF mm
Bernieri et al. (2008) [40] Conductive materials Rol ANN-MLP (reference) and SVR: maximum error rate (length)
SVR with RBF of 0.8 mm; SVR outperformed
MLP
Benitez et al. (2009) [41] CFRP structure Rol Dynamic PCA, k-NN, MLP, MLP outperformed RBF and SVM
RBF and SVM
Khodayari-Rostamabad et Oil, gas pipelines PCA k-NN, SVR, RBF, LDA, MLP Accuracy: SVR - 98.28%
al. (2009) [42]
Wei & Cheng-Tong Rail flaws Rol SVM, ANN Accuracy: SVM - 97%
(2009) [43]
Shumin et al. (2011) [44] Fabric HoG, AdaBoost SVM Detection rate: SVM - high, less
false rejections
Saechai et al. (2012) [46] Construction cement FFT, RBF SVM, ANN Accuracy: SVM - 93%
structure
D’Angelo & Rampone Aerospace structure SGD, CBIR J48 Decision Trees, Accuracy: MLP - 98%,

(2015) [48]

Multilayer Perceptron
(MLP) and Naive Bayes

Sumesh et al. (2015) [49]

SMAW Carbon Steel plates

Statistical approach

J48 Decision Trees,
Random Forest

Accuracy: Random Forest -
88.69%

Internal Study: Schmidt, T
et al. (2015) [10]

CFRP C-scans

Measured values of all
sections, mean or variance,
gradient histograms

SVM, Random Forest

AUC: Gradient histogram-SVM -
0.987

Malekzadeh et al.
(2017) [50]

Aircraft surface

LBP, RGB and HSV
histograms, AlexNet,
VGG-F DNN, SURF

SVM

Accuracy: SVM-SURF - 96%

Huang et al. (2017) [52]

Mobilephone Panel

LBP, HoG

Naive Bayes, SVM

Average accuracy: HoG-SVM -
>90%

Internal Study: University
of Augsburg [64]

GLARE®-NDT C-scan
images

Laplace filter, material
thickness, edge information

CNN-ASPP, SGD, softmax

High exclusion rate of manual
inspection for component area -
97.36%

Shipway et al. (2019) [53] Titanium alloy plates Rol Decision Trees, Random Accuracy: >90%
Forest
Chen & Juang (2020) [54] Aeronautical engine Rol Fast R-CNN, YOLO mAP: Fast R-CNN - 90%

Hu et al. (2021) [56]

Aluminium conductor
composite core

Image normalisation

Inception ResNet v2,
ResNet-18, ResNet-v2-50

Accuracy: Inception ResNet v2 -
97.01%

Kraljevski et al.
(2021) [58]

Sensor network signals of
aluminium and CFRP
plates

FFT, low-pass filtering,
PCA

AEC, HMM, RBF-SVM,
Random Forest

Clustering score: AEC-PCA - >0.9

Niccolai et al. (2021) [59] Aerospace structures Rol Direct and Indirect spot Accuracy: Indirect spot CNN -
CNN 98%

Siljama et al. (2021) [60] Stainless steel Normalisation CNN POD: ag/95 = 2.1 mm

Fakih et al. (2022) [61] Aerospace/mechanical/civil Geometric constraints, ANN Precision: ANN - >95%

structures

Approximate Bayesian
computation

Le et al. (2022) [62]

Aircraft structure

PCA

SVM, Naive Bayes, k-NN,
Random Forest, Logistic
Regression

Average accuracy: SVM - 89.48%

Risheh et al. (2022) [63]

Steel structures

Rol, threshold selection,
image segmentation, Canny
edge detection

k-means clustering

Defects detected accurately

Aircraft structure corrosion was analysed using NDT data with PCA
for feature extraction and SVM, Naive Bayes, Random Forest, k-NN
and Logistic regression models [62]. SVM outperformed all other
models with 89.48% average accuracy. k-means clustering for NDT
steel structure was developed by [63] to determine defects with Rol,
thresholds, image segmentation and Canny edge detection techniques.
This method does not need training and can detect defects accurately
in smaller datasets.

Further, [10] was an automated evaluation of CFRP component NDT
data with discontinuities such as delaminations, layer porosity, volume
porosity and foreign bodies. These CFRP C-scans were converted to
.png images using ULTIS® NDT Kit software and trained Machine

Learning classifiers. The positive class had 37 annotated discontinuities
with 18 delaminations and 19 porosities and consisted of 222 total
training samples. The gradient of histograms for feature extraction was
combined with SVM and Random Forest to classify discontinuities. The
gradient histogram-SVM had the highest AUC of 0.987 and 10% of
FP rate, but the gradient histogram-Random Forest classifier had a
lesser FP rate for the positive class. In contrast, the gradient histogram-
Random Forest classifier gained lesser confidence than the gradient
histogram-SVM. There is a requirement for more training data with
positive class samples to increase the classification rate.

Following, [64] detected anomalies using a Deep Learning tech-
nique with the same GLARE® NDT dataset used in the proposed model.
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Fig. 1. A380 FML panels [1,2,65,66].

The NDT scans were converted to grayscale images with Python pro-
gramming. These images were pre-processed using a Laplace filter to
extract local material thickness and edge information as features, lead-
ing to an advantage in differentiating faulty and splice regions. These
features trained the Deep Learning architecture with the first six CNN
layers and one Atrous Spatial Pyramid Pooling (ASPP) layer that helps
for significant faulty pixel classifications and another CNN layer with
the last layer of Upsampling. The Stochastic Gradient Descent (SGD) for
the learning method and Softmax cross entropy for the error function
were used in this research. This classifier achieved an average high
exclusion rate (manual inspection) of 97.36% for the component area
on the test data; training steps are inversely proportional to the True
Positive rate. The disadvantages of this classifier are: the exclusion rate
varies with the component type and has a higher False Positive rate.
This classifier determines non-faulty regions instead of differentiating
faults and displays additional faults even in non-faulty regions. This
method needs more training data for faulty regions to improve its
performance and use it in real-time offline-QA of aircraft production.

The proposed research aims to develop an automated evaluation
of aircraft NDT data, i.e., an offline-QA to help human examiners.
Learning defects from aircraft production involves data acquisition,
pre-processing, Machine Learning training, predictions and determining
the model’s confidence. Choosing an appropriate Machine Learning
algorithm can seem complicated because many supervised and unsuper-
vised algorithms use different learning strategies. However, choosing
an algorithm depends on the quantity of data, data type, applicable
insights and the requirement to utilise the model’s evaluation results.
Highly flexible models tend to overfit data by modelling minor vari-
ations that could be noise. Simple models are easier to interpret but
might have lower accuracy. Therefore, choosing a suitable algorithm
requires trading one benefit against another, including model speed,
accuracy and complexity. In contrast to the literature survey (Table 1),
the proposed work comprises state-of-the-art Machine Learning clas-
sifiers with distinct image feature extraction methods to detect two
classes (binary classification): defects and good components in the
aircraft ultrasonic-scan imageset.

2.1. NDT dataset

GLARE® [67,68] is a new FML class that produces A380 aircraft
structures. The A380 comprises 15.1, 18.1, 18.14, 18.16, 18.17 com-
ponents, as in Fig. 1.

The FML of the A380 NDT inspection technique is explained in
the Airbus Test Method for inspection processes (AITM) AITM6-4001
(confidential). The aircraft production company, Premium AEROTECH
GmbH (PAG), followed signal analysis requirements according to the
AITM6-4001 and generated inspection reports. These inspection reports
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Fig. 3. Defect categories [1,2,65,66].

classified defects according to the AITM6-4001 and provided ground
truth values (C-scans) for automated evaluation. The data collected
from NDT inspection reports are plotted on a plane view of the compo-
nent as images, known as C-scans (process mentioned in AITM6-4001).
Fig. 2 shows a sample C-scan with denoted defects.

In the proposed approach, the NDT ultrasonic inspection report of
FML A380 contains C-scans of each aircraft component. These scans
(.xml file — raw dataset) were analysed using the quality software
ULTIS®-TESTIA (NDT Kit). The experts at DLR-ZLP denoted the defects
in the raw dataset with the help of PAG inspection reports and visu-
alised them using this software, forming the ground truth data for this
research. This NDT Kit creates three files, .nkc, .nkd and .nkz for each C-
scan. The .nkc file has the original C-scan data consisting of two blocks:
the first block is the header of the file with a length (in bytes) defined
by the data offset field and written in ASCII format (indications and
values). The second block of .nkc contains the physical data written
in binary format. The .nkd file contains defect information such as
file name, defect surface (mm?), outline surface (mm?), outline length
(mm) and comments. Any other information is stored in the .nkz file.

In the proposed approach, the defect classes of the C-scans are
categorised as porosity (Fig. 2), fold, twist, overlap, gap and foreign
body, as illustrated in Fig. 3. There were 343 data samples and 99
contained at least one defect as illustrated in Fig. 4. Fig. 4 describes
that the minimum number of defects in an image of a component
is one and the maximum is 15. Most defects belong to the porosity
category (distribution over the different defect types is confidential).
The proposed method pre-processes the data using these 343 data
samples for further processing. The quantity of data samples used in
this study is limited because of the industrial aircraft production rate.

2.2. Machine learning model

The proposed model comprises training and evaluation (Section 4)
processes. Preparation for the training process includes three primary
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Fig. 4. Distribution of defects from NDT data.

steps: pre-processing, processing and post-processing data. The pre-
processing involves converting the C-scans to Machine Learning com-
patible format. The ULTIS® enables storing complete C-scan informa-
tion as an image. Manually, all 343 data samples were converted to
8-bit .jpg images, forming an imageset of defective and non-defective
parts. Next, pre-processing is labelling .jpg images to prepare for model
training. For labelling, all images were relabelled using MATLAB’s
Image Labeler application. This app consecutively was loaded with
99 defect images with 208 defects and 244 non-defective images for
labelling. It stores the Region of Interest (ROI) labels (rectangle —
position, pixel area) and Scene Labels (defect and good). The ROI for
the defect scene label are the rectangles around different defects as
shown in (Fig. 2) and the entire image for a good scene label. These
labelled images are stored for proposed model training with ‘defects’
and ‘good’ classes. As there are two categories for classification, the
proposed model is a binary classifier and ‘defect’ is a positive class,
as the model aims to determine defects in the images and ‘good’ is a
negative class.

ds = \/length * breadth (€]

where: ds is the defect size in pixels (px), length and breadth of the
rectangular defect label

Further, pre-processing includes calculating defect size (ds) in the
image labels. ds is defined as the square root of the defect area as
in Eq. (1). The defect area is obtained from the rectangular image
label dimensions (length, breadth). A square root over the defect area
is formulated for two reasons: for standardising all the defect data
and most defects are not frame-filling, i.e., the defect pixel area is
not equal to the rectangular label area, for example, twist, fold, pores
(Fig. 3). The minimum defect size in image labels encountered is 6
px and the maximum is 383 px. According to the defect size, all 208
defects were cropped to their equivalent defect label size and stored as
the labelled defect (positive) imageset. The 244 labelled non-defective
images formed the good (negative) imageset.

The processing step has feature extraction and training. It includes
training the proposed Machine Learning model with a feature set from
the training imageset (positive and negative imageset) and class labels
— defect and good. The feature set is obtained from different image
feature extraction techniques: LBP, MSER, KAZE, SURF and HoG. Each
feature extractor has a bag-of-features to store its features. Each bag-of-
features (feature set) is input to each state-of-the-art Machine Learning
model for binary classification: SVM, Decision Trees, Random Forest, k-
NN and Naive Bayes. MATLAB’s Classification Learner application was
loaded with the training set (a feature set and class labels). During
the training process, the Cross Validation (CV) [69,70] technique is
applied to the training set to prevent overfitting (model overtrain), un-
derfitting (insufficient model training), to observe the model’s reaction
to a similar independent dataset and prediction error function. The
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Input image Grayscale image

Fig. 5. Input image in RGB format and its corresponding grayscale image. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

CV consists of exhaustive (iterates randomly on all data points) and
non-exhaustive methods (iterates randomly on partitioned data points
simultaneously). The k-fold and hold-out techniques are examples of
non-exhaustive methods implemented to validate Machine Learning
models. The hold-out approach arbitrarily sub-samples more for the
training than validation. The k-fold method randomly partitions the
prime training set into k equal subsets; one subset forms validation and
(k — 1) subsets for training. The cross-validation process is repeated k
times using each of k samples at least once for validation. The average
accuracy of all k-folds determines the model’s ability to predict new
data. The 10-fold CV is used for the proposed model validations, where
k = 10. The k-fold is suitable for the proposed model because of the
smaller training set and prevents overfitting.

Lastly, benchmarking predictions of different state-of-the-art Ma-
chine Learning binary classifiers embedded with distinct image feature
extraction techniques are stored in the post-processing for further
model evaluation. The binary classifiers with high confidence scores
are recommended (Section 3) for NDE 4.0 (Section 4).

2.3. Model pipeline

The proposed Machine Learning model pipeline comprises two
steps: training — feature extraction and classification (including vali-
dation). The in-built functions of MATLAB were used with the Clas-
sification Learner App for the proposed model. An algorithm for the
proposed model is as follows:

(1) Feature Extraction: input positive imageset (208 cropped defect
images) and negative (244 good images) imageset of RGB or
truecolour images (as shown in Fig. 5) as an image datastore
to form a training imageset. Datastore can store larger feature
vector size and increases processing rate.

training imd s=imageDatastore (folder path)

(a) These labelled images of both classes have features ex-
tracted using custom extractors as follows:

(i) Convert all input RGB images to grayscale (Fig. 5)
for LBP, MSER, KAZE and SURF feature extraction
(HoG can extract features from RGB and grayscale
images)

grayscale image = rgb2gray (RGB image)

(i) LBP (Fig. 6) and HoG (Fig. 7) features of each input
image

features = extract LBP Features (grayscale image)

features = extract HOG Features (RG B image)
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Fig. 6. LBP features.

(iii) For MSER (Fig. 8), KAZE (Fig. 9) and SURF
(Fig. 10) features of each input grayscale image —
detect regions and extract features from each these
regions

regions = detect M S ERFeatures (grayscale image)

regions = detectK AZ E Features (grayscale image)
regions = detectSU RF Features (grayscale image)

features = extractFeatures (grayscale image, regions)

(iv) Each custom feature extractor has a Bag-of-visual-
words constructed

bag = bagO f Features (training imds, Custom
Extractor Name, extractor function handler)

(v) Load scene data as an encoded bag-of-features from
each custom extractor and training imageset

(vi) Load all labels of training imageset to scene labels as
an attribute to scene data; label names ‘defect’ and
‘good’ are stored as scene type

(2) Training: Open Classification Learner App and load scene data
and scene type

(a) select all scene data as predictors

(b) simultaneously apply Cross-Validation with 10-fold

(c) start the session and store validation results (Section 3)

(d) In the Classification Learner App, use parallel computing
to train all available Machine Learning classifiers at once.

(e) Store all trained classifiers for further analysis (Sections
3, 4)

A part of the data from the A380 component is visualised in Fig. 5
(cropped smaller section of a good part) due to data confidentiality,
the input RGB image is converted to grayscale for feature extraction
processes (except for HoG).

Fig. 6 represents the LBP feature graph of encoded local texture
information in binary format extracted from Fig. 5. The LBP feature par-
titions the grayscale image into non-overlapping cells. The histogram
bins represent the number of features from each cell in the grayscale
image and bins depend on the number of neighbours of each cell. The
uniform feature set values of each cell (local texture information) are
plotted with LBP histogram bins and each histogram describes an LBP
feature.

Fig. 7 illustrates HoG features (zoomed-in) (marked in white colour)
extracted from an RGB input image (Fig. 5) converted to a binary
image. This binary image is decomposed into small, squared cells
and computes a histogram of oriented gradients in each cell. Then, it
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Fig. 7. HoG features.

Fig. 8. MSER features.

normalises the result using a block-wise pattern and returns a descriptor
for each cell.

Fig. 8 shows MSER feature extraction (zoomed-in) for Fig. 5. From
the grayscale image, co-variant regions (MSER regions) (coloured re-
gions) are extracted by checking the variation of the region area
size between different intensity thresholds. Ellipses (marked in black
colour) and centroids (marked in black plus) from MSER regions are
stable connected components of the grayscale image.

Fig. 9 displays KAZE features (zoomed-in) from Fig. 5. The grayscale
image is used to obtain KAZE points (marked in blue ellipses and
black plus), with non-linear diffusion to construct a scale space for the
grayscale image and then detect multi-scale corner features from that
scale space.

Fig. 10 shows SURF points (marked in black colour) (zoomed-
in) are extracted from Fig. 5. These SURF points are obtained using
Hessian blob detector and its feature vector from Haar wavelet from
the grayscale image.

During the training process, HoG extracted 34,596 features from
each image and 422 x 34,596 feature vectors were elected with the
strongest features from each class. These strongest HoG feature vectors
created a bag-of-features with 500 clusters. SURF extracted 12,093 fea-
tures (total — 422 x 12,093) and the strongest features from each class
formed 50 bag-of-features clusters. MSER extracted 10,644 features
with 500 bag-of-features clusters. KAZE extracted 9124 features with
500 clusters and LBP extracted 420 features with 302 bag-of-features
clusters. Overall, in the training process, HoG produces the most feature
vectors in this setup and more features are required to train Machine
Learning classifiers to gain better prediction results.

The classifiers trained in the proposed method from the Classifica-
tion Learner App include k-NN - fine, medium, coarse, cosine, cubic,
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Fig. 9. KAZE features.

Fig. 10. SURF features.

weighted and Decision Trees - fine, medium, coarse. Random Forest
- ensemble boosted trees, ensemble bagged trees, ensemble subspace
discriminant, ensemble subspace k-NN, ensemble RUS boosted trees;
SVM - linear, quadratic, cubic, fine Gaussian, medium Gaussian, coarse
Gaussian and Naive Bayes. The performance of all these classifiers with
image feature extraction methods is discussed in Section 3.

3. Experimental result and discussion

The proposed Machine Learning model is evaluated using metrics
such as accuracy, precision, recall, F1-score, Receiver Operating Curve
with Area Under the Curve (ROC-AUC) [71], k-fold Cross Validation
and POD certification. The classifier’s confidence is designated based
on the values of true-positive (TP), true-negative (TN), false-positive
(FP) and false-negative (FN).

From Table 2, a prediction is a TP or TN when the predicted and
actual values are the same; TP is when a defect is classified as defect
class and TN is a good part classified as a good class. An FP or FN
occurs when the predicted and actual values are different; FP is the
classification with the predicted value of a defect, but the actual value
is a good aircraft part and FN is vice-versa. A matrix representation of
all these values forms a confusion matrix.

TP+TN

Accuracy = (2)
TP+TN+ FP+FN
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Table 2

Possibilities of predictions.

Type Predicted Actual value
True positive Defect Defect

True negative Good Good

False positive Defect Good

False negative Good Defect

The accuracy of the Machine Learning model is the rate of correct
prediction to the total predictions (Eq. (2)).

Precision = _Ir 3)
TP+ FP

Precision is the rate of correct defects predicted to the total positive
predictions by the trained Machine Learning model (Eq. (3)).

Recall = TP __ @
TP+ FN

Recall or sensitivity is the rate of correct defects predicted to the
total positive instances in the test data (Eq. (4)).

F1— score =2 % Precz'SI'On * Recall 5)
Precision + Recall

TN
Specificity = ———— 6
pecificity TN+ FP 6)
FP
FPR =1- Specificity= ———— 7
pecificity TN+ FP (2]

The Fl-score is the harmonic mean of precision and recall (Eq. (5)).
The Rate of Change (ROC) is the probability curve [72] and the
Area under the ROC curve (AUC) is the degree of separability. ROC-
AUC evaluates the trained classifier’s performance in distinguishing
the ‘defect’ and ‘good’ classes with the values of True Positive Rate
(TPR) (recall or sensitivity) and False Positive Rate (FPR). The FPR is
calculated based on the specificity (Eq. (6)) of the trained model using
Eq. (7). The ROC-AUC curve is plotted with FPR (x-axis) against TPR
(y-axis). The trained model can better classify defects and good aircraft
structures if the AUC value is higher.

3.1. Cumulative models

Figs. 11-14 illustrate the analysis to choose the best accuracy of
cumulative Machine Learning classifiers with image feature extraction
methods.

From Fig. 11, the performance of LBP-Fine k-NN has the high-
est accuracy of 59.3% and the least of LBP-Coarse k-NN with 55%.
MSER-Cosine k-NN has the highest accuracy of 92.4% and least with
MSER-Coarse k-NN of 45%. KAZE-Cosine k-NN has 80.5% high accu-
racy and a low of 55.2% with KAZE-Coarse k-NN. SURF-Fine k-NN has
95.2% highest accuracy and 87.4% with KAZE-Cubic k-NN. HoG-Cosine
k-NN has 90% accuracy and is low with HoG-Coarse k-NN of 55.5%.
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Fig. 12 shows performance analysis of the Decision Tree, the combi-
nation of LBP-Decision Fine Tree has 64.3% accuracy and less of 56.4%
with LBP-Decision Coarse Tree. MSER-Decision Fine Tree has a high
accuracy of 90.7% and MSER-Decision Coarse Tree has low accuracy
of 80.7%. KAZE-Decision Fine Tree and KAZE-Decision Medium Tree
have a similarly high accuracy of 91% and KAZE-Decision Coarse Tree
has low of 88.6% accuracy. SURF-Decision Fine Tree has the highest
accuracy of 97.9% and SURF-Decision Medium Tree and SURF-Decision
Coarse Tree have an accuracy of 97%. KAZE-Decision Fine Tree gained
92.14% high accuracy and KAZE-Decision Coarse Tree of 82.1% low
accuracy.

Fig. 13 demonstrates the Random Forest or Ensemble Trees de-
tection rate, LBP-Ensemble Subspace Discriminant has gained 66.4%
and low accuracy of 49.5% with LBP-Ensemble Subspace k-NN. MSER-
Ensemble Boosted Trees has a high of 91.9% and MSER-Ensemble
Bagged Trees of 56.9% low accuracies. KAZE-Ensemble Subspace Dis-
criminant and KAZE-Ensemble Subspace k-NN achieved the highest
accuracy of 94.2%, but KAZE-Ensemble Boosted Trees has 55% low
accuracy. SURF-Ensemble Bagged Trees, SURF-Ensemble Subspace Dis-
criminant and SURF-Ensemble Subspace k-NN have the same high
accuracy around 95.6%; low accuracy of 55% with SURF-Ensemble
Bagged Trees. 93.5% of accuracy is gained by HoG-Ensemble RUS
Boosted Trees and a low of 59% with HoG-Ensemble Bagged Trees.

Fig. 14 illustrates the detection rate of SVM classifier, LBP-Linear
SVM, LBP-Quadratic SVM, LBP-Cubic SVM, LBP-Fine Gaussian SVM and
LBP-Medium Gaussian SVM has a similarly high accuracy of 66.4%;
LBP-Coarse Gaussian SVM has low accuracy of 55%. MSER-Quadratic
SVM and MSER-Cubic SVM have similar high accuracy of 92.6%, a
low of 69.8% from MSER-Fine Gaussian SVM. KAZE-Linear SVM gained
92.1% high accuracy and KAZE-Coarse Gaussian SVM low of 63.6%.
SURF-Linear SVM, SURF-Quadratic SVM, SURF-Coarse SVM, SURF-
Medium Gaussian SVM and SURF-Coarse Gaussian SVM have matching
high accuracy of around 96%. SURF-Fine Gaussian SVM achieved low
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Table 3

Consolidated accuracy chart.

Feature extraction Classifiers Accuracy (%)
LBP Linear SVM 66.4
Ensemble Subspace Discriminant 66.4
Fine k-NN 59.3
Naive Bayes 55
MSER Quadratic SVM 92.6
Ensemble Bagged Trees 91.9
Cosine k-NN 92.4
Naive Bayes 57.6
KAZE Linear SVM 92.1
Ensemble Subspace Discriminant 94.2
Cosine k-NN 80.5
Naive Bayes 94.3
SURF Linear SVM 96.9
Decision Fine Tree 97.9
Fine k-NN 95.2
Naive Bayes 59.5
HoG Linear SVM 99
Ensemble RUS Boosted Trees 93.5
Cosine k-NN 90
Naive Bayes 56

Table 4

Evaluation chart.
Classifiers Accuracy (%) Recall Precision F1-score
HoG-SVM 99 0.9919 0.9880 0.984
SURF-Fine Tree 97.9 0.9839 0.97 0.97

accuracy with 90.7%. The highest accuracy is gained by HoG-Linear
SVM of 99% and the low accuracy of HoG-Fine Gaussian SVM with
72.6%.

The LBP had the lowest feature extraction performance with all
classifiers compared to MSER, KAZE, SURF and HoG. The second least
feature extraction interpretations were MSER, followed by KAZE. The
selection of the best feature extraction methods influences the classi-
fiers. SURF and HoG feature extraction methods were selected as the
best to encase with classifiers to avoid false negatives. The Naive Bayes
(Table 3) and k-NN were not applicable with most feature extraction
methods and thus were eliminated in the further evaluation process.

3.2. Best performing models

The highest accuracies from all classifiers are consolidated in Ta-
ble 3. The embedded classifiers HoG-Linear SVM and SURF-Decision
Fine Trees achieved the highest accuracy of 99% and 97.9%, respec-
tively. Therefore, these two classifiers are further evaluated with recall,
precision and F1-score metrics as exhibited in Table 4. HoG-Linear SVM
gains the highest F1-score with 0.984 compared to SURF-Decision Fine
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Fig. 17. HoG-Linear SVM ROC-AUC curve.

Tree Fl-score of 0.97. A 98.4% of correct defects are predicted to total
defect samples by trained HoG-Linear SVM model and in test data.
In contrast, with test data, SURF-Decision Fine Tree has fewer correct
defects predictions.

The selection of the best-fitting model anticipates factors such as
low FN, high recall, precision and Fl-score. Apart from accuracy, the
confusion matrix and ROC-AUC curve help calculate these influencing
scores and calibrate the model. Confusion matrices of HoG-Linear SVM
(Fig. 15) and SURF-Decision Fine Tree (Fig. 16) reveal the lowest FN
rate, with the former having 2% for positive class, zero for negative
class. The latter has an FN rate of 13% and 6% for positive and negative
classes, respectively.

The TP rate of HoG-Linear SVM is 98% for the positive class and
100% for the negative class and the TP rate of SURF-Decision Fine Tree
for the positive class is 87% and 94% for the negative class.
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The ROC-AUC curves provide AUC values for HoG-Linear SVM with
AUC = 1.00 and prediction probability of zero for negative and 0.98
for positive classes as demonstrated in Fig. 17. The SURF-Decision Fine
Tree has AUC = 0.92 and prediction probability of 0.06 for negative
and 0.87 for positive class predictions as represented in Fig. 18.

After assessing all the evaluation metrics from Table 3 and Table 4,
the best-performing embedded Machine Learning classifiers are HoG-
Linear SVM and SURF-Decision Fine Tree. These have negligible FN
leading Recall ~ 1.00, high precision and F1-score. The robust require-
ment for the proposed model is to achieve 100% of TP rate on the
prediction data and zero FN rate. The FN rate is essential for calibrating
the proposed model and ROC-AUC curves help with calibration. The
threshold curve is the ROC curve that separates positive and negative
classes, selected to obtain a significantly lower or zero FN rate and
maximum TP rate in the prediction process. From Figs. 17 and 18, as
the TP rate increases, the FP rate also increases. If the AUC of HoG-
Linear SVM decreases below 1.00 and SURF-Decision Fine Tree above
0.92, their FN rate increases. The FP rate is negligible (an experienced
examiner can scrutinise the FP visually) for the real-time usage of the
proposed system, but the FN rate should not be increased because of
the risk involved in the industrial offline-QA of aircraft production.

As SVM is primarily a binary classifier and HoG-Linear SVM has
performed best with the prediction data, selecting it as a predominant
classifier for the proposed approach is beneficial. Hence, it is further
evaluated with the POD certification process. SURF-Decision Fine Tree
can be an option for multi-class classification.

3.3. Comparison and constraints

The proposed HoG-Linear SVM classifier performs better than [10,
64]. But it has some constraints, such as the Linear SVM classifier is a
black box, as the path to its predictions is unknown. But Decision Fine
Tree is a grey-box as its prediction path is returned as a binary tree
split into branching nodes based on input data values.

A binary tree resulting from one of the proposed prediction analyses
is illustrated in Fig. 19. This binary tree starts with the root and has two
branches at each node; the nodes contain conditions for the predictions.
This tree has four and three levels, with the leaf nodes having the
predicted classes, thus explicitly demonstrating the prediction analysis.
The SURF-Decision Fine Tree can be feasible for real-time offline-
QA in aircraft industries for NDE 4.0 and inline-QA, but it could be
complicated with a heap of Decision Trees and branches. The HoG-
Linear SVM analysis from the proposed prediction dataset may not
reflect an accurate performance in the real-time industrial offline-QA
due to a deficit in additional positive class training data from each
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aircraft component. The FN was generated with the ‘fold’ defect type
from all the defects due to small fold size and fewer fold samples. More
training data can lead to an increase in the performance of the proposed
HoG-Linear SVM classifier.

Another constraint is the data loss from storing NDT scans as .jpg
images in the pre-processing phase. The .jpg format compresses images,
but the raw data can be converted to .bmp images using the same
ULTIS® NDT Kit software, as .bmp is an uncompressed raster and high-
quality file format. The signal analysis with a set of five .jpg and five
.bmp images from each aircraft component were analysed to determine
the data loss. The Peak Signal-to-Noise-Ratio (PSNR), Mean Squared
Error (MSE) and Structural Similarity Index Measure (SSIM) [73] are
commonly used to calculate data loss. For this signal analysis, SSIM for
measuring image quality is preferred. For input .bmp (reference image)
and .jpg (comparing image), images of a component are used to obtain
the local and global SSIM values and SSIM maps. If the SSIM value is
closer to 1, it signifies better input image quality.

Fig. 20 shows a sample local SSIM map of a component and the dark
pixels are the small values of local SSIM. The regions with small local
SSIM values correspond to areas where the .jpg image noticeably differs
from the .bmp image. The bright pixels represent the large values of
local SSIM. These bright pixel regions correspond to uniform regions
of the .bmp image, where data compression has less impact on the .jpg
image. The SSIM values for 15.1 component is 0.9962, 18.1 is 0.9953,
18.14 is 0.9940, 18.16 is 0.9944 and 18.17 is 0.9868.
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The data loss is calculated as in Eq. (8). The worst-case data loss
is 1.32% and the average data loss is 0.66%. These .bmp images were
trained and tested with the HoG-Linear SVM classifier and observed
that data loss had no influence on its performance.

4, Certification

The reliability of NDE is defined as determining the probability
of a defect in different defect-size datasets during the evaluation pro-
cess [74]. The quality assessment for the reliability of NDE is essential
for aircraft structural management [75]. The certification is a statistical
validation process for inspecting the reliability of NDE approaches
with POD analysis [76,77]. The proposed certification process is an
automatic error detection (intended for Ultrasonic Testing) to verify
if the proposed Machine Learning classifier can help an examiner in
QA. This process involves acquiring the bare scan of NDT data in
the squirter or X-ray systems and manually converting NDT scans to
images using ULTIS® for the Machine Learning process. The evaluation
is the human investigation of the scanned image to find defects in the
scan data and for the Machine Learning process, the trained classifier
accomplishes the prediction process. This qualification is based on the
POD concept to find defect sizes reliably.

In general, POD is translated into the reliability of finding a given
defect size in px (minimum size to be detected). The minimum size
contains the POD knowledge and is implemented with the 29/29
method. There are 29 defects in the minimum size to be detected and
this method has to detect all 29 reliably without missing one. Thus,
defect size in pX, aqy)9s, automatically fulfils the POD criterion: gain
0.9 at 95% without dealing with the POD concept. The disadvantage
of the 29/29 method is that the POD requirement is fulfilled, but the
test model’s reliability is unknown.

The certification process is mainly used to avoid the risks and
challenges such as software being a black-box has to be noted, training
an algorithm is crucial and requires expertise and reliability of the
Machine Learning model in terms of the new dataset, types of defects,
different NDT testing methods and feature extraction techniques.

Recent NDE 4.0 research has evaluated their Machine Learning
models for NDT data using POD [60,62,78,79]. The possible certi-
fication process with the proposed HoG-Linear SVM model includes
evaluation of NDT by the NDT-test engineer and algorithm for the
predictions of this model or collecting feedback from them regarding
the quality of the algorithm generated; evaluation leads to further
training of algorithm and repeats often. It can verify the model’s
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reliability while encountering new defect datasets and implementing
distinct feature extractions or validation methods. The HoG-Linear SVM
model’s confidence and adoption reliability in offline-QA in the aircraft
industry is analysed with a POD function.

4.1. Probability of detection

A POD is a function of the defect size; it evaluates the smallest
flaw size and combines its quantitative and qualitative parameters [80].
The 90/95 defect size information is used as a reference and detects
defects with a probability of 90% at 95% of confidence level [81]. Two
methods to determine POD are Hit/Miss data for binary data and signal
response data for continuous data. POD Hit/Miss results is a hit when
the defect is detected and failure is a miss.

TP

POD= ———— ©)
TP+ FN

Hit = a > aj4405 (10)

Miss = a < agngijest an

The POD is calculated using Eq. (9), where TP is a hit and FN is a
miss. Hit/Miss data has a defect size range in px, aj,,,,;.,; (minor defect
size of 6 px) and a;,,,, (maximum defect size of 383 px) to determine
the substantial uncertainty of the proposed HoG-Linear SVM model to
detect the defect or not. Hit/Miss data suits the proposed model as
SVM performs better as a binary classifier and SURF-Decision Fine Tree
could perform better as a multi-class classifier. A Hit is measured if the
inspection system detects a defect size, a that agrees on Eq. (10) and
a Miss is measured if the inspection system does not detect a defect
size, a that agrees on Eq. (11). For Hit/Miss data having a vast number
of smallest or largest defects will not help to gain information on the
POD(a) function that will fit the data. The information required for
estimating the POD(a) function has to be maximised so the defect sizes
are uniformly distributed between the smallest and largest defect size
of interest using the 29/29 method. The POD is calculated with new
defects and helps to measure the performance gap of the proposed HoG-
Linear SVM model with defect parameter size of defect area in px. The
overall defect range to be investigated is 6 px to 383 px and intervals
required within the defect size range to be investigated is 5 px.

In the 29/29 method, having a minimum sample of 29 defects
in each defect width interval is necessary. So newer defect dataset
was formed for the POD(a) function by combining the existing defect
samples and artificially created to generate more data. The artificial
defects were constructed using image augmentation methods of rota-
tion, skewing and mirroring. The smallest defect size in the positive
imageset is 6 px and the largest is 383 px. A sum of 29 artificial defects
was fabricated in each defect size interval (5 px - to generate more
defects), creating 29 x 5 = 145 defect samples. These 145 artificial
defects combined with the positive imageset of 189 + 16=205 existing
defects. So a total of 350 (145 + 205 = 350) defects with different
sizes (considerable cost) are used to create a POD(a) function. From
the existing negative imageset (233 + 7 = 240), images were cropped
to match the same defect width interval (5 px) to obtain 350 specimens.
So, these control specimens (350) are randomly mixed with the defect
specimens (350). The trained HoG-Linear SVM classifier must detect
all the 29 defects in that defect width interval to achieve the 90% PoD
with a 95% confidence level.

The trained HoG-Linear SVM classifier used the prediction process
to determine these 700 specimens, all Hit/Miss was recorded to plot
their probability as represented in Fig. 21. The proposed POD function
is prior improved due to the HoG image feature extraction method
containing denoising and feature vectors [82]. The performance gap
is calculated from the POD function (Fig. 21) as the difference between
the 90/95 and the smallest pixel size, 20 - 6 = 14 px. So a minor defect
of size 20 px can be identified as TP, achieving a POD of 90/95. The
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Miss rate included more of the ‘fold” defect type smaller than 8 px. The
performance gap of the proposed POD(20) can be minimised with better
quality of NDT scan perception. Since the PAG testers only flag defects
larger than a specific size, there might be more detectable defects in
the data samples, but their test reports do not exist for annotation.
The factors influencing the proposed POD(20) are NDT scan image
resolution (requires better image quality) and defect frame-filling (not
all defect samples are frame-filling, but control specimens were frame-
filling). Due to this frame-filling issue, POD(20) indicates that at least
20 px must be in an image with any defect size and 8-bit resolution
(256 px).

Evaluation of the data by a tester is time-consuming and has the
probability of missing defects. The HoG-Linear SVM model can save
time and reduce the frequency of miss counts by highlighting areas
of interest to the examiner. This model predicts defects based on
pixel-by-pixel scans and executes instantly.

5. Conclusion

Offline-Quality Assessment for NDT-FML of A380 aircraft structures
has been analysed to determine defects in the Ultrasonic Testing scan
images with state-of-the-art Machine Learning algorithms, SVM and
Decision Trees. These models are embedded with distinguished image
feature extraction techniques SURF and HoG. The combination of HoG-
Linear SVM (F1-score = 0.984, ROC-AUC = 1.00) and SURF-Decision
Fine Tree (F1l-score = 0.97, ROC-AUC = 0.92) outperformed all other
models. The HoG-Linear SVM was further evaluated with the certifica-
tion process with the POD function, enabling it to determine a defect
size of 20 px in images. The HoG-Linear SVM has a performance gap of
14 px that can be improved with more defect samples for training and
evaluation with industry partners for production.
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