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Abstract
This report documents the program and the (preliminary) outcomes of Dagstuhl Seminar 22401
“Computer Science Methods for Effective and Sustainable Simulation Studies”. The seminar
has been dedicated to addressing central methodological challenges in conducting effective and
sustainable simulation studies. Lightning talks provided the opportunity for participants to
present their current research and ideas to advance methodological research in modeling and
simulation. However, the lion’s share of the seminar was dedicated to working groups. One
working group investigated how machine learning and modeling and simulation can be effectively
integrated (Intelligent Modeling and Simulation Lifecycle). Another working group focused
on methodological challenges to support policy via simulation (Policy by simulation: seeing is
believing for interactive model co-creation and effective intervention). A third working group
identified 4 challenges closely tied to the quest for sustainable simulation studies (Context,
composition, automation, and communication – towards sustainable simulation studies) thereby,
focusing on the role of model-based approaches and related methods.
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Motivation. Simulation becomes more and more important in application areas, establishing
itself as the third way of science in addition to theory and (real) experiments. To answer
research questions, simulation studies form increasingly intricate processes that intertwine
the design and execution of various, often calculation-intensive simulation experiments, the
generation and refinement of simulation models, and steps of analysis.
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Figure 1 Schedule of the Dagstuhl Seminar Computer Science Methods for Effective and Sustain-
able Simulation Studies.

The Dagstuhl Seminar has been dedicated to addressing central methodological challenges
in supporting the conduction of effective and sustainable simulation studies. Thereby, the
seminar focused on problems and solutions related to improving:

Effectiveness: the usage of resources, including computing infrastructure and data, and
the assistance of humans throughout a simulation study.
Sustainability: continuing a simulation study into the future through support for reusing
or building upon its central products, such as simulation model, data, and processes as
well as the software used.

The last decades have seen a wide range of methodological developments in computer science
that are likely to be instrumental in achieving effective and sustainable simulation studies.
However, those efforts are scattered across different computer science fields that include high-
performance computing, (modeling) language design, operations research, visual analytics,
workflows, provenance, and machine learning, as well as modeling and simulation. The
seminar brought participants with diverse computer science backgrounds together to enhance
the methodological basis for conducting simulation studies.

Organization and results. Being one day shorter than typical seminars, the seminar started
on Tuesday with a short round of introduction and continued with collecting ideas about
achievements and challenges of modeling and simulation from the participants on 2 pinboards
(see Figure 1). 3 talks and partly extensive discussions followed, one focusing on modeling and
model-based approaches applied to simulation studies, one on high-performance computing
for simulation, and one on analysis and experiment designs. In the late afternoon, the
information gathered on the pinboards was revisited. In the end 3 working groups formed to
work towards state-of-the-art and open-challenges papers on the following topics:

Intelligent Modeling and Simulation Lifecycle
Policy by simulation: seeing is believing for interactive model co-creation and effective
intervention
Context, composition, automation, and communication: towards sustainable simulation
studies
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Among the application fields as diverse as cell biological systems, traffic systems, or
computer networks, one application dominated the discussions, i.e., Covid 19 simulation. The
Covid pandemic showed the importance of modeling and simulation studies being conducted
in an efficient, reliable manner, and, accordingly, of comprehensive, intelligent computer
support for these studies, it revealed limitations, including those referring to communicating
effectively modeling and simulation studies and their results to decision-makers. The results
of the working groups are included as short summaries in this report. Wednesday afternoon,
the participants presented their current research work and ideas in a series of lightning talks
whose abstracts are also included in the report. However, most of the time was dedicated
to the working groups. Plenary sessions on Thursday and finally on Friday allowed the
participants to catch up with ideas and the progress made in the different working groups.
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3 Overview of Talks

3.1 Towards Differentiable Agent-Based Simulation
Philipp Andelfinger (Universität Rostock, DE)

License Creative Commons BY 4.0 International license
© Philipp Andelfinger

Main reference Philipp Andelfinger: “Towards Differentiable Agent-Based Simulation”, ACM Trans. Model.
Comput. Simul., Vol. 32(4), Association for Computing Machinery, 2023.

URL https://doi.org/10.1145/3565810

Agent-based simulation models aiding the understanding, design, and optimization of sys-
tems reside on a spectrum with two extremes [5, 8]: mechanistic models are constructed
manually by formalizing domain knowledge about the structure and behavior of the system
under study, whereas data-driven models are generated by fitting generic parametric models
against empirical observations of the system. While mechanistic models are typically also
parameterized, adjusting the parameters does not alter the fundamental model logic.

The parameter synthesis for model calibration or optimization takes different forms
depending on the model category: data-driven models usually permit the computation of
the partial derivatives of the model output with respect to the parameters using automatic
differentation algorithms such as backpropagation [9]. Hence, gradient-based methods can be
used to steer the parameter combination towards local optima in the model’s response surface.
In contrast, mechanistic agent-based models tend to incorporate discrete decision-making
logic [5], which can lead to response surfaces dominated by discontinuities and plateaus,
thus largely preventing the fruitful use of gradient-based methods. As a consequence, most
simulation optimization efforts using agent-based models employ metaheuristics [6] such
as genetic algorithms or metamodeling approaches [4, 3], which generate an approximative
surrogate of the original model.

We explore methods to make agent-based models involving discontinuous building blocks
amenable to the automatic computation of gradients, under the hypothesis that the directed
local search afforded by gradient-based methods may exhibit better convergence behavior
than the existing approaches. Further, our aim is to enable the integration of the domain
knowledge encoded in mechanistic agent-based models with the flexibility of data-driven
models. By capturing the behavior of such a combined model, the computed gradients can
serve to swiftly identify high-quality solutions for problems in calibration, optimization,
control, and reinforcement learning.

Previously, we showed that when weighting the effects of different branches in the logic
of agent-based models using a smoothing function, gradients computed using automatic
differentiation can be used to accelerate the progress in traffic light control problems using
microscopic traffic simulations [1, 2]. Moreover, we showed that the integration of the
differentiable simulation model with a neural network enables the gradient-based training of
a neural traffic light controller. The weighted execution of branches can be regarded as an
approximation of an exact probabilistic program semantics, which is prohibitively expensive
in practical cases [7]. However, using simplifications, the computational costs can be reduced
to an acceptable level.

In the future, to avoid the need for modelers to manually apply smoothing to their agent-
based models, languages or APIs are required that allow simulation models to be executed
in their original or in a smoothed form. As models must be expected to vary severely in
their suitability for smoothing and their potential for improvements in optimization progress,
e.g., depending on the presence of continuous model elements, a categorization of models
according to such properties would be beneficial.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3565810
https://doi.org/10.1145/3565810
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By providing a natural way to unify mechanistic and data-driven models and the gradient-
based methods used for optimization, we hope for this work to reduce the gap between the
communities focused on mechanistic and data-driven modeling.

References
1 Philipp Andelfinger. Differentiable agent-based simulation for gradient-guided simulation-

based optimization. In Proceedings of the 2021 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, pages 27–38, 2021.

2 Philipp Andelfinger. Towards differentiable agent-based simulation. ACM Trans. Model.
Comput. Simul., 2022.

3 Russell R Barton. Tutorial: metamodeling for simulation. In 2020 Winter Simulation
Conference (WSC), pages 1102–1116. IEEE, 2020.

4 Atharv Bhosekar and Marianthi Ierapetritou. Advances in surrogate based modeling,
feasibility analysis, and optimization: A review. Computers & Chemical Engineering,
108:250–267, 2018.

5 Eric Bonabeau. Agent-based modeling: methods and techniques for simulating human
systems. Proceedings of the National Academy of Sciences, 99(suppl 3):7280–7287, 2002.

6 Benoît Calvez and Guillaume Hutzler. Automatic tuning of agent-based models using
genetic algorithms. In International Workshop on Multi-Agent Systems and Agent-Based
Simulation, pages 41–57. Springer, 2005.

7 Swarat Chaudhuri and Armando Solar-Lezama. Smoothing a program soundly and robustly.
In International Conference on Computer Aided Verification, pages 277–292. Springer, 2011.

8 Hamdi Kavak, Jose J Padilla, Christopher J Lynch, and Saikou Y Diallo. Big data, agents,
and machine learning: towards a data-driven agent-based modeling approach. In Proceedings
of the Annual Simulation Symposium, pages 1–12, 2018.

9 David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. Nature, 323(6088):533–536, 1986.

3.2 Parametric verification of stochastic model using stochastic
variational inference

Luca Bortolussi (University of Trieste, IT)

License Creative Commons BY 4.0 International license
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Joint work of Luca Bortolussi, Francesca Cairoli, Ginevra Carbone, Paolo Pulcini
Main reference Luca Bortolussi, Francesca Cairoli, Ginevra Carbone, Paolo Pulcini: “Scalable Stochastic Parametric

Verification with Stochastic Variational Smoothed Model Checking”, arXiv, 2022.
URL https://doi.org/10.48550/ARXIV.2205.05398

Parametric verification for stochastic models can be expressed as checking the satisfaction
probability of a certain property as a function of the parameters of the model. Smoothed model
checking (smMC) [1] aims at inferring the satisfaction function over the entire parameter
space from a limited set of observations obtained via simulation. As observations are costly
and noisy, smMC is framed as a Bayesian inference problem so that the estimates have
an additional quantification of the uncertainty. In [1] the authors use Gaussian Processes
(GP), inferred by means of the Expectation Propagation algorithm. This approach provides
accurate reconstructions with statistically sound quantification of the uncertainty. However,
it inherits the well-known scalability issues of GP. In this paper, we exploit recent advances
in probabilistic machine learning to push this limitation forward, making Bayesian inference
of smMC scalable to larger datasets, enabling its application to models with high dimensional
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parameter spaces. We propose Stochastic Variational Smoothed Model Checking (SV-
smMC), a solution that exploits stochastic variational inference (SVI) to approximate the
posterior distribution of the smMC problem. The strength and flexibility of SVI make
SV-smMC applicable to two alternative probabilistic models: Gaussian Processes (GP) and
Bayesian Neural Networks (BNN). The core ingredient of SVI is a stochastic gradient-based
optimization that makes inference easily parallelizable and it enables GPU acceleration. In
this paper, we compare the performances of smMC [1] against those of SV-smMC by looking
at the scalability, the computational efficiency and at the accuracy of the reconstructed
satisfaction function.

References
1 Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain

continuous-time markov chains. Information and Computation 247, 235–253 (2016)

3.3 Beyond DDDAS and symbiotic simulation
Wentong Cai (Nanyang TU – Singapore, SG)

License Creative Commons BY 4.0 International license
© Wentong Cai

Darema in 2000 as a paradigm where measurement data from an operational system is
dynamically incorporated into an execution model of that system, and computational results
from the model are then used to guide the measurement process. Independently, Symbiotic
Simulation [2] paradigm proposed in Dagstuhl Seminar on Grand Challenges for Modelling
and Simulation in 2002 solves the what-if problem by having the simulation system and
the physical system interact in a mutually beneficial manner. Since their inception, many
techniques have been developed to support DDDAS and symbiotic simulations. Digital Twin,
originally proposed by Michael Grieves in 2002 and popularized in recent years due to the rise
of IoT and AI, is “a real-time virtual representation of a real-world physical system or process
that serves as the indistinguishable digital counterpart of it for practical purposes, such as
system simulation, integration, testing, monitoring, and maintenance” [3]. Digital twin is a
concept. DDDAS and symbiotic simulation techniques form the basis for the realization of
digital twins. They emphasize on the interaction between the virtual and physical systems.

Moving beyond DDDAS and symbiotic simulation, data-driven and machine learning (ML)
techniques should be integrated in various stages of M&S. For instance, in addition to use
sensor data from physical system to calibrate simulation models, ML techniques can be used
to extract useful knowledge and insight from the data to facilitate model development. Data
analytics and ML techniques can also be used to manipulate or steer simulation experiments
on the fly (see Figure 2).

Some examples of our recent works along this direction include: Our PADS’21 paper [4] is
about how to use ML approach to create a car-following model (instead of using traditional
physics-based model) and how to dynamically calibrate the model using online data. Our
recent research work focuses more on using data-driven approach to improve performance
of simulation execution and simulation-based optimization. Our PADS’20 & PADS’22
papers [5, 6] are about dynamically analyzing simulation state to determine level of details
to be used in the model of a simulation entity during simulation execution. The objective
is to reduce the simulation runtime while maintaining accuracy of the simulation results.
We applied the approach to a semi-conductor manufacturing simulation. And our WSC’18

https://creativecommons.org/licenses/by/4.0/
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Figure 2 Beyond DDDAS – Integration of machine learning.

paper [7] uses an approach to dynamically predict the usefulness of a simulation run. If the
results of a simulation run won’t contribute to the overall optimization objective, then the
simulation run can be terminated early. In this way, the total number of simulation runs
required in a simulation-based optimization process will be reduced.

References
1 Dynamic Data Driven Applications System. (2022),

https://en.wikipedia.org/wiki/Dynamic_Data_Driven_Applications_System, [Online; ac-
cessed 23-Sept-2022]

2 R. Fujimoto, D. Lunceford, E. Page, and A. Uhrmacher. Grand challenges for modeling
and simulation. Schloss Dagstuhl. 350 (2002)

3 Digital twin. (2022), https://en.wikipedia.org/wiki/Digital_twin, [Online; accessed 23-Sept-
2022]

4 Htet Naing, Wentong Cai, Nan Hu, Tiantian Wu, and Liang Yu. Data-driven microscopic
traffic modelling and simulation using dynamic lstm. Proceedings Of The 2021 ACM SIGSIM
Conference On Principles Of Advanced Discrete Simulation. pp. 1-12 (2021)

5 Moon Gi Seok, Chew Wye Chan, Wentong Cai, Daejin Park, and Hessam S. Sarjoughian.
Adaptive abstraction-level conversion framework for accelerated discrete-event simulation in
smart semiconductor manufacturing. IEEE Access. 8 pp. 165247-165262 (2020)

6 Moon Gi Soon, Wen Jun Tan, and Wentong Cai. Hyperparameter Tunning in Simulation-
based Optimization for Adaptive Digital-Twin Abstraction Control of Smart Manufacturing
System. Proceedings Of The 2022 ACM SIGSIM Conference On Principles Of Advanced
Discrete Simulation. pp. 61-68 (2022)

7 Philipp Andelfinger, Sajeev Udayakumar, David Eckhoff, Wentong Cai, and Alois Knoll. A.
Model preemption based on dynamic analysis of simulation data to accelerate traffic light
timing optimisation. 2018 Winter Simulation Conference (WSC). pp. 652-663 (2018)
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3.4 Towards a new facility for model-based design and evaluation of
sustainable complex systems

Rodrigo Castro (University of Buenos Aires, AR)

License Creative Commons BY 4.0 International license
© Rodrigo Castro

Problems involving societies and their interactions with cybernetic systems in the context
of physical restrictions represent a paradigmatic case of Complex Adaptive Systems (CAS)
involving emergent behavior and micro-macro loops.

The study of dynamic CAS lack analytical solutions thus requiring simulation as the only
means for quantitative research.

If we add a layer of goal-seeking governance to inform real-world policy-making, legitim-
ately contradictory worldviews must be factored in. This paves the way to reaching what
has been termed as Wicked Problems, those that do not accept “correct” definitions nor
“optimal” solutions, but rather require discursive processes to reach a consensus about the
models themselves.

We postulate Planning for Sustainable Egalitarian Development as an embracing, flagship
case study that pushes the envelope of sustainable simulation, thus challenging the state of
the art and practice of several computer science disciplines (HPC, model checking, validation
and verification, visualization, to name a few)

The proposal includes building on control theory to include simulation models in the loop
of decision-making processes, creating a simulation-assisted arena to experiment with inter-
ventions, thus obtaining “feasible future developments” and analyzing them with advanced
visual analytics.

We envision a framework within which planners (human intelligence) and algorithms
(artificial intelligence) inform each other to obtain better strategies to use the simulation
models as demonstrators of feasible paths of development.

An advanced facility, such as an interactive and immersive visualization room for complex
data and reactive simulations shall integrate and boost capabilities for participatory model-
based design and evaluation of sustainable complex systems.

3.5 Challenges for Sustainable Twinning
Joachim Denil (University of Antwerp, BE) and Stijn Bellis

License Creative Commons BY 4.0 International license
© Joachim Denil and Stijn Bellis

Main reference Stijn Bellis, Joachim Denil: “Challenges and possible approaches for sustainable digital twinning”, in
Proc. of the 25th International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, MODELS 2022, Montreal, Quebec, Canada, October 23-28, 2022,
pp. 643–648, ACM, 2022.

URL https://doi.org/10.1145/3550356.3561551

Advances in digital twin technology are creating value for many companies. We consider,
from a sustainability perspective, how these digital twins can be better developed. At first
glance, the energy consumption of the twin during its life cycle can be described as follows:
Etotal = Edesign + Elocal + Enetworking + Ecloud + Eupdate. Decomposing this formula allows
us to see several challenges in the design and operation of a digital twin.
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Figure 3 Transformation of Models for a Digital Twin Architecture.

The choice of formalism. When developing a twin from detailed physics models (typically
modelled using partial differential equations), different choices concerning the formalism(s)
must be made. In Figure 3, we show some simplified paths to obtaining a digital twin.
Each operation takes a certain amount of energy while running a simulation using a specific
formalism during the twin lifecycle also takes energy. This results in trade-offs that need to
be managed. For example, creating a lumped model takes a lot of engineering time while
training a neural net takes a lot of energy.

The value proposition of the twin. From the perspective of simulation engineering, the
purpose has a huge influence on the engineering of the simulation model. Figure 4 shows how
simulation is used to decide on properties of interest. It also shows how approximated models
provide value for their users. Estimating how much uncertainty the decision maker can
tolerate for gaining enough value from the digital twin is a difficult problem. Furthermore,
once we know the allowable tolerance, we still need to include this in the formalism selection
process.

The evolution of the system and the twin. To allow for the long and continuous operation
of the digital twin, we need insight into the range of validity of the model in combination
with insights into the system’s evolution. Including the dimensions of evolution within the
formalism selection process is needed. Having a good estimate of these evolutions in frequency
and severity helps determine the needed boundary conditions and validity of the model. If
not considered, a new model needs to be used, possibly a model that consumes more energy.

The deployment of the twin. The final challenge is to reason about the deployment choices
related to the deployment architecture used for the digital twin. Most choices are impacted
by the system’s requirements, which in turn depend on the value proposition of the twin.
Some examples of choices include (a) where to run (parts of) the twin: local, edge or cloud?
(b) networking and telemetry choices, (c) cloud infrastructure and storage options.
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Figure 4 Approximations and their Effect on Validity.

3.6 The ASTRÉE Analyzer
Jérôme Feret (ENS – Paris, FR)
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David Monniaux, Xavier Rival: “A static analyzer for large safety-critical software”, in Proc. of the
ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation 2003, San
Diego, California, USA, June 9-11, 2003, pp. 196–207, ACM, 2003.

URL https://doi.org/10.1145/781131.781153

The ASTRÉE analyzer [2, 3, 4] aims at statically proving the absence of Run-Time errors
in critical embedded software. Following the abstract interpretation framework [1], it is
based on a formal semantics of C. Then various abstract domains are available to abstract
this semantics. The correctness of the approach is proven by construction. ASTRÉE has
been used successfully to certify the absence of run-time errors in the primary flight control
software of the A340 (2003), the primary flight control software of the A380 (2005), and a C
version of the animatic docking software of the Jules Vernes ATV (for the International Space
Station). Since 2009, it is commercialized by Absint Angewandte Informatik (Saarbrücken)
and is used mainly in automotive software, but also, in avionic and nuclear software.
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3.7 Fighting COVID-19 with Simulation
Peter Frazier (Cornell University – Ithaca, US)

License Creative Commons BY 4.0 International license
© Peter Frazier

Joint work of Peter I. Frazier, J. Massey Cashore, Ning Duan, Shane G. Henderson, Alyf Janmohamed, Brian Liu,
David B. Shmoys, Jiayue Wan, Yujia Zhang

Main reference Peter I. Frazier, J. Massey Cashore, Ning Duan, Shane G. Henderson, Alyf Janmohamed, Brian Liu,
David B. Shmoys, Jiayue Wan, Yujia Zhang: “Modeling for COVID-19 college reopening decisions:
Cornell, a case study”, Proceedings of the National Academy of Sciences, Vol. 119(2),
p. e2112532119, 2022.

URL https://doi.org/10.1073/pnas.2112532119

Universities faced a difficult decision in summer 2020: whether to reopen for in-person
instruction despite the pandemic and how to protect students, employees, and the surrounding
community if they did. Simulation was critical to this decision at Cornell University in the
USA, which successsfuly reopened for in-person instruction in fall 2020 under the protection
of an asymptomatic screening that tested all undergraduate students twice per week. This
talk discusses key factors that helped simulation modelers earn credibility and influence:
transparency, designing a testing strategy that was robust to the unknown, explaining analysis
in a simple clear way, understanding stakeholders’ incentives, responsiveness to stakeholder
questions, and a focus on providing value.

3.8 Virtual Time Integration of Emulation and Simulation Systems for
Smart Grid Application Testing and Evaluation

Dong (Kevin) Jin (University of Arkansas – Fayetteville, US)
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Modern energy systems are increasingly adopting Internet technology to boost control
efficiency, which unfortunately opens up a new security frontier. As a result, extensive
applications have been proposed to enhance the cyber resilience and security of those critical
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infrastructures. Incorporation of new technologies in such systems is very challenging
because of strong real-time requirements, continuous system availability, and many resource-
constrained legacy devices. Therefore, a testing platform targeting such cyber-physical
systems is strongly needed for the research community to evaluate the new application and
system designs and their impact on the power systems before the real deployment.

We develop a unique testbed, DSSnet [1], combining container-based network emulation
and power system simulation using a novel Linux-kernel-based virtual time system. DSSnet
enables the modeling of a modern power distribution system and simulates the Intelligent
Electrical Devices that make it up. DSSnet also enables high-fidelity analysis by allowing
real networking applications to run in the network emulator and interact with the power
simulator. DSSnet is composed of the following main components: (1) a container-based
network emulator, Mininet [2] that allows execution of real software and communication
network applications, (2) an electrical power distribution system simulator, OpenDSS that
enables power flow simulation studies [3], (3) a unique Linux-kernel-based virtual time system
[4] for synchronization of the two sub-systems, which significantly enhances the temporal
fidelity issues in ordinary co-simulation or hardware-in-the-loop testbeds; (4) two coordinators
for interfacing with the cyber- and physical-side modules and the virtual time system; and
(5) a distributed software-defined networking (SDN) control environment, ONOS [5] that
provides high-level abstractions and APIs for power grid control applications to manage,
monitor and program the emulated communication network.

One key challenge is synchronizing the execution of the power simulator and the container-
based emulator. This is because all the processes in the emulator execute real programs
and use the system clock to advance experiments, while the simulator executes models to
advance experiments with respect to its simulation virtual clock. To address this issue,
we developed an independent and lightweight middleware in the Linux kernel to support
virtual time for Linux container [4]. Our system transparently provides the virtual time to
processes inside the containers, while returning the ordinary system time to other processes.
No change is required in applications. Next, we expanded the capability of the testbed with
a distributed virtual time system [6] that enables processes and their clocks to be paused,
resumed, and dilated across embedded Linux devices through the use of hardware interrupts
and a common kernel module. The distributed system architecture uniquely consists of a
common virtual time Linux kernel module and three communication channels, one for virtual
time synchronization using general-purpose-input-and-output (GPIO) hardware interrupts,
one for connecting the embedded Linux devices, and one for interfacing with the physical
system simulation that performs an offline computation. Additionally, we modeled and
analyzed the temporal error during non-CPU operations, such as disk I/O, network I/O, and
GPU computation, and developed a barrier-based time compensation mechanism to enable
accurate virtual time advancement with precise I/O time measurement and compensation [7].

In summary, we present DSSnet, a testing platform that combines an electrical power
system simulator and a communication network emulator using a virtual time system. DDSnet
can be used to model and simulate power flows, communication networks, and smart grid
control applications, and to test and evaluate the effect of network applications on the smart
grid.
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Performance is one of the core motivations in the field of parallel and distributed simulation.
Contributions for new methods and optimizations frequently rely on custom models, paramet-
rizations, and baseline implementations. This makes a direct comparison between methods
and approaches difficult. We present our vision and initial steps towards COMPADS, a
benchmark model and repository for reproducibly comparing the performance of parallel and
distributed simulators and their respective algorithms. COMPADS[1] is short for COMparing
Parallel And Distributed Simulators. The first results include a novel deterministic-by-design
synthetic benchmark model inspired by PHOLD and La-pdes. The benchmark output is a
checksum that attests to the correctness of an implementation and its execution. So far,
implementations exist for the simulators ROOT-Sim and ROSS.
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3.10 Simulation Based Analysis of Social Systems – Models, Data and
Policy

Michael Lees (University of Amsterdam, NL)
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The role of modelling and simulation in the scientific domains has had a long history
and computational X is now a well-established area in Physics, Chemistry, Biology and
more. During the last decade with the increase in detailed data, and the development of
novel modelling techniques, the application of modelling and simulation has become more
commonplace in the social sciences. In some cases, these models provide scientists and
policymakers with unique ways to reason about sociological challenges (e.g., Polarization,
Segregation and Inequality).

In this talk, I present a sample of current work [1] in which we develop models to under-
stand the process of primary school choice and school segregation with the Municipality of
Amsterdam. In the talk, I present an agent-based model where households face residential de-
cisions depending on neighbourhood compositions and make school choices based on distance
and school compositions. Using a global sensitivity analysis we demonstrate that the observed
excess (the level of school segregation compared to residential segregation) segregation in
schools occurs for a wide range of parameters and demonstrate that asymmetric preferences
(residential vs. school selection) are not a requirement for excess school segregation.

Using this case study I highlight a number of challenges and opportunities for modelling
and simulation within the social sciences. Firstly, the use of models for theory building
and testing in social sciences, in particular how simple models with clear assumptions
can demonstrate potential causes for social phenomena. Secondly, using techniques from
simulation-based inference I demonstrate how novel calibration methods offer promising
solutions to calibrate city-scale models of social dynamics using microdata. Finally, I present
some real-world cases where a “digital twin” of the city can be used to answer important
policy questions for the municipality of Amsterdam and help them statistically estimate the
likely outcomes for different interventions.

I conclude the talk by highlighting a number of initiatives [2] within Amsterdam and
the Netherlands where new computational infrastructure presents unique opportunities to
conduct computational social science and modelling simulation at a city and country-wide
scale.
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3.11 Parallel Simulation – What Worked and What Not
Jason Liu (Florida International University – Miami, US)
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Parallel discrete-event simulation (PDES) refers to the class of techniques and tools for
efficiently running discrete-event simulation on parallel and distributed computing platforms.
Applications of PDES include performance modeling and simulation of large systems. Sim-
ulation of large systems exacts high computational demand, and successful PDES efforts
must be able to cope with both the scale and complexity of the target systems on modern
parallel computing architectures. In this talk, we summarize some of our research efforts for
developing and applying parallel simulation of various systems.

Traditional PDES research has been largely focused on examining efficient parallel
synchronization algorithms and incorporating those in simulation tools for general applications.
Previously, we developed DaSSF [1], a simulator implemented in C and C++ that incorporates
a composite parallel synchronization algorithm [2]. The algorithm was extended to run
on both shared and distributed memory architectures and was implemented in a simulator
called MiniSSF [3]. We have also explored the use of scripting languages (including Python,
LUA, and Javascript) to simplify model development. The simulator, called Simian, was
shown to be able to achieve good, and in some cases, even superior performance by taking
advantage of just-in-time compilation [4]. One latest effort was the development of a simulator
with full-fledged support for the process-oriented simulation world-view in Python for fast
development cycle [5]. Abraham Maslow once said: “If you have a hammer, everything
looks like a nail.” These and other simulators have been used for simulations of large-scale
computer systems and networks, including the Internet [6], mobile ad-hoc networks [7],
high-performance computing interconnection networks [8], and parallel files systems [9].

PDES not only enables large-scale simulation of complex systems, but can also be
incorporated with real-time and interactive simulation of large systems due to its superior
simulation performance. We previously designed and implemented a real-time network
simulator to run on parallel and distributed platforms [10]. With real-time simulation,
simulated network protocols, such as TCP, can seamlessly interact with real network entities
in a hybrid simulation and emulation setting [11]. One can also control and steer the network
experiments in real time – for example, by injecting network events and observing the results
via a remote dashboard during the live experiment [12].

Many large complex systems feature a huge number of components and processes that may
inter-operate across multiple layers of the system hierarchy and at different time granularity.
A fine-grained simulation may not be able to scale up to the required size even if PDES
could achieve linear speedup. Solving problems in many cases does not require brute force.
George Box once said: “All models are wrong but some are useful.” In this case, one must be
able to use multi-resolution models to balance the trade-off between simulation performance
and accuracy. A case in point is the hybrid network traffic modeling, which combines fluid
traffic models (e.g., based on ordinary differential equations) and packet-oriented simulation
to achieve faster-than-real-time performance for large-scale network simulation [13, 14].
Another example is network simulation and emulation symbiosys. To allow high-fidelity
high-performance large-scale network experimentation, one can run a full-scale detailed
network model on high-performance parallel computing platforms, and an emulation system,
which executes unmodified applications in a virtual machine environment configured to
represent the target system. Both systems need to represent the same traffic behavior. We
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applied model reduction techniques to scale down the model complexity both in emulation
to improve its performance and in data exchange between the two systems to reduce the
synchronization and communication overhead [15, 16].

We observe PDES research has evolved by leaps and bounds over the last three decades.
Many PDES techniques and tools have matured in various domains, although the community
continues to discover new techniques, tools, and applications, many coinciding with the
emergence of big data systems, machine learning techniques, and data-driven applications.
We predict PDES will continue to play an important, and sometimes indispensable, role
in modeling dynamic and complex systems, in many cases though combining with new
techniques in order to provide its unique capability in solving problems.
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3.12 Simulation at the Edge
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Mobile networks evolve roughly every ten years, each generation bringing new services and
capabilities. By 2030, 6G will bring more capable, intelligent, reliable, scalable, and power-
efficient communications. This will enable new applications such as holographic telepresence,
collaborative autonomous driving and personalized body area networks [3]. The 6G era
will help realize the hyper-connected world of people, data and things – the Internet of
Everything (IoE). It will also enable a focus on small data, generated by the plethora of edge
devices embedded in our everyday world. The IoE will create a need for efficient processing
of massive amounts of small data and edge intelligence, a process where data is collected,
analyzed, and insights produced near the end user. The promise of 6G and the emergence of
edge intelligence will provide users with actionable real-time information. An extension of
this concept is to also provide users with actionable real-time predictions. The intersection
of edge computing, sensor networks, artificial intelligence and online predictive simulations
enable a new vision called Simulation at the Edge.

Simulation Paradigms. Paradigms for sensor-driven simulations first emerged in the mid-
2000s with concepts like symbiotic, ad hoc and data driven adaptive simulation systems.
Symbiotic simulation is a paradigm which refers to a close relationship between a simulation
system and a physical system. It was defined at the Dagstuhl Seminar on Grand Challenges
for Modeling and Simulation in 2002 [5]. The simulation system benefits from real-time
measurements about the physical system which are provided by sensors, and the physical
system may benefit from decisions made by the simulation [1]. An important concept
in symbiotic simulation is the “what-if” analysis, where multiple experiments investigate
alternative scenarios based on data from the physical system. Symbiotic simulation does not
refer to a specific type of simulation (e.g., real-time, discrete event), it is an umbrella term
which refers to independent simulations employed to analyze alternative scenarios regarding
a physical system.

The Dynamic Data-Driven Application Systems (DDDAS) concept utilizes online data
to drive simulation computations, and the results are then used to optimize the system or
adapt the measurement process [2]. For example, live sensor data and analytics can be used
to construct or infer the current state of a system and faster-than-real-time simulation can
then be used to project the system’s future state. Also, simulation can be used to control an
operational system, e.g., data from a real system are fed directly into the simulation model
which analyzes alternate options and produces recommended courses of action.
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An ad hoc distributed simulation is a collection of autonomous on-line simulations, each
modeling some portion of a larger physical system, that are brought together to predict
future states of the overall system [4]. In a conventional distributed simulation, the system
being modeled is partitioned into non-overlapping elements (e.g., geographic regions) in a
top-down fashion. By contrast, ad hoc simulations are constructed bottom-up, resulting
in multiple simulators modeling common, overlapping portions of the physical system. In
other words, it is constructed in an “ad hoc” fashion, in much the same way a collection
of mobile radios join together to form an ad hoc wireless network. Ad hoc simulations are
on-line simulation programs, meaning they are able to capture the current state of the system
through measurement, and then execute forward as rapidly as possible to project a future
state of the system.

Edge Intelligence and Simulation. These simulation paradigms have some similarities in
their approach, but different levels of success in accomplishing their vision. For example, they
are all data-driven using real-time sensor input and the simulations run faster-than-real-time
to predict future state, look at “what if” scenarios or steer measurements. Where they differ
include their interaction or feedback with the physical system, as well as the number of
simulations in use. For example, DDDAS can be tightly coupled with the real system, steering
the measurement process, where symbiotic and ad hoc do not. Further, ad hoc uses more
than one simulation to model different parts of a system, whereas symbiotic and DDDAS are
focused on a single, central simulation. DDDAS has been quite successful modeling large
scale structural systems, urban water systems and transportation systems; and symbiotic
simulations have had success in semiconductor manufacturing, business process optimization,
and control of unmanned aerial vehicles. While research into ad hoc simulation has been
limited to transportation and queueing systems [6], it has so much more potential in the era
of 6G and IoE.

The proliferation of mobile computing and IoE, edge computing is an emerging paradigm
that pushes computing tasks and services from the network core to the network edge. Edge
computing is widely recognized as a promising solution for processing the “zillion” bytes
of data generated by IoE devices [7]. It has also has attracted attention for its promise
to reduce latency, save bandwidth, improve availability, and to keep data secure. At the
same time, a proliferation of AI algorithms and models which accelerate the deployment of
intelligence in edge devices has emerged. These trends, called Edge Intelligence, can power
the evolution of ad hoc simulation to Simulation at the Edge.

Embedding simulations within edge intelligence brings the simulation closer to the data,
lessening the need to aggregate sensor data in order to reduce communication bandwidth
requirements. It also has the potential to be more resilient to failures, especially communica-
tion failures, as portions of the system could be managed under local control. The application
of intelligent edge devices embedded with predictive simulations are varied and diverse. They
could be used to monitor transportation systems, or rerouting vehicle traffic after a severe
accident; track the spread of wild fires, floods, and pollution; optimize emergency responses,
such as evacuations during floods or tornadoes; provide self-optimizing communication net-
works, by reconfiguring the physical network to improve performance and avoid bottlenecks;
or respond to breakdowns within a manufacturing system.

Despite the decades of research in symbiotic, DDDAS and ad hoc simulation, research
challenges remain. These include: compact representation of system state, fault tolerant and
robust systems, multi-resolution modeling, and automatic validation [5]. Like its predecessor,
distributed Simulation at the Edge raise a number of intriguing questions. Can such a
distributed simulation make sufficiently accurate predictions of future system states to be
useful? Can they incorporate new information and revise projections more rapidly and/or
effectively than conventional approaches, e.g., global, centralized simulations? How would
Simulation at the Edge be organized and operate? The power of edge intelligence and 6G
could be the catalyst to help answer these questions.
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3.13 Bottlenecks of using simulation for policy making
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Computer simulation has become an established method for assessing uncertainty by con-
ducting what-if analyses across a variety of disciplines and domains. It allows us to observe
the behavior of a system under different circumstances and to investigate the potential
consequences of different actions or interventions without actually interfering with the system
we want to analyze. During the Covid-19 pandemic, for instance, we could see that a great
number of models was developed already in the first months after the initial outbreak of
the crisis [1]. Figure 5 shows that models were developed for all different kinds of potential
interventions and to investigate how they possibly might affect transmission processes and
the overall dynamics of the pandemic.

In practice, however, many researchers experienced that their models and the results
generated by their simulation studies were not considered by policy makers when deciding
upon which interventions to pursue and implement. In addition to this, other shortcomings
in the development and application of simulation models and the conducting of simulation
studies could be observed. Most researchers, for instance, did not reuse existing simulations
and instead have chosen to start developing new models and to conduct new studies, which
affects responsiveness in crisis situations. Potentials reasons might be the limited availability
of models, ambiguous documentations of the models and previously conducted studies, or

22401

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


22 22401 – Computer Science Methods for Effective and Sustainable Simulation Studies

Figure 5 Number of models that support the simulation of non-pharmaceutical and pharmaceutical
interventions [1].

a general lack of trust in simulations studies conducted by others. This leads to a series
of questions regarding why simulations sometimes fail to support what they were actually
intended for namely to provide valuable insights and to facilitate decision making processes.

In this regard, when we discuss how to improve the effectiveness and sustainability of
simulation studies, it seems that there might be different perspectives on this very issue. A
simulation that we as developers and modellers consider highly insightful, comprehensive,
and trustworthy might not be convincing, helpful, or plausible for the decision makers the
study was intended for. Therefore, when discussing the effectiveness and sustainability of
simulation studies, we should not forget about the stakeholders that might be involved in the
process of a simulation study. How can we make sure to develop and generate what decision
makers actually need? Why do we prefer to conduct own (new) studies instead of reusing
the models and results of others? And how can we improve the rigor and trustworthiness of
our studies?
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3.14 Supporting Transparent Simulation Studies: The Role of
Provenance Information
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Computational science experiments and simulation studies often require significant computa-
tional and human resources, making it impractical or impossible to repeat (i.e., reimplement
and/or re-execute) these studies for reproducibility purposes. Transparency, on the other

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Wentong Cai, Christopher Carothers, David M. Nicol, and Adelinde M. Uhrmacher 23

hand, is arguably always desirable [8] and can be achieved by revealing and laying open the
assumptions, general approach, computational methods, codes, parameter settings, runtime
environments, and – last not least – the data sources used to conduct a study. Regarding
the latter, precisely identifying the correct subsets of data that were used in a computational
experiment is already a difficult challenge [3, 12].

Provenance (a.k.a. lineage) information captures the origin and processing history of data
products [5, 7, 6], i.e., it is a form of metadata that provides the technical means to support
transparency [10]. While the existing W3C standard PROV [11] provides a minimal baseline
for exchanging provenance information, domain-specific extensions need to be developed by
and for the community to capture more of the application context, the semantics of data
and parameters, and assumptions of simulation models and scientific workflows [13, 16].

Transparent research objects [1, 15, 4, 10, 9, 14], with their data, computational, and
provenance artifacts, and research papers (which tell the “science story” of a paper) will con-
tinue to co-evolve and should ultimately converge towards open, transparent, and reproducible
research tales [2]. – Declaremus et calculemus!
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3.15 Interactive Visual Analysis for Simulation
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Visualization and interactive visual analysis have been used to explore and analyze simulation
data for a long time. At the beginning, results of single run simulation have been visualized.
With advancement of storage and computing technologies, the models became more and
more complex and, at the same time, ensemble summation or simulation experiments –
multiple simulation runs using variations of the same model – became possible. In case of
computational fluid dynamics simulation the ensembles contain a relatively small number of
members. Due to large and complex spatial-temporal data and long computing time it is not
feasible to compute many models. Wang et al. [6] provide a recent survey on visualization of
such ensemble simulations. In cases where simulation can be computed fast it is possible
to compute hundreds, thousands or even tens of thousands of simulation runs. Matković et
al. [4] provide an overview of such approaches.

The main idea here is to deploy coordinated multiple views that visualize multidimensional
parameter space and complex simulation results at once. Interaction is used to support
exploration and analysis. The user can brush, i.e. interactively select a subset of data in
any view, and the items correspond to the brushed subset will be highlighted in all views.
The idea functions if the number of parameters does not exceed half a dozen, or so. A
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parameter space of a higher dimensionality requires many runs in order to be sufficiently
covered. Interactive simulating ensemble steering can be used in such cases. A kind of
automatic analysis can be integrated in order to guide the expert.

In the case of multi-model simulation, there is little available support from the visualization
community. Simultaneous exploration of simulation results computed with models of different
levels of detail remains a challenge for the visualization. Large data, hierarchical data
structure, and a need for fluent switching of context depending on level (and maybe even
providing the overall context across the levels at the same time) is subject of future research.
However, based on successful deployment of interactive visualization in the simulation
community up to know, it is plausible to reason that interactive visualization can become a
key interface in navigating in complicated multi-level models and simulation results, and a
great support in comprehending underlying phenomena for different stake-holders. Scalability
often represents a serious problem in visualization for simulation. In case of multi-model
simulation, scalability will also represent a challenge. Finally, provenance tracking will gain in
importance, as user actions across multiple levels need to be stored and recalled on demand.
Finally, Dimara and Stasko [1] recently reported on the missing link between user tasks
in visualisation taxonomies (e.g., sensemaking) and the high-level task of decision-making.
One of the key causes of this mismatch is a lack of interdisciplinary approaches. A close
collaboration with simulation experts represents a valid approch to establishing the missing
link.

In order to support future requirements from the simulation community we need further
advances in interactive visualization. We expect the novel approaches to be inspired by
several directions of interactive visualization, depending on the simulation methods and
corresponding models, as well as on the identified explorative tasks. Besides coordinated
multiple views, the promising pillars of future research are certainly focus and context
techniques [3], comparative visualization [2], tree [5], networks and graphs visualization, as
well as plethora of existing visualization for simulation methods and provenance tracking.
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3.16 A logic-based approach to reason about large-scale
spatially-distributed systems

Laura Nenzi (University of Trieste, IT)
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From the reliability in a wireless sensor network to the formation of traffic jams, spatio-
temporal patterns are key in understanding how complex behaviors can emerge in a network of
locally interacting dynamical systems. One of the most important and intriguing questions is
how to describe such behaviors in a formal and human-understandable specification language.
A possible approach consists in using formal methods and in particular logic languages. In
this talk, we show how a logic specification can be used to specify and analyse complex
behaviours of large-scale spatially-distributed systems. Furthermore, we briefly show how
we can use the logic for parameter synthesis, anomaly detection and the automatic feature
extraction from spatio-temporal data.

3.17 On the Attractiveness of Speculative PDES: Challenges and
Pitfalls

Alessandro Pellegrini (University of Rome “Tor Vergata”, IT)
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Introduction: The last 40 years have witnessed an explosion of methodologies and techniques
related to speculative PDES [8]. Looking at the history of this research line, while performance
aspects have always been paramount, each decade has seen its hot points. Roughly speaking,
in the first decade, algorithmic solutions were proposed that enabled significant speedups
with relatively little effort (see, e.g., [12]). The second decade began to propose solutions for
the adaptivity of particular simulation aspects (see, e.g., [6, 10]). The third decade focused
on effectively supporting models’ programming by hiding the complexity of Speculative
PDES (see, e.g., [23]). The fourth decade showed the technique’s robustness even on new
hardware/software architectures [2, 13, 21].

We can conclude that Speculative PDES brings together effective solutions and meth-
odologies for executing many classes of models, offering significant speedups and making
tractable problems that otherwise would not be.

However, these results do not appear to be generally exploited. Market penetration of
these techniques is severely limited and often, with some exceptions, confined to the academic
sphere. The research community has already shown that there are various scenarios in which
exploiting speculative PDES can bring benefits (e.g. Agent-Based Models [1], Spiking Neural
Networks, SNN [20, 16], Traffic [11] and Hardware Architecture Simulations [25]). However,
the most widely used simulation software does not consider this methodology at all. To give
a few examples, in traffic simulation, SUMO [3] is single-threaded; in SNN simulations, most
simulators are sequential (Brian [22]) or, if parallel, are based on conservative/time stepped
algorithms (NEST [9]). Architecture simulators, such as gem5 [4], are also sequential.

Over the past few years, we have been wondering what the reasons might be for this poor
uptake of methodologies that the scientific community has proven to be effective in many
fields. From these motivations, we have tried to identify some challenges that we believe are
relevant to make Speculative PDES more attractive to other fields of research and industry.
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Challenges. In general, using speculative PDES to support model execution is difficult.
However long and deep the problem has been studied, it is still not wholly possible to hide the
complexity of algorithms such as Time Warp from model developers. While some solutions
allow the technical complexities to be hidden, it is still true that a model not explicitly
developed for Time Warp may provide inadequate performance. Work on self-tuning and
self-optimization has shown that it is possible to improve overall performance by optimizing
specific parts of the algorithm (e.g., the GVT computation). However, a significant challenge
could be to build an optimization approach capable of mixing different, more or less optimistic
algorithms that can provide no worse performance than a sequential simulation.

Attractiveness to other domains must necessarily come through real-world models, which
has also recently been recognized as vital [19]. The scientific community has often used
synthetic benchmarks (see, for example, [7, 17]) to study Time Warp behaviour. However,
scientists in other fields or industrial settings may be unable to map these results to their
use cases. An important challenge could be to design and implement a real-world benchmark
suite to show how effective speculative PDES can be in these areas. Approaches of this kind
have already been followed in other research fields (see [15]) and could be successful for more
widespread adoption of speculative PDES.

Another problem that makes using Speculative PDES difficult is that among the various
implementations built by research groups (see, e.g., [5, 18, 14]), there is no uniformity
of interface. PDES researchers have done much work on abstract model representations
(e.g., [24]), but an agreement on interfaces among developers of runtime environments would
also be desirable. Moreover, this would greatly help in the cross-fertilization of approaches
used in the runtimes and would more easily allow experimental studies to be carried out,
also bringing benefit to the scientific community dealing with PDES.

Another problem we encountered is related to the quality of support libraries for PDES
runtime environments. Many tools rely on MPI interfaces for message exchange, which
is a correct choice to support deployment on supercomputers. Unfortunately, it has been
observed that the most modern MPI features are not widely used in the High Performance
Computing world, especially those related to asynchronous execution. The result is that
the most common implementations often suffer from correctness bugs1. Moreover, MPI
libraries do not consider highly concurrent and asynchronous usage patterns. Thus, even if
the implementations are correct, they do not hold up to the message rate, especially if the
runtime is highly optimised. This makes the work done on runtime environments unusable
by researchers in other fields. The experience gained in developing runtime environments for
speculative simulations could be used to create extremely fast message exchange libraries
geared toward speculative PDES simulations. In this way, the usability of research results
could be significantly improved.
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3.18 Methods for Integrated Simulation – from Data Acquisition to
Decision Support

Niki Popper (Technische Universität Wien, AT)
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Diversity and Heterogeneity of man-made systems increase rapidly and so do the costs spent
for them. Measuring efficiency and effectiveness becomes more and more elaborate but is an
urgent need. Development of new methods, models and technologies is needed to support
analysing, planning and controlling. The quantity and quality of available data strongly
increase and therefore facilitate the description and analysis of systems like health care.
Bringing together necessary technologies is an enormous challenge.

Data-based Demographic models have to be combined with models for the spread of
diseases. Dynamic modelling concepts must be parametrised with complex data sets from
various sources. For system simulation, an important aspect is the possibility to implement
changes inside the system, like interventions within the computer model, and analysing their
effects. As a recent example see Covid-19 Modelling at TU Wien [1]).
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Figure 6 Schematic overview of DEXHELPP infrastructure and process.

On basis of experiences of the Austrian DEXHELPP Competence Centre for Decision
Support in Health Policy and Planning [2], which started in 2014 a concept was developed
how large, interdisciplinary teams can handle these complex processes in the future and
what are similarities and differences between health systems and other complex man-made
DEXHELPP developed. DEXHELPP developed an innovative research infrastructure with
(1) a flexible virtualised health system, (2) methods to cope with data, (3) an adaptive
analysis and simulation methods pool and (4) stakeholder-oriented interfaces to enable
researchers and other stakeholders to share data and methods for research and decision
making. (see Figure 6).

“Ten Concepts to Integrate” were identified and first presented at Invited Talks at the
University of Rostock [3] and University of Stuttgart [4]. The ten concepts are (1) Methods to
Assess and Improve Quality of Data, (2) Potential to Integrate Missing Data, (3) Modular &
Efficient Solutions, (4) Reproducible Processes, (5) Different Methods for Different Research
Questions, (6) Comparability of Results, (7) Possibility of Communication of Advanced
Simulations, (8) Open and Independent Solutions, (9) Priority for Data Security and Stake
Holder Interests and (10) Broad Applications like Health System, Energy, Industry, Energy,
Mobility and Infrastructure Planning and Usage (see Figure 7).

“Methods to Assess and Improve data Quality of Data” and “Potential to Integrate
Missing Data” (summarized as “Data” in Figure 7) offer the possibility to find wrong data
and correct them, ideally also during the simulation process. For this purpose, methods of
interactive visualisation and statistics are used, among others, to preprocess data collected
unilaterally, e.g. sensor data or reimbursement data or to link data that are unstructured or
have different structures without direct linkage, e.g. [5].

To develop “Modular & Efficient Solutions” using “Different Methods for Different
Research Questions” and maintain “Comparability of Results” (summarised as “Model” in
Figure 7) includes sustainable, modular models that can be quickly adapted to new problems
and concepts for comparing, combining and linking models (qualitatively and quantitatively)
in order to demonstrate the benefits and limitations of the concrete model. As an example
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Figure 7 10 Concepts to integrate into simulation processes.

the DEXHELPP Population Model GEPOC (Generic Population Concept) was used for
Covid-19 Modelling in order to guarantee rapid and quality-assured implementation, e.g. [6]
also to compare it in the ECDC Covid-19 Scenario Hub [7].

“Reproducible Processes” and the “Possibility of Communication of Advanced Simulations”
(Blocks 4 and 7 in Figure 7) are essential to guarantee the credibility and usability of the
models. We need tools to manage and share data (e.g. [8] and models and to communicate
not only the simulation results, but also the modelling process and model construction.

Last but not least, guidelines, standards that go beyond the concrete implementation are
crucial (Blocks 8-10 in Figure 7). Here, the concepts of “Open and Independent Solutions”,
“Priority for Data Security and Stake Holder Interests” and “Broad Applications” are
crucial. The possibility of publication is limited, for example, by (justified) economic or data
protection interests, which, however, leads to a lack of comparability of different models and
thus jeopardises quality. This requires fundamental regulations such as those addressed in the
General Data Protection Regulation and Data Governance Act. And clear and transparent
processes are necessary for every project (even before the start of a simulation development)
as well as the reuse of models is necessary to ensure quality and sustainability over time.

It is planned to publish the process description and examples as a White Paper within
the European Umbrella Organisation of Simulation Societies EUROSIM [9].
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3.19 Using the Adaptable I/O System (ADIOS) for Effective and
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With the large amount of data written by large-scale scientific simulations, efficient parallel I/O
is critical. However, leadership class systems have a number of factors that make developing
applications difficult, from complex storage hierarchies to different parallel filesystems with
different configurations. The Adaptable I/O System (ADIOS) [1] aims to simplify I/O, while
achieving high performance on leadership class supercomputers and providing a simple API
for developers. ADIOS is an open source C++ library that also provides bindings in C,
Fortran, and Python. ADIOS is used by applications in various scientific fields, such as
plasma physics, earth science, and aerospace engineering. Figure 8 shows the data lifecycle
of a large-scale scientific campaign. ADIOS can be used to transfer data from simulations or
sensors to persistent storage, couple simulations to exchange data, provide checkpoint/restart
capabilities, or transfer data to other systems for analysis workflows.

ADIOS has a single, simple API to perform I/O, whether data is to be written to disk or
streamed over a network. ADIOS provides this capability through different engines that can
be selected at runtime. File engines include a self-describing format called binary packed
(BP), as well as a HDF5 engine. There are a number of engines that stream data over a
network, such as the Sustainable Staging Transport (SST) engine which can be used for
exchanging data between loosely coupled jobs running on either the same compute cluster or
over a wide area network. There is also an Inline engine that provides in process coupling of
simulation and analysis/visualization for in situ analysis. Regardless of the engine chosen, it
is selected in an XML configuration file and ingested by ADIOS at runtime, so data can be
handled in different ways without needing to change the source code or using different API
calls.

Recent work with ADIOS has involved integrating it into visualization tools such as
ParaView [2] and the Visualization Toolkit (VTK) [3]. The Fides library was developed for
this purpose and provides a data model schema which enables users to describe their data in
a simple JSON format mapping ADIOS variables to the mesh and field characteristics of a
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Figure 8 The data generation, transfer, storage, and processing stages of a scientific campaign.
ADIOS can be used for efficient transfer of data locally in an analysis workflow, as well as remotely
over wide area network interfaces.

high-level data model. With ADIOS and Fides, simulations can use ParaView out of the box
to visualize their data with post hoc, in situ, or in transit methods, without needing to write
specialized adaptors or having a deep understanding of the VTK data model.

To the best of our knowledge, ADIOS is not currently being used in parallel discrete
event simulations (PDES), but it could be useful in several ways for PDES. For instance, a
recent US Department of Energy roundtable report [4] discusses the need for interoperability
of multiple simulators that is portable and efficient on emerging platforms. ADIOS can be
used for coupling simulations and provides portability and efficient parallel I/O.

The roundtable report also discusses incorporating machine learning (ML) frameworks
into PDES engines/models. Some future work planned by the ADIOS team is to extend
Fides metadata and provide data transformation utilities for ML data, which would enable
ADIOS codes to integrate ML methods with their simulations. In addition to extending
Fides metadata for ML data, we would also like to extend it for non-spatial data such
as performance data and provide Python bindings. This would enable the use of other
visualization and analysis tools besides scientific visualization tools like ParaView.
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Multiplex Networks

Cristina Ruiz-Martin (Carleton University – Ottawa, CA)

License Creative Commons BY 4.0 International license
© Cristina Ruiz-Martin

Main reference Cristina Ruiz Martin, Gabriel A. Wainer, Adolfo López-Paredes: “Discrete-Event Modeling and
Simulation of Diffusion Processes in Multiplex Networks”, ACM Trans. Model. Comput. Simul.,
Vol. 31(1), pp. 6:1–6:32, 2021.

URL https://doi.org/10.1145/3434490

A variety of phenomena (such as the spread of diseases, pollution in rivers, etc.) can be
studied as diffusion processes over networks (i.e. the diffusion of the phenomenon over a set
of interconnected entities). There are different methods for studying diffusion processes, but
most are based on various kinds of entities that are interconnected (networks). Two main
approaches have been used to model the diffusion process over the network: Differential
Equations (DE) and Agent-Based Modeling (ABM). The main advantage of nonlinear DE
is that they can include a wide range of feedback effects (i.e. how the current value of a
parameter of the system affects its future value, as in closed-loop systems). However, when
they are used to study diffusion processes, one typically needs to aggregate nodes into fewer
states or categories. Instead, ABM uses different attributes in each category, and different
nodes in the same category may have different behavior. The network structure is clearly
defined, and the behavior of each node is modeled individually at an increased computational
cost. Likewise, neither of these two approaches provides well-established modeling and
simulation (M&S) mechanisms for incorporating diffusion algorithms into multiplex dynamic
networks and running simulations. The limitations of DE and ABM to studying diffusion
processes pose the following question: how can we study diffusion processes in Multiplex
Dynamic Networks to overcome the limitations of DE and ABM? Is there a framework
that allows us to do this? To answer these questions, we introduced a method to study
diffusion processes in multiplex dynamic networks, maintaining separations of concerns in
all phases of modeling, implementation, and experimentation. The results include: a) an
Architecture to study Diffusion Processes in Multiplex dynamic networks (ADPM); b) a
systematic Process to define, implement and simulate diffusion processes over such networks.
We use Network Theory formal specifications to define the topology of the diffusion process,
Agent-Based Modeling (ABM) to define the behavior of the entities involved, and a formal
specification of both for simulation modeling. This research uses the Discrete Event System
Specification formalism (DEVS) to define the formal simulation model. The Architecture
(and development process) to simulate Diffusion Processes in Multiplex dynamic networks
(ADPM), is presented in Figure 9. The architecture is generic and can be used to study
several types of diffusion processes.
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Figure 9 ADPM organization and workflow.

ADPM includes the Requirements and Assumptions Document of the problem; a Network
model of the relations among components; an Agent-Based model of behavior; the Diffusion
Abstract Model (DAM) (Figure 10), a formal representation based on the Network and Agent
models; a Diffusion Computerized Model (DCM) of the DAM; the Simulation Logs and a
Results Analysis Report.

The DAM is defined using a formal specification, DEVS, in our case. This solves some
of the limitations of Network Theory, such as the lack of a formally verified simulator
to simulate a diffusion process over the network. By including ABM, we can also define
the behavior of both the nodes and links in the network. The formal DAM confers ABM
rigor while separating modeling, verification, and experimentation. The main advantage
of combining Network Theory, ABM, and DEVS is that we can use the most appropriate
method to model the various aspects of the problem. Network Theory is well suited to
model the relations between components; ABM is better suited to model behavior. DEVS
provides a formal specification to define the whole model as components with hierarchical
and modular specifications, which can be executed using well-established abstract simulation
algorithms, which are proven to execute models correctly. This combination allows us to
separate concerns and clearly differentiate each part of the problem, as well as separating
models from simulation engines and experiments that are independent software entities.
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Figure 10 The DAM structure.

3.21 Model-based Software and Systems Engineering for Digital Twins
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Modeling is an important technique in many engineering disciplines. Modern modeling
languages and tools allow developers to early concentrate on key aspects of the product and
thus frontload quality assurance e.g. through simulation.

Equally important, explicit models of system requirements, technology independent
function and architecture models, as well compact software and system component models
enable reuse and variability management. Composition, tracing and refactoring assist
evolutionary development and simulative quality assurance in a way that greatly reduces
development cost for products of all kinds.

Using explicit models in appropriate modeling languages, like SysML or even domain
specific languages, and an integrated, highly automated tool chain for construction, analysis
and simulation is key to integrate all forms of system components. A holistic development
approach needs a clear decomposition and decoupling and thus also well defined integration
techniques.

Furthermore, models are a good basis for the construction of a digital twin, because a
digital twin shares a lot of characteristics with a model. A digital twin is like a real twin: it
is an active instance that interacts with the real system, allows to share real operative data,
but also to simulate what the real twin would do and thus predict a systems behavior.

We examine the current state and problems of modeling for cyberphysical systems. In
particular, we discuss how to make use of models in large development projects, where a set
of heterogeneous models of different languages needs is developed and needs to fit together.
A model based development process (both with UML/SysML as well as a domain specific
modeling language) heavily relies on modeling core parts individually and composing those
through generators to early and repeatedly cut simulative and productive code as well as a
digital twin infrastructure from these models.
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3.22 Data Farming: Better Decisions Via Inferential Big Data
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Recently, the ready availability of “big data” has led to the adoption of data mining methods
by organizations around the globe, as they seek to sift through massive volumes of data to
find interesting patterns that are, in turn, transformed into actionable information. Yet a
key drawback to the big data paradigm is that it relies on observational data, limiting the
types of insights that can be gained.

The simulation world is different. Simulation models are integral to modern scientific
research, national defense, industry and manufacturing, and in public policy debates. These
models tend to be extremely complex, often with hundreds of thousands of potential factors
(inputs or embedded parameters) and many sources of uncertainty. A “data farming”
metaphor captures the notion of purposeful data generation from simulation models using
efficient designed experiments.

Efficient design of experiments are required because it is literally impossible to examine
even moderate numbers of factors by brute force. When the first supercomputer with petaflop
performance (a quadrillion operations per second) was launched in 2008, the New York Times
stated that machines such as this had “the potential to fundamentally alter science and
engineering” by letting researchers “ask questions and receive answers virtually interactively”
and “perform experiments that would previously have been impractical” [3]. Fourteen years
later, the “Frontier” leads the world as the first exaflop machine [8], capable of over 1018

or a quintillion operations per second. But let us take a closer look at the practicality of a
brute-force approach. Suppose a simulation has 100 factors, each factor has two levels (low
and high) of interest, and we decide to look at all combinations of these 100 factors. A single
replication of this brute-force experiment would take over 40 millenia on the Frontier, even if
each of the 2100 simulation runs consisted of a single machine instruction! Efficient design
of experiments can break this curse of dimensionality where expensive hardware cannot;
experiments involving 100 factors can be completed in hours to weeks even for simulations
with runtimes of minutes or hours [7].

With a data farming mindset, we can achieve tremendous leaps in the breadth, depth,
and timeliness of the insights yielded by simulation. Large-scale experiments let us grow the
simulation output efficiently and effectively. Modern statistical and visual analytic methods
help us explore massive input spaces, uncover interesting features of complex simulation
response surfaces, and explicitly identify cause-and-effect relationships [7, 2, 4]. Yet despite
the current benefits offered by data farming, opportunities remain for advancing both the
practice and research of simulation studies. A brief list of a few opportunities and challenges
follows: see [1, 6, 5] for more.

From the practical standpoint, decision makers in many areas (climate change, economics,
public health, to name a few) face increasingly complex problems where computational
models are better than simple analytic models at capturing the complexity of the underlying
system. At the same time, decision makers are increasingly comfortable with computerized
and computer-based decisions based on observational big data, such as machine learning,
artificial intelligence, and the use of digital twins. The rapid evolution of data science
means that a greater number of simulation and non-simulation professionals are becoming
more adept at scripting, modeling, graphical and statistical displays. Decision makers may,
similarly, be less likely to shy away from using model-driven data to inform their decisions
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if they are made aware of the potential benefits – particularly as they seek solutions to
complex problems. By varying inputs in carefully chosen ways and exploring or building
metamodels of the input/output relationships, we use simulation as an inferential (rather
than descriptive) decision support tool. Rather than simply answering ‘what is?’ and ‘what
if?’ questions, we can explore ‘what matters?, how?, and why?’

From a research perspective, the portfolio of methods suitable for addressing complex
questions needs to be expanded. Further research is needed on multi-objective procedures;
exploitation of parallel computing; adaptive sequential design methods; and methods that
leverage the structure of inferential big data, rather than observational big data, for analysis
and visualization tools. Regarding simulation optimization and other adaptive search
techniques, it may be that we should be doing optimization on metamodels, rather than
on the simulations themselves – and that we need automated ways of reoptimizing as these
metamodels evolve over time. Adaptive sequential procedures are particularly important if a
simulation study is viewed as an ongoing process, rather than a terminating one.
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3.23 Decision Making using Reinforcement Learning in Contested and
Dynamic Environments
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Systems operating in military operations and crisis situations usually do so in contested
and dynamic environments with poor and unreliable network conditions. Individual nodes
within these systems usually have an incomplete, local and changing view of the system
and its operating environment, and as such optimizing how nodes communicate in order
to improve decision making is critical. Reinforcement learning approaches have been very
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successful at solving problems in dynamic environments and in some cases when dealing with
incomplete information. In this talk, we discuss the challenges of training and executing
reinforcement learning approaches within such environments, in particular when considering
communication middelwares.
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Simulation-based inference aims to address the question of linking simulation models with
empirical data by designing statistical inference procedures that can be applied to simulat-
ors [1]. Data assimilation is an inference method, in which the observed data are assimilated
into the model to produce a time sequence of estimated system states [2]. Data assimilation
was initially developed in the field of numerical weather prediction. However, simply inserting
point-wise measurements into the dynamic weather models results in large instabilities in
the simulation, rendering the forecasts meaningless. Hence, data assimilation is developed
to initialize a model using observation data while making sure to maintain stability in the
model by iteratively selecting the best system estimation.

The initial concept of data assimilation relies on the initialization of an existing model.
However, changes in the observation data may also result from dynamic structural changes
in the system. This means that the original simulation model built from the past system
will be invalid; initialization of an outdated model will render the simulation results useless.
Instead of assimilating the observation data into an existing model, we propose to build the
model concurrently with the data assimilation procedure.

Considering a smart factory with Internet-of-Things (IoT) sensors to monitor physical
events occurring in the factory. Process mining is frequently used to analyze operational
processes based on event logs. In process mining, process discovery aims at constructing a
process model as an abstract representation of an event log [3]. The goal is to build a model
(e.g., a Petri net) that provides insight into the behavior captured in the log. A petri net is a
class of discrete event dynamic system, which can be used to simulate discrete event systems,
such as the manufacturing process in a factory.

Due to dynamic changes in the customers’ orders, there will be frequent changes to the
production operations in the factory. A new approach to combine data assimilation with
process mining is proposed to accurately model the dynamic manufacturing processes. By
monitoring the sequence of physical events, these events are captured into snapshots of the
event lists for each event’s arrival. Concurrently for each event, the real system performance
is also measured, e.g., factory throughput. Process discovery will be performed on these
snapshots to obtain the process models for each snapshot. Process enhancement will be
used to enrich these process models by mining additional operational behaviours from the
event logs, e.g., queuing or batching operations, to achieve a more realistic discrete event
model of the factory. Each process model is simulated to obtain the system performance.
Data assimilation will be performed by comparing the simulation performance with the real
system performance and selecting the process model with the best estimated system states.
By iterating discovering new process models and selecting the most accurate process model,
the proposed approach is able to adapt to changes in the system structure while producing a
calibrated simulation model at the same time.
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3.25 Models and Specifications within the Modeling and Simulation Life
Cycle
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Modeling means organizing knowledge about a system of interest. In the talk, we will extend
this citation, which has been attributed to Bernhard Zeigler, to the various artifacts of the
modeling and simulation life cycle, as well as the life cycle itself. Thus, we will consider not
only simulation models, but also models about simulation experiments, simulation methods, or
entire simulation studies. With the subject of modeling the means of modeling varies as well,
and includes approaches as diverse as domain-specific languages, formalisms, meta-models,
ontologies, and logics. We will exemplify the interrelations between the subject of the model
and the modeling approach. The second part of the talk is dedicated to the challenges that
developing and applying model-based approaches face in modeling and simulation studies.
Examples of such challenges including expressivity trade-offs, computational efficiency,
reusability, accessibility, explainability, and evaluation are discussed.

3.26 A discrete-event approach for the study of sustainability in
buildings

Gabriel A. Wainer (Carleton University – Ottawa, CA)
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Indoor factors like thermal, visual, acoustic, and chemical exposure all impact occupants’
wellbeing. One of the main approaches to improve wellbeing is to have continuous monitoring
of the building. Similarly, building design issues or technical flaws in the building software
can have negative impact on occupants’ health [1]. Modern building systems include sensors,
actuators, and control devices including a tight coupling of hardware and software features.
Advanced building systems collect data to improve building performance, operation, and
maintenance. Building systems today use a variety of state-of-the-art equipment, such as
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embedded hardware, wide-area connectivity, and software for decision making [2]. We use
cloud computing to increase collaboration among various building stakeholders and to display
real-time data from buildings systems for performance and maintenance analysis. Using
cloud services, designers can store large Building Information Models (BIM), historical data
or simulated data. BIM allows managing the digital representation of building components,
their digital geometry, metadata, relationships, and the parametric rules to manipulate them
[3]. We propose a system architecture and a workflow called SUSTAIN (Sensor-based Unified
Simulation Techniques for Advanced In-building Networks). SUSTAIN integrates fault
tolerance models, a text-mining framework and BIM to improve building system reliability.
The overall software architecture is shown in Fig.11.

Figure 11 SUSTAIN Architecture and Workflow.

The data collected from SAFE is integrated into BIM through Autodesk Forge, a cloud-
based platform. Autodesk Forge allows to store and access various BIM and includes an
integrated visualization component to visualize the real-time data through various web
services. The BIM displays the sensor locations and ties the timeline data to its location.
The aggregated data is represented as a shader to the room volume depending on the data
parameters like temperature, humidity, or CO2.

The VSIM BIM is a replica of the actual building with all the building elements (windows,
doors, desks, etc.) and building systems (sensors, HVAC, etc.). We show a case study
using temperature sensors with an operating range 0°C – 50°C (with an accuracy of ±2?).
We conduct simulation studies with different temperature readings within the measuring
range were used. To evaluate the SAFE framework, faults were deliberately injected in both
simulation and experimentation using different scenarios. The BIM of the lab was used to
fabricate a maquette at a scale of 1:20 using laser cutting on acrylic sheets and adding control
hardware (Fig. 12).

This physical model mimics the real-world setting of the research lab, which consists of
six workstations, a fixed window, an operable blind, automated HVAC, and lighting controls.
Fig. 13 shows the integration of the various sensors. Although the physical model does
not behave as the real-world setting (e.g., the temperature in the maquette becomes steady
faster than in the real building; however, when they are both in steady state, their behavior
is similar), the objective here is different. SUSTAIN is focused on the development of the
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Figure 12 Physical prototype for experimentation [4].

building control software, the integration with 3D visualization, simulation and support in a
cloud environment. The physical model permits conducting a variety of experiments useful
during the software development cycle, and this can be done safely and without affecting the
actual building operations.

Figure 13 Integration of data with BIM using Autodesk Forge [5].
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3.27 Automatically Generating Simulation Experiments based on
Provenance

Pia Wilsdorf (Universität Rostock, DE)

License Creative Commons BY 4.0 International license
© Pia Wilsdorf

Main reference Pia Wilsdorf, Anja Wolpers, Jason Hilton, Fiete Haack, Adelinde M. Uhrmacher: “Automatic Reuse,
Adaption, and Execution of Simulation Experiments via Provenance Patterns”, ACM Trans. Model.
Comput. Simul., Association for Computing Machinery, 2022.

URL https://doi.org/10.1145/3564928

Simulation experiments play a vital role during a simulation study, be it for calibration,
validation, or exploration [1]. Many simulation experiments are used repeatedly throughout
a simulation study or across related simulation studies. For instance, models are successively
calibrated and validated after each major model refinement. Similarly, if a model is built
by extension of a previous study, cross-validation experiments are carried out. And in the
case where different models represent alternative hypotheses about a system, or the same
model has been implemented for different modeling and simulation platforms, again slightly
adapted simulation experiments are used to compare these model alternatives.

The Reuse and Adapt framework for Simulation Experiments (RASE) supports modelers
in conducting these repeated experiments in a more systematic, effective, and efficient
manner [2]. Based on predefined activity patterns and inference rules, key user activities are
automatically detected (e.g., model refinements), whereupon suitable, previously executed
simulation experiments (e.g., validation experiments) are selected, adapted, and executed in
the context of the new simulation model, possibly reusing other information such as data
or requirements. The framework is founded on the notion of provenance, i.e., information
about the various entities (the research questions, simulation models, simulation experiments,
simulation data, input data, requirements, qualitative model, assumptions, theories, etc.)
and how they participated in or were generated by the diverse activities of modeling and
simulation [3]. This information needs to be captured during a simulation study and stored
as a directed acyclic graph based on the PROV-DM standard [4, 5] to be accessible to the
pattern detection mechanism of the framework.

Currently, a new approach for capturing the provenance of simulation studies on-the-fly
with minimal user involvement is being developed [6]. However, also the means for formalizing
the context of a simulation model (provenance meta-data) need to be enhanced for provenance
to be fully machine-interpretable. Here, we might take advantage of existing model-based
approaches, such as signal temporal logic for specifying requirements [7], whereas, for the
specification of other entities, such as assumptions or theories, no approaches yet exist.
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Modeling and simulation (M&S) has shown to be effective at conducting what-if analyses of
complex scenarios. However, the current societal and technical challenges require building
increasingly complex models and carrying out larger scale simulation experiments, which call
for more efficient and intelligent approaches in all aspects of simulation studies, from model
creation to model execution and experimentation.

In his state-of-the-art and open-challenges (STAROC) presentation on “High Performance
Computing (HPC): Exploiting New Architectures”, Christopher Carothers introduced an
array of new emerging hardware that supports effective and sustainable simulation studies,
including ultra-dense chips, fast analog computing, wafer scale processor, low precision
computing, and brain inspired chips. He went on to discuss the demand for Artificial
Intelligence (AI) / Machine Learning (ML) and how it is driving the development of hardware
and applications in the HPC sector. The trend of growing system complexity is also
accelerating the development of software tools and hardware platforms specifically developed
for AI/ML [1]. In his presentation, Carothers posed the following questions:

Can AI/ML help M&S be more sustainable?
Can M&S help improve AI/ML predictions?

To enable efficient utilization of the HPC resources, M&S needs to harness these new
emerging computing hardware and platforms developed for AI/ML. In addition, AI/ML also
opens up new and interesting opportunities to enhance and enrich M&S [2].
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Initially, there were two topics identified for the working group: i) AI/ML + Simulation,
and ii) Enabling Models to Run Efficiently on Heterogeneous Hardware. The first topic
involves the integration of AI/ML techniques with M&S; and the second topic focuses on
the efficient utilization of heterogeneous hardware to execute simulation models. As seen
from Carothers’ presentation, the current development of HPC systems and applications are
“riding the AI/ML wave”, i.e. the new emerging hardware developed for AI/ML. As a result,
the working group decided to change the questions to incorporate the notion of the AI/ML
wave: i) how can the emerging hardware be efficiently utilized for M&S? and ii) can M&S
also ride on the AI/ML wave to make it more efficient and sustainable?

In the last decade, research challenges on exploiting emerging computing platforms and
using heterogeneous hardware to accelerate the execution of discrete event simulations have
been addressed in several research papers:

2015 Paper on “Grad Challenges for Modelling and Simulation” [3],
2016 Richard Fujimoto’s STAROC paper on “Parallel and Distributed Simulation
(PADS)” [4],
2016 NSF Workshop on “Future Research in Modelling and Simulation” [5],
2019 Survey paper on “Agent-based Simulation Using Hardware Accelerators” [6], and
2022 DOE Roundtable report on “Computer Science Research Needs for Parallel Discrete
Event Simulation (PDES)” [7].

Particularly, Perumalla et al presented a computer science-oriented view of research
challenges in PDES and identified priority research opportunities in advanced computing for
PDES [7].

Given this prior research, the working group decided to focus the discussion on a merged
topic: Intelligent Modeling and Simulation Lifecycle. The group believed the STAROC
paper should focus on how modelling and simulation can benefit from recent advances in
AI/ML techniques as well as the emerging powerful and pervasive hardware, computing
paradigms and systems. In the proposed paper, we will examine the existing and emerging
hardware/systems and AI/ML techniques in the context of modeling and simulation lifecycle
(e.g., model creation, calibration, execution, and experimentation). We will also identify
the major challenges and opportunities faced in M&S applications and outline important
research directions for intelligent modeling and simulation, to improve speed, accuracy, and
capabilities, by taking advantage of AI/ML and computing paradigms.

After intense discussion and brainstorming, the working group developed the following
structure for the proposed STAROC paper:

The first section of the paper will provide the motivations and introduce the main thesis
of this article. We will focus on how advanced AI/ML and existing/emerging computing
hardware/platforms will improve M&S at different stages of the M&S lifecycle.
The second section “M&S Lifecycle, Challenges, and Demands” will provide an intro-
duction to the M&S lifecycle: creation, calibration, execution, simulation experiments.
These stages shall be defined clearly with respect to the traditional M&S pipeline: input
modeling, concept model & validation, computational model & verification, experiment
design, model execution, and output analysis. We will identify major M&S applica-
tions, including transportation and mobility, power grid, networking and cybersecurity,
HPC, and epidemic modeling, in order to identify challenges and demands at different
M&S stages that can be fulfilled by AI/ML and new emerging computing hardware and
platforms.
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The third section “Emerging AI/ML-Assisted Approaches for M&S” will review the
existing prominent AI/ML techniques and methodologies that have been applied for M&S.
This will be achieved by categorizing these approaches to the various stages of the M&S
lifecycle, and thereby identifying the gaps that can be explored in future research efforts.
The fourth section “Heterogeneous and Emerging Computing Platforms for M&S” will
categorize the diverse computing systems, platforms and emerging computing hardware
that can support the M&S mission. First, we will introduce the existing computing
platforms, e.g., HPC, cloud, edge, accelerators (GPUs, FPGAs). Next, we will explore
the newer emerging hardware that are specially developed for AI/ML computing, e.g.,
neuromorphic devices, low-precision AI chips. At the same time, we will also examine the
different computational paradigms: serverless computing, micro-services, virtualization,
containerization, quantum computing or analog computing.
The fifth section “Research Challenges and Roadmap for Intelligent M&S Lifecycle”
will identify specific research directions and outline a roadmap for applying AI/ML
and emerging hardware/computing platforms for the M&S lifecycle. We will create
a table to illustrate the gaps or challenges at each stage of the M&S lifecycle and
list the corresponding techniques and research directions to be taken to address these
challenges. In the subsequent subsections, we will elaborate on these techniques and
research directions.
Finally, we will conclude the article by pointing out that we are focusing on using
AI/ML for M&S. However, there are other research directions, such as applying M&S for
improving AL/ML (such as explainable AI).

Tentatively, the working group plans to complete and submit the paper by mid-Jan 2023.
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4.2 Policy by simulation: seeing is believing for interactive model
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Motivation

We understand that policy makers are currently much more willing (than they were 10
years ago, for example) to participate in simulation-assisted planning and decision-making
processes. We must therefore be well prepared so we are able to seize the opportunity.

Simulation is particularly useful in decision support when bifurcations can occur, i.e.,
when a system under study takes qualitatively different courses depending on the input
parameters or random events as the system dynamics evolve, a distinctive feature of complex
systems. Interventions represent a special example that by definition leads to discrete changes
in the dynamics that may not be represented with classical methods alone [13].

Two key aspects of policy by simulation are that the systems being addressed are inevitably
complex (they include overlapping facets such as social, physical, biological, cybernetic, etc.)
and also that the interventions being applied in the real world must ultimately and inevitably
be understood and agreed upon by humans.

As there are usually several stakeholders from different domains, it is essential to provide
means which will efficiently support specifications of interventions as well as communication
of results which do not rely solely on mathematical-computational models.

In this context, dynamic and reactive visualization emerges as a key element for human
understanding of interventions in complex systems.

While the technologies of modeling, simulation and visualization (M&S&V) have made
enormous progress during the past several decades, several challenges remain. We need to
provide efficient and sustainable mechanisms that engage interdisciplinary teams of decision
makers with simulation-assisted processes.

Meanwhile, recent work highlights missing links between user tasks in visualization
taxonomies (e.g., sensemaking) and the high-level task of decision-making (Dimara and
Stasko [3]). They identified a lack of interdisciplinary approaches as one of the key causes
of this mismatch. The latter suggests that a joint approach of modeling, simulation and
visualization experts stands as a valid approach to reduce this gap.

We therefore envision “policy by simulation”, a comprehensive co-creation framework
that exploits state-of-the-art modeling, simulation, experimentation, visualization and AI to
engage policy makers and stakeholders from multiple domains concerned with a common
system under study. The goal is an efficient and sustainable framework of interoperable
M&S&V-based tools that allow stakeholders to model potential interventions into simulation
worlds and deliver timely insights about complex systems for the purpose of planning efficient
and effective real-world interventions.

These envisaged capabilities are shared by several initiatives such as the POLDER Simula-
tion Center (POLicy Decision-support and Evidence-based Reasoning) [15], the DEXHELPP
Project (DEcision support for HEalth Policy and Planning) [16], the SEED Center (Simu-
lation Experiments and Efficient Designs) for Data Farming [17], and the Simulation and
Immersive Visualization Lab [18].
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We first present the framework we envision, and then describe some of the open research
challenges that must be addressed to fully realize its potential.

A Policy by Simulation Framework

To implement an integrated decision-making process that covers both simulation aspects and
stakeholder needs for modeling feasible interventions, we envision an iterative three-level
structure. The ultimate aim is to unveil potentials for action and to outline a basic structure
as well as minimum requirements without claiming to be exhaustive.

Conceptual level. Generate problem statements, identify mental models, create a
narrative definition of goals, identify areas of conflict, and discuss attitudes toward risk.
Identify the timeline for making decisions about whether and how to intervene. This will
be revisited as external circumstances change, insights arise, or new stakeholders join the
team.
Logical level. Determine data availability or specify data model specifications and
assumptions. Describe correlations, causations, causal loops, anchor points, levers, and
potential interventions. Discuss the key response measures and aggregation levels. Prior-
itize features to include in the next round of executable models. Delegate responsibility
for creating embedded submodels or suitable linkages between stand-alone submodels
and the overarching model.
Assessment level. Create, refine, and explore executable models. This can include
models at different levels of granularity, from the coarse grain level to a highly detailed
level. Types of models could include systems dynamics models (SD), partial differential
equations (PDE), agent based models (ABM), discrete event simulation (DES), complex
networks (CN), and more. Policy stakeholders will not be involved in the actual model
implementation, but are vital for scoping the experimental region(s) of interest. Efficient
experiments can be used to grow data that can be jointly and visually explored and
assessed, spawning further experimentation as insights are gained and new questions
arise.

Visualization techniques shall encompass all stages, providing visual coherence and
continuity across all levels of information, connecting input data, simulation models, and
simulation results across levels as the study evolves. Visualization is a key enabler for
model-based tradeoff discussions among stakeholders with competing priorities and world
views.

On the one hand, these visualization techniques should cover all the necessary needs in
each stage. On the other hand, they should provide sufficient freedom, especially in early
phases, so as not to impose restrictions that could lead to mapping errors and ultimately
reduce the quality of the process and the intervention decisions.

Research Challenges: Bridging the Credibility Gap

The overall policy by simulation framework can be implemented using existing tools and
methods. However, its full potential will not be realized without additional research in a
variety of areas.

Credibility Gap: Even though we can create sophisticated simulation models for policy
intervention, we often fall short in communicating their structure and results in transparent
and understandable ways. For example, causal loop or process flow diagrams are very
understandable, but more detailed models may be difficult for some stakeholders to interpret.
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Past experience with model-based approaches (or lack thereof) may also affect stakeholder
credibility in different ways.

A priori: The question of which aspects are important depends not only on the subjective
view of the stakeholders, but also on the non-assessability of dynamic effects. These are to
be investigated either by data analysis or by methods of causal analysis. In this case, the
estimation of potentials is often low.

A posteriori: Real-world validation is difficult in the sense of the prevention paradox,
interventions that are set cannot be compared with interventions that are not set—at least in
real-world settings. Also, for some modeling situations and paradigms the system boundaries
must be narrowly chosen in order to be able to create meaningful models.

We describe four threads we feel are key for bridging the credibility gap: model co-creation,
visualization, flexibility, and efficiency.

Co-creation

There is a lack of robust methodologies for co-creating a palette of simulation models [12, 6]
that can refocus across several levels of model detail, from conceptual high-level models
down to very detailed model components. Similar methods are also needed for co-creating
and co-exploring disparate models that capture different aspects of the system of interest,
regardless of their level of detail, as part of a “many model thinking” paradigm.

Approaches that can support model co-creation, but require further research, include:
Immersion. As simulation professionals, we have to show that we understand the
context, the stakeholders and their interests, and how the simulation is embedded in the
whole environment. System and simulation boundaries have to be discussed. These can
be changed but have to be communicated in transparent ways. Similarly, stakeholders
themselves must become immersed in the co-creation process. We need methods for
eliciting their inputs and assumptions, engaging them with other stakeholders during
the model development process, and engendering their trust in using a model-based
framework to gain insights.
Formal methods. Formal methods [4] for model relation and model reduction can help
increase stakeholder confidence. They can relate models at different levels of abstraction
and automatically derive reduced models while ensuring a formal relationship between
the initial and the reduced ones. This can be done either analytically (which eases their
application to a wide collection of models) or by language specific approaches (based
on the structural properties of the description language). So derived model reduction
may be exact [2] (as a reduction of the dimensionality of the model), or approximated
[1] (including explicit bounds for numerical errors). Analytic approaches may require
unwarranted assumptions and struggle to scale to the complexity of large models. Event
graphs are modeling representations that can be implemented in a variety of languages,
but are less widely used [11]. The development of language-based approaches is more time
consuming since a given tool will work only for a dedicated modeling language. Further
research is needed to address these challenges.

Visualization

Although visualization technologies and visual analytics techniques are established as ex-
ploratory methods and have been applied to numerous decision making and simulation
problems, visualization and interaction with models at different levels of detail in an integ-
rated framework remains an unsolved challenge. Further research on visualization techniques
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that leverage the structure of data from designed simulation experiments is also needed.
Comparison of different scenarios [5], provenance of information and tracking of interactions
[7], efficient visualization for a plethora of stakeholders from different domains [3], all repres-
ent significant challenges for visualization research. Finally, as the number of stakeholders
increases, there will be more and more scenarios to evaluate. Visualizing many scenarios
represents a scalability challenge for visualization [8]. Limited screen space often does not
allow to show all possibilities at once. At the same time important information has to be
shown.

Flexibility

As demands and goals change over time, we need to be able to zoom in and out in the
simulation scenarios across different levels of model detail. We also need the ability to focus
on different model components to reveal the worldviews of different stakeholders.

Integration. Integration for Exploration: We must build in flexibility in the form of
software hooks from the beginning of the co-creation process. This includes flexibility
in setting or modifying inputs and linking them to outputs, so that causal relationships
within the model setting can be readily explored and identified. Input links should
facilitate switching between real-world data (if available), diverse input data models,
or changes driven by a mixture of approaches including interactive visual analytics,
single-stage or adaptive experimental designs, or AI/ML-guided searches.
Flexible timing. We need to provide partial insights in a timely way. Since this may
involve assessments when the executable models are all at very high levels, input data
are limited or unavailable, or only portions of the modeling are complete, best practices
should be developed for effectively engaging stakeholders so the overall process provides
value. How and when to revisit insights obtained early in the co-creation process, or how
to determine the appropriate level for a particular intervention opportunity, remain open
challenges.

Efficiency

We take a broad view of efficiency because the overarching goal of policy by simulation is
that the stakeholders gain insights about effective interventions in a timely manner. Clearly,
modeling efficiency and simulation run-time efficiency play their parts, and are often the focus
of benchmark studies. We need metrics that capture the entire path to effective intervention
by including person-hours (for modeling, analysis, visualization, documentation, discussions,
etc.) as well as the computer cycles needed to arrive at insights. Harder (but extremely
important) aspects to capture are the flexibility provided, the quality of the insights obtained,
and the effectiveness of the intervention.

Sustainability. There is an unmet need for automatic mechanisms that provide robust
reusability of model libraries and experiments so that simulation projects can be properly
evolved and adapted across longer periods of time. This includes accommodations for
legacy models that continue to be used, as well as sunset clauses to handle models
that should be reimplemented or retired as new modeling paradigms or languages are
developed. Methods that reduce maintenance expenses for these “living models” are also
of interest.
Model selection. As a result of the zoom in/out requirement, we may need to use
different methods for detailed modeling producing different outcomes. This imposes
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different requirements for the underlying numerical and computational implementations.
Over time, “best modeling approaches” might be revealed for certain problem domains.
Such guidance would improve the modeling efficiency and so improve the timeliness of
the overall process. This is another area that merits further research.
The above presented four threads –co-creation, visualization, flexibility, and efficiency–

are interrelated. Even minor advances in any area may lead to dramatic improvements in
the process as a whole.

Guiding principles

It is well known that in policy making, choosing not to intervene can be as decisive as
enacting a particular intervention. Moreover, there are often windows of opportunity that
require making the best possible decision in a given time frame, weighing the best sources of
(always imperfect) information available at the time. We believe that the quality of such
information can be greatly improved by following processes such as those presented herein,
relying on simulation models and visualization techniques for intervention planning.

At early stages it is key to determine what kind of interventions could be feasibly made,
identifying the lever points for controllable interventions in the complex system under study.
This is a result of a discursive process with multiple stakeholders involved, including those
with legitimately contradictory perspectives and worldviews of the overarching problem at
hand.

The co-creation of simulation models implies including all necessary subsystems, vari-
ables, parameters and data or data models that capture the valid concerns and interests of
heterogeneous stakeholders involved in the modeling process.

One important measure of the quality of the resulting models (or family of models) is the
degree at which they allow the stakeholders to exercise relevant what-if analysis in an explor-
atory process. Emergent behavior is a key feature of complex systems [14] (basically anything
unexpected can happen) therefore “potentially feasible paths of action” must be explored.
While experimenting, the framework shall keep track of all interventions in the models along
the exploratory process. To that aim, different alternatives are possible. If the computational
time for single runs is long, checkpoints could be recorded enabling the team to “go back
and rebranch” if a given path of interventions is rendered inefficient/undesirable. If storage
requirements for checkpoints is prohibitive, random number seeds could be recorded enabling
the team to initially output limited data (e.g., end-of-run or other summary information) but
“go back and restart” to output detailed information or additional performance measures.
The exploratory process itself becomes the result of a discussion with a group of “humans in
the loop”. Varied data widgets should provide, simultaneously, multiple different views on a
same system, both for simulation results and for the structure of model components. Yet, in
parallel to human-based analysis, AI/ML-driven algorithms can automatically explore the
parametric space (intelligent parameter sweeping) to prune and rule out model configurations
that lead to undesirable results (e.g., violate restrictions on state variables). Other automatic
analyses that can enrich the knowledge about the underlying model are parameter sensitivity
analyses, which can provide a better understanding of the relative potential impacts of lever
points. These sensitivity levels can be visually mapped into the model structure to guide the
experience in a more efficient way. Large-scale designed experiments (“data farming”) can be
used to identify the most impactful model inputs and interactions, uncover other interesting
features about the I/O behavior, and assess how uncertainties propagate through a model or
hierarchy of models [9, 10]. Such insights can help steer the interactive exploration toward
relevant paths.
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Related needs

The implementation of the proposed process has implications for other areas of simulation
technology -not addressed here- which were dealt with in the Dagstuhl Seminar “Computer
Science Methods for Effective and Sustainable Simulation Studies” in October 2022:

Reduce simulation ecological footprint while providing increased simulation performance
Provide efficient automatic documentation of models along with their ranges of validity
Track the provenance of models, simulation experiments, and the associated input and
output data
Create better ways (standards?) to store and reuse model components across several
projects with some common parts of their sysems under study

Summary

We believe that the “policy by simulation” framework we propose can – and should – be
used for identifying and implementing real-world interventions to address many complex
problems currently faced by policy makers. If done effectively, this approach will improve
the quality, timeliness, and effectiveness of the intervention decisions, will also enhance the
insights stakeholders gain from the simulation models, and so improve the credibility of the
collections of models used. On a broader level, as policy makers and other stakeholders
become more familiar with this framework, we will have more opportunities to create a
mindset that values and celebrates the exploration of interventions in the virtual world,
rather than bemoaning the inability for a posteriori validation in the real world. We envision
policy by simulation as an integrated, interactive, ongoing process, rather than a one-time
product. Similarly, the framework itself will evolve as new tools and methods are developed
to address the many research challenges identified above. Also, as we CS and simulation
professionals, policy makers, and other stakeholders co-create the models and co-learn from
analytic and visual exploration of their behavior, we expect other challenges and research
opportunities to arise.
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Motivation. Simulation has become a sine qua non in many areas. Particularly, the COVID-
19 crisis has revealed the importance of simulation studies [6], but also limitations in terms
of how fast we can develop useful models, how to interpret and build on results, and how
to communicate the results to decision-makers. Therefore, new and better support for
conducting simulation studies is needed, in particular
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to help simulation analysts who conduct or use simulation studies in building on their
and others’ results, improving the quality of their analyses, and making it easier for them
to correctly interpret and reuse results.
to facilitate the appropriate use of simulation by domain experts and decision-makers
(e.g., policymakers in government, industry leaders), as a way to improve the quality of
the decisions that they make.

Our goals. For comprehensive support of simulation studies, model-based approaches, in
terms of formalisms, language-based approaches, logic, and meta-models play a central role,
as they allow to make knowledge about a system explicit, computationally accessible, and
interpretable. To move ahead, it is necessary to analyze possibilities already offered by current
approaches and to identify challenges for future methodological research in model-based
approaches to:

ensure that simulation studies come with context. Context is important for helping
technical experts correctly interpret results and for ensuring the quality of analyses
based on the results of others. It is also important to correctly and confidently explain
simulation results to decision-makers.
improve composition and model re-use. Model re-use avoids building models from scratch.
It thus saves time and, in addition, may improve analysis quality. Saving time may also
increase access to simulation, increasing the number of decisions that it supports.
support simulation automation. This would again save analyst time and may contribute
to the analysis quality since automation facilitates the application of methods and thus
may reduce errors in their application and, even, broaden the scope of analysis done with
simulation models.
facilitate communication both between simulation analysts and domain experts and
between simulation analysts and decision-makers. We see communication as one of several
limiting factors in the use of simulation for decisions. Better communication would also
reduce the time required to achieve an impact.

A systematic application of model-based approaches for modeling and simulation should
also allow us to harvest synergies with other areas of computer science such as language
design, human-computer interaction, high-performance computing, visualization, or machine
learning more effectively.

Starting point – the simulation study. Simulation studies that are aimed at developing and
applying simulation models are intricate processes that combine different activities, such as
model building, model refinement, model composition, calibration, analysis, and validation,
and involve different types of entities, such as theories or data, and possibly products from
other simulation studies. Conceptual models, requirements, assumptions, simulation models,
qualitative models, simulation experiment specifications, and simulation data belong to the
primary products of a simulation study, although not all of this information is explicitly
represented (or documented). These ingredients can be distilled from work on modeling and
simulation life cycles [22] and documentation guidelines for simulation studies [7]. For several
of those, different modeling approaches have already been developed and are being applied
(see Table 1).

In Table 1, simulation models refer to the class of discrete-event systems. We define
requirements as expectations referring to the produced simulation outputs, which are some-
times stated in terms of constraints or inequalities. Requirements are often also given in
terms of data (and a distance measure) whether or not the simulation outputs are sufficiently
close to the data, or as formal expressions in a (spatial-)temporal logic which can be used for
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Table 1 Exemplary model-based approaches for specifying simulation models, simulation experi-
ments, and requirements.

Simulation Model Simulation Experi-
ment

Requirements

Formalisms DEVS [31], Stochastic
Petri Nets [1], Process
algebras [9]

DEVS [4] –

Programming lan-
guages, in particular
DSLs

APIs [26], NetLogo
[25], BioNetGen [2]

SESSL [27], NLRX
[24]

FITS [17]

Logics Ontologies for com-
posing and reuse [18]

Ontologies of simula-
tion algorithms [3]

Temporal logic [19]

Active objects ABS [12, 13] ABS runtime [30] event-driven, cooper-
ating processes

Metamodels ATom3 for multi-
formalism modeling
[14]

meta-models for sim-
ulation experiments
[29]

–

statistical model checking or runtime verification [19]. Ontologies are widely used, e.g., in
the context of model composition so to map variables of different models consistently [18],
in the context of simulation experiments, to classify the simulation algorithms used (and
assess the approximation) [3], and referring to requirements again ontologies can be used to
clarify what is meant with the variables used within a requirement. Metamodels are used for
transformations to compose models defined in different modeling approaches and generate an
executable model [14] or to generate simulation experiments for different modeling approaches
as diverse as finite element analysis and stochastic discrete event simulation to be executed
in different tools [29]. Whereas requirements refer to the model’s output, assumptions are
some form of model input (as they influence how the simulation model looks like), and as
such are essential for providing context and for semantically consistent model composition
[18]. However, so far textual representations prevail, and little research has been done to
model assumptions or theories. Not only the ingredients but also the simulation studies
themselves have been subject to modeling, e.g., via workflows. Workflows have been used to
support documenting and executing (also in terms of guidance) simulation studies [21, 23].

Towards Sustainable Simulation Studies. Referring to sustainability we adopted the
definition given in the seminar, i.e., sustainability: continuing a simulation study into the
future through support for reusing or building upon its central products, such as simulation
model, data, and processes as well as the software used. We emphasized that this also applies
to a simulation study currently being conducted (thus how to assist the modeler during
a simulation study based on what has already been done and information gathered, see
automation) and that the building upon is not restricted to modelers and domain experts
but also needs to include decision-makers.

Context: The context of a simulation study is all information that helps in interpreting
and reproducing the results achieved in a simulation study and makes up a large part
of its documentation according to standardized guidelines [7] or its conceptual model
[22, 28]. A recent empirical study shows that efforts invested in the reproducibility of a
simulation study enhance its impact [10].
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Effective adoption of provenance standards opens up new possibilities as essential processes,
and the various sources that contributed to the results (also intermediate ones) become
explicit.
Thereby, the interpretability, consistency, and reproduction of simulation studies can
be enhanced, and the stored information can be used for user guidance and automation
[11]. New research challenges arise, such as an unobtrusive collection of provenance
information or on-the-fly abstraction to cater to the needs of different types of users.
It should be noted, that the adoption of provenance standards does not alleviate the
problem of how to unambiguously specify the different ingredients that make up the
documentation, conceptual model, or provenance graph. However, the promise to have
more comprehensive, automatic support for conducting simulation studies increases the
incentive to tackle the problem.

Composition and reuse: Modeling languages should support composition in one way or
the other to facilitate the development of the model and its reuse. The composition of
simulation models is supported in formalisms such as DEVS by black-box composition
via input and output ports, or process algebras inherently by the parallel composition
of processes. Solutions that lie in between the rigidness of DEVS and the rather fluent
composition of processes, and allow to flexibly define interaction points and the interface to
evolve on demand, require further attention. In addition to these syntactical considerations,
semantically valid reuse of simulation models still provides many challenges in modeling
and simulation, although various approaches have been developed since its being stated
as a grand challenge in 2002 [20]. A central question here is how the consistency of the
respective context of the simulation models that shall be composed can be guaranteed.
This leads us back to the question of how to represent the different ingredients that make
up the context of a simulation study respectively simulation model in an unambiguous
and (ideally) computationally accessible manner. A different aspect of reuse concerns
variability: simulation models come in a plethora of related variants that are distinguished
by differing assumptions, parameters, submodels, etc. It is essential to manage the
commonality and variability embodied in these variants in a systematic manner.

Automation: Automation is one means to increase efficiency. As simulation studies are
knowledge-intensive processes [5], any effort aimed at automation has to look at means for
representing and evaluating the required knowledge computationally [11, 16]. Thus, model-
based approaches are a central step towards at least (partly) automating simulation
studies. There are various challenges referring to knowledge engineering, e.g., what
information is needed to automate various activities such as model building, model
refinement, calibrating, validating, or analyzing simulation models, which need to be
addressed by the modeling and simulation community. Thereby, also new possibilities
that are offered by applying, combining, and possibly revising methods from logic-based
reasoning and machine learning have to be taken into account to automate simulation
studies, e.g., in selecting methods to conduct specific experiments such as sensitivity
analysis [15].

Communication: Much of the work on model-based approaches are aimed at more effective
communication with different users. Despite the plethora of formalisms, domain-specific
languages, etc., coming up with abstractions that are coherent to the modeling metaphors
of domains, adequate for the problem, and even match the mental models of individuals
remains a challenge. The research is also hampered by the difficulty to measure the
effectiveness or potential impact of new methods and thus the progress made. New
developments in visual analytics open up new possibilities to communicate the results
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and context of simulation studies [8]. Discussing the various methods already used, their
potential, limitations, and open challenges for visualization is the subject of another
working group of the seminar. We expect challenges of mapping and adapting model
representations of entities and processes involved in conducting a simulation study
to different users and their respective needs to carry over to visualization. However,
knowledge about the simulation study made explicit by model-based approaches will also
further more effective visualization methods.

Conclusion. During the seminar, we identified four crucial areas of research for enhancing
the sustainability of simulation studies, i.e., documenting the context of simulation studies,
composition and reuse of simulation results, automation for conducting simulation studies
more systematically, and communicating the results and processes of simulation studies with
domain-experts and decision-makers. Central discussions revolved around whether and how
concepts of software and programming languages can be or are already adopted in the field
of modeling and simulation. There, the focus has been on composition, reuse, abstraction,
and variability. We have still to hone in on the diversity of model-based approaches, the
role they already play or might play in this endeavor, and the concrete methodological (and
community) challenges associated.
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