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Abstract— The control of free-floating robots requires dealing
with several challenges. The motion of such robots evolves on a
continuous manifold described by the Special Euclidean Group
of dimension 3, known as SE(3). Methods from finite horizon
Linear Quadratic Regulators (LQR) control have gained recent
traction in the robotics community. However, such approaches
are inherently solving an unconstrained optimization problem
and hence are unable to respect the manifold constraints im-
posed by the group structure of SE(3). This may lead to small
errors, singularity problems and double cover issues depending
on the choice of coordinates to model the floating base motion.
In this paper, we propose the use of canonical exponential
coordinates of SE(3) and the associated Exponential map along
with its differentials to embed this structure in the theory of
finite horizon LQR controllers.

I. INTRODUCTION

Methods from Lie Group and Screw theory are becom-
ing increasingly popular in the robotics community to de-
scribe rigid body kinematics and dynamics [1], [2]. They
are equally popular in the domain of robot control [3].
Additionally, the geometric framework has been used in
time integration schemes for general multi-body systems
(MBS) [4] including the flexible MBS [5].

MBS motions evolve on a Lie group and their dynamics
is naturally described by differential equations on that Lie
group. The most crucial Lie group for studying rigid body
motion is the Special Euclidean Group of dimension 3,
known as SE(3). Its importance is shown by the fact that
all possible rigid body motions are captured by subgroups of
SE(3). For the purpose of robot control or time integration
of the robot dynamics, it is quite common to consider a
direct product of the translational group R3 and the special
orthogonal group SO(3) i.e. SO(3) × R3. This allows one
to use different parameterizations for rotation (e.g., Euler
angles, quaternions, etc.) and translation parts. This config-
uration space (c-space) does, however, not account for the
intrinsic geometry of rigid body motions in that rotations
and translations are decoupled. However, rigid body motions
in SE(3) are mathematically defined as the semi-direct
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product between SO(3) and R3 i.e. SE(3) = SO(3) nR3.
In other words, SO(3) is its quotient or factor group and
R3 is its normal subgroup. In [6], it was shown that the
naive use of SO(3) × R3 can lead to constraint violations
during geometric integration, which must be corrected by
additional constraint stabilization techniques. By contrast,
using SE(3) = SO(3) n R3 can often avoid such issues.
Note that both SE(3) and SO(3) × R3 allow for the
representation of rigid body configurations. But only SE(3)
allows for representing rigid body motions [6].

Similarly, improper treatment of SE(3) leads to various
challenges in robot control. For example, the use of Euler
angles to describe the rotation matrix leads to singularity
issues [7], [8]. The use of quaternions addresses the singu-
larity issue but the solutions may suffer from double cover
issue i.e. multiple quaternion solutions to represent the same
rotation matrix [9]. Geometric control [3] attempts to unify
the study of mechanics and control under the setting of
differential geometry. In [10], a time varying LQR controller
was developed using a variation-based linearization of the
non-linear systems evolving on various Lie groups such
as SO(3) and S2. In [11], the framework of geometric
control was adopted to plan trajectories in SO(3) × R3

with large attitude changes by exploiting the Cayley map
of SO(3) which involves the use of its local (non-canonical)
coordinates. An extensive treatment of discrete-time differ-
ential dynamic programming (DDP) on Lie groups has been
recently presented in [12]. Another recent work [13] presents
an approach for trajectory optimization on generic matrix Lie
groups using an augmented Lagrangian-based constrained
discrete Differential Dynamic Programming. Finally, [14]
proposes the use of cost function design on the Lie algebra
for control on Lie Groups.

Contribution: This paper proposes the use of canonical
coordinates (screw coordinates) of SE(3) to synthesize a
finite horizon LQR controller for trajectory stabilization. By
exploiting the exponential map and its differentials, we derive
the linearization of the equation of motion (EOM) of a free-
floating rigid body. The proposed linearization is easy to
implement as it avoids the use of tensors by exploiting the
directional derivative of the derivative of the exponential map
(dexp map). Based on this linearization, a time varying LQR
controller is developed. Note that we are currently evaluating
the proposed controller in some numerical experiments and
the results will be presented in the near future.

Organization: Section II presents the canonical screw
coordinates of SE(3) along with the exponential map and
its differentials. Section III presents the equation of motion
of a free-floating rigid body and its geometric linearization.



Section IV derives the corresponding finite horizon LQR
controller. Section V concludes the paper and highlights our
future work.

II. CANONICAL COORDINATES ON SE(3), EXP MAP AND
ITS DIFFERENTIALS

This section presents the fundamentals for describing
rigid body motion in SE(3) in terms of canonical screw
coordinates via the exponential map exp and its differential
dexp. Further, the directional derivative of the dexp mapping
is presented which is required for linearizing the EOM. For
a detailed treatment, refer to [15].

A. Preliminaries

Let G be a n-dimensional Lie group with Lie algebra
g. Lie algebra elements are denoted X̂ ∈ g, and when
represented as vectors, they are denoted X ∈ Rn, which
implies an obvious isomorphism. Let exp : g → G be
the exponential map on G. Its right-trivialized differential
dexpX̂ : g→ g is defined as(

DX̂ exp
)
(Ŷ) = dexpX̂(Ŷ) exp(X̂) (1)

where
(
DX̂ exp

)
(Ŷ) := d

dt exp(X̂ + tŶ)|t=0 is the direc-
tional derivative DX̂ exp : g → Texp X̂G of exp at X̂ in
direction of Ŷ. The differential and its inverse admit the
series expansions [16, pp. 26 & 36ff], [17], [18, Theorem
2.14.3.]

dexpX̂(Ŷ) =

∞∑
i=0

1

(i+ 1)!
adi

X̂
(Ŷ) (2)

dexp−1
X̂

(Ŷ) =

∞∑
i=0

Bi
i!

adi
X̂

(Ŷ) (3)

where Bi denote the Bernoulli numbers. In vector representa-
tion of g, the differential mapping attains the form dexpXY,
with matrix dexpX. This matrix and its inverse admit the
series expansions

dexpX̂ =

∞∑
i=0

1

(i+ 1)!
adi

X̂
(4)

dexp−1
X̂

=

∞∑
i=0

Bi
i!
adi

X̂
. (5)

with the little adjoint matrix adX such that adX̂(Ŷ) =

âdXY.

B. Rigid Body Motion in Terms of Exponential Map

Pose of the rigid body is expressed in terms of the
canonical coordinates X ∈ R6 of the first kind with the
exponential map C (t) = C0 exp X̂ (t), where X̂ ∈ se (3).
The closed form can be expressed for X = (x,y) as

exp(X̂) =

(
R 1

‖x‖2 (I−R)x̃y + hy

0 1

)
, for x 6= 0

=

(
I y
0 1

)
, for x = 0 (6)

where
R = exp x̃ = I + αx̃ + 1

2βx̃
2 (7)

with α := sinc ‖x‖ , β := sinc2 ‖x‖2 . The body twist
in body-fixed representation is given in terms of the time
derivative of X by the local reconstruction equation:

V = dexp−XẊ (8)

where dexpX : R6 → R6 is the matrix form of the right-
trivialized differential of the exp map. The inverse relation is
Ẋ = dexp−1−XV. For SE(3), it can be expressed in closed-
form as

dexp−1X =

(
dexp−1x 0

(Dxdexp
−1)(y) dexp−1x

)
(9)

with

(Dxdexp
−1)(y) = − 1

2 ỹ +
1

‖x‖2
(1− γ) (x̃ỹ + ỹx̃) +

xTy
‖x‖4

(
1
β + γ − 2

)
x̃2

and γ := α/β [15]. In vector representation X = (x,y) ∈
R6, the matrix form of the adjoint operator for SE(3) is

adX =

(
x̃ 0
ỹ x̃

)
. (10)

Using it, a computationally efficient and numerically stable
version of (9) was presented in [19], [20] and is given by

dexp−1X = I− 1

2
adX + 1

‖x‖2

(
2− 1+3α

2β

)
ad2

X+

1
‖x‖4

(
1− 1+α

2β

)
ad4

X .
(11)

The singularity in (11) is removable by exploiting the limit
lim‖x‖→0 dexp

−1
X = I− 1

2adX.

C. Differential of the dexp mapping

The directional derivative of the matrix dexp−1 for
SE(3) is

(DXdexp−1)(U) =(
(Dxdexp

−1)(u) 0

(DXDdexp−1)(U) (Dxdexp
−1)(u)

)
(12)

where U = (u,v), and the directional derivative of matrix
Ddexp−1 possesses the explicit closed-form

(DXDdexp−1)(U) = − 1
2 ṽ

+ 1−γ
‖x‖2

(
x̃ṽ + ṽx̃ + ỹũ + ũỹ + 1

4 (xTu)(x̃ỹ + ỹx̃)
)

− 1
‖x‖4

(
(1− γ) (xTu)(2 + γ)(x̃ỹ + ỹx̃)

+(2− γ − 1
β )(xTy)(x̃ũ + ũx̃) + (xTv + yTu)

(2 + 1
4 (xTy)(xTu)− γ − 1

β )x̃2
)

+ 1
‖x‖6 (xTy)(xTu)

(
8− 3γ − γ2 − 2

β2 (α+ β)
)
x̃2 .

The above relation can be implemented to cope with ‖x‖ =
0 [15]. An equivalent expression for the directional derivative
of the matrix of the left-trivialized differential, i.e. with



negative argument X, was derived in Appendix A.1 of [5].
Evaluating (12) additionally requires the directional deriva-
tive of dexp−1 for SO(3) which is given by

(Dxdexp
−1)(y) =− 1

2
ỹ +

1

‖x‖2
(1− γ) (x̃ỹ + ỹx̃)

+
xTy

‖x‖4

(
1

β
+ γ − 2

)
x̃2 . (13)

III. GEOMETRIC LINEARIZATION OF EOM OF
FLOATING-BASE SYSTEMS

This section presents the equation of motion of a free-
floating single rigid body in SE(3), its state space form,
and the linearization for inclusion in finite horizon LQR
controllers. Note that we consider a fully actuated free-
floating rigid body. However, without any loss of generality,
the derivation presented below can be extended to underactu-
ated free-floating systems by including an actuator selection
matrix.

A. EOM of free-floating single rigid body

Let us consider a simple case of free-floating rigid body
with its body fixed reference (BFR) frame located at the
center of mass (COM). The EOM of such a rigid body in
SE(3) is given by

W = MV̇ + adTVMV (14)

where W ∈ se∗(3) is the net wrench acting on the body,
V ∈ se(3) and V̇ ∈ R6 represent the twist and acceleration
of the moving body respectively - all in body fixed represen-
tation. M ∈ P(6) denotes the 6× 6 symmetric and positive-
definite mass-inertia matrix of the body with the following
form:

M =

[
Ib 0
0 mI

]
(15)

where Ib ∈ P(3) is its rotational inertia and m ∈ R+ is
the mass of the moving body. The expression for forward
dynamics can be obtained by rearranging (14) as

V̇ = M−1
(
W − adTVMV

)
(16)

which is a 2nd order ordinary differential equation (ODE).

B. Dynamics in state-space representation

Let S = (η, ξ)T ∈ R6 denote the canonical screw
coordinates of SE(3). Together with V, one could denote
the state of the rigid body as x = (S,V)T ∈ R12. Using
(16) and V = dexp−SṠ (substitute X = S in (8)), its first
order time derivative ẋ ∈ R12 is given by:

ẋ =

[
Ṡ

V̇

]
=

[
dexp−1−SV

M−1
(
W − adTVMV

)] = f(x,W) (17)

which captures the dynamics of the free-floating rigid body
in the form of a 1st order ODE. Note that any other
choice of coordinates of SE(3) (Study parameters [21], dual
quaternions [22]) would require resolution of additional alge-
braic constraints typically leading to a differential-algebraic
equation (DAE).

C. Linearization of the state-space dynamics

Considering the Taylor series expansion of (17), the sys-
tem dynamics can be linearized and written in the following
state-space form:

ẋ = Ax + BW (18)

where A = ∂f
∂x ∈ R12×12 and B = ∂f

∂W ∈ R12×6 are
the partial derivatives of the dynamics f(x,W) with respect
to the state vector x and wrench acting on the body W
respectively. The expression for the matrix A is given by

A =

∂(dexp−1
−SV)

∂S dexp−1−S

06×6 M−1
∂(adT

VMV)
∂V

 . (19)

Here the top-left block matrix
∂(dexp−1

−SV)
∂S requires the

multiplication of first order partial differential of the inverse
of dexp mapping (which is a tensor) by V. In order to
avoid the computation of this tensor quantity explicitly, one
can exploit the directional derivative expression in (12) with
the basis vectors ei taken from the ith column of a 6 × 6
identity matrix I6×6 (for i ∈ {1, 2, . . . , 6}) as

∂
(
dexp−1−SV

)
∂S

=[
(D−Sdexp

−1) (e1)V . . . (D−Sdexp
−1) (e6)V

]
6×6 .

The top-right block matrix can be evaluated with (11).

The bottom-right block matrix M−1
∂(adT

VMV)
∂V requires the

use of tensorial quantities but can be computed easily by
multiplying M−1 with the formula for

∂
(
adTVMV

)
∂V

= adTVM+(
adTe1

MV adTe2
MV . . . adTe6

MV
)
.

In the second matrix summand of the above formula, each
matrix column adTei

MV is evaluated with the basis vectors
ei as before. The expression of the matrix B is simply given
by

B =

[
0

M−1

]
. (20)

IV. TRAJECTORY STABILIZATION IN SE(3)

Assume that pre-computed optimal state x0(t) =
(S0(t),V0(t))T and input (W0(t)) trajectories for the float-
ing base system are described in terms of canonical coor-
dinates (screw coordinates) on SE(3). The error in a local
coordinate system relative to the nominal trajectory can be
defined as:

x̄(t) = x(t)−x0(t) ∈ R12 , W̄(t) = W(t)−W0(t) ∈ R6

The time derivative of the state error trajectory is

˙̄x(t) = ẋ(t)− ẋ0(t) = f(x(t),W(t))− f(x0(t),W0(t))



which can be approximated by 1st order Taylor series ap-
proximation as

˙̄x(t) ≈ f(x0(t),W0(t)) +
∂f(x0(t),W0(t))

∂x
(x(t)− x0(t))

+
∂f(x0(t),W0(t))

∂W
(W(t)−W0(t))− f(x0(t),W0(t))

= A(t)x̄(t) + B(t)ū(t)

where A(t) and B(t) can be evaluated with (19) and (20)
respectively. Note that the linearization is time varying and
is evaluated along the nominal trajectory.

Considering a quadratic form on the trajectory following
cost

J = x̄T (t)Qf x̄(t) +

∫ tf

0

(
x̄T (t)Qx̄(t) + W̄(t)RW̄(t)

)
dt

with Q � 0,Qf � 0 and R � 0, the optimal tracking
controller can be derived by solving differential Riccati
equation

−Ṡ(t) =S(t)A(t) + AT (t)S(t)

− S(t)B(t)R−1BT (t)S(t) + Q, (21)

with the terminal condition

S(tf ) = Qf . (22)

The resulting optimal controller takes the linear form
W̄∗(t) = −K(t)x̄(t), or:

W∗(t) = W0(t)−K(t)(ẋ(t)− ẋ0(t)) (23)

and the corresponding optimal cost-to-go function is given
by

J∗(x(t)) = x̄T (t)S(t)x̄(t) . (24)

Note that it is crucial to respect the symmetric and positive
semi-definite structure of the S(t) matrix in order to avoid
numerical errors in solving (21). This can be done by using
the square-root factorization of the matrix S(t) = PT (t)P(t)
as discussed in [23]. An alternative approach to ensure this
is to use symplectic integrators as shown in [24].

V. CONCLUSION AND OUTLOOK

This paper presents a novel geometric linearization of
the equations of motion of a free-floating rigid body in
SE(3) in terms of its canonical screw coordinates. This
linearization exploits the differential of the exponential map
and its directional derivative in order to compute the involved
partial derivatives. Subsequently, we use this linearization
to develop a finite horizon LQR controller which can be
used to locally stabilize any pre-computed optimal trajectory.
The next step includes numerical validation of the approach
presented in this paper. In the near future, we also plan to
extend our work to other similar control approaches, such as
iterative LQR (iLQR) and differential dynamic programming
(DDP).
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