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Abstract— This work attempts to reduce the barriers towards
long-term autonomy of mobile outdoor robots by identifying
and classifying key difficulties in such a context and developing
a fully integrated monitoring and resolution framework capable
of overcoming typical limitations for those systems. Experi-
mental evaluation of the proposed framework in a simulation
environment indicates a drastically improved resilience with
respect to the identified challenges.

I. INTRODUCTION

With robotic technology maturing, a focus is set on long-
term autonomous (LTA) deployments in highly dynamic,
partially observable real-world environments such as agricul-
ture, where knowledge is incomplete. Goal-oriented acting
requires intelligent planning, but even good plans do not
always work out as expected. Thus, it is critical to ensure
a certain level of robustness during plan execution, with
problems ideally being solved by the robot as they arise.
Consequently, execution monitoring techniques that address
problematic situations by means of recovery mechanisms
must be an essential component of robot architectures.

II. LONG-TERM AUTONOMOUS MOBILE ROBOTS

All three attributes - long-term, autonomous, and mobile -
have the potential of dramatically increasing the complexity
and the risk for failures of the system. To be able to
test our approaches, we define long-term as a period of
time, spanning multiple mission supply cycles, during which
inherent dynamics of the environment and the system itself
can be expected. [1] Likewise, autonomy is defined as levels
on a spectrum by the necessity of human intervention with
respect to the core functionalities of a system. To enable
LTA, there is no single problem to solve, but rather a series
of solutions being integrated and interacting. Two of those,
namely autonomous energy supply and a dynamic battery
monitoring systems, are described in the same work.

III. RELATED WORK

A substantial majority of the research concerning LTA
deals with indoor service scenarios ([2][3][4]). The exam-
ples available for outdoor scenarios tend to focus on very
specific aspects of LTA, such as environmental change and
place recognition ([5][6][7]). In addition, general problem
handling capabilities are often tightly tethered to specific
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systems and environments and therefore hardly reusable.
What is perhaps a bit underexposed in the literature is the
big picture of LTA mobile robotic applications in outdoor
scenarios, not focusing on specific aspects but approaching
an integrated functioning system. More precisely, work that
discusses common problems in LTA scenarios, regardless
of the specific application, and how to address them with
execution monitoring. The present work is based on the first
author’s Master’s thesis [8], which provides a comprehensive
and practically motivated development of such an execution
monitoring system for a mobile robot, concretely applied in
an agricultural plant inspection task. It serves as a condensed
summary of the main findings, focusing on high-level failure
monitoring and management, and is intended as a step
towards a generic framework that is nonetheless concretely
applicable in the previously proposed LTA scenario. [1]

IV. CHALLENGES FOR LONG-TERM AUTONOMY

There are numerous potential hinderances for LTA sys-
tems that can cause a failure and prevent the system from
continuing its task. The following three constraints precisely
define the ones considered in this work:

1) It can practically occur in outdoor scenarios, e.g. [1].
2) It can prevent the smooth functioning of an LTA system

or affect the quality of its results.
3) It can be detected by monitoring methods and subse-

quently solved or communicated.
This definition contains certain implicit assumptions. The
first constraint, for instance, implies that these problems
should be relatively likely to occur. Furthermore, the third
constraint assumes that the system is still fundamentally
functioning (recoverable in principle). Without claiming to
be exhaustive, the following is a list of challenges that fulfill
the above restrictions and are thus worthy of investigation:

• power management - unexpected energy consumption
• charging failure - unsuccessful docking
• extreme weather - e.g. storm, heavy rain, extreme cold
• natural dynamics - e.g. day, night
• sensor (perception) failure
• perceptual aliasing issue
• data management - e.g. sensor data processing failure
• lost connection - WiFi, RTK-GNSS, internet etc.
• navigation failure - obstacles (static, dynamic)
• sustained recovery - no return to normal operation
• inaccurate localization - IMU, odometry, GNSS
• mapping error
• plan deployment failure



This list is the result of a tripartite analysis: Observations
in real-world experiments, problems that are obvious and
do not require justification, and challenges that have been
encountered in LTA experiments in the literature. Generally,
potential barriers for LTA can be classified into three cate-
gories of increasing negative impact on the system:

1) Contingency: The robot recognizes a problem and is
able to solve it.

2) Catastrophe: The robot recognizes a problem, is unable
to solve it, and calls an operator for help.

3) The robot has a problem, does not recognize it and
therefore cannot solve or communicate it.

Type (1) is the ideal case and accordingly the ultimate goal of
all efforts to implement LTA in practice. Type (2) is already
a step forward, because problems are at least recognized and
can be communicated, which is the minimum requirement to
guarantee a certain robustness with respect to the problems.
In a baseline scenario without any monitoring, the problems
can be naturally classified as type (3). Part of the goal of this
work is to shift the identified challenges to another category
and thereby improve the utility of the system, i.e., to solve
them (1), or at least to enable the robot to recognize them
with execution monitoring approaches and request help (2).

V. PLAN EXECUTION AND MONITORING

A key aspect of dealing with the introduced issues is
that the robot will not be able to complete its missions
without occasionally preempting the execution of the high-
level task plan. As Harris et al. remark, even well-crafted
plans may fail, essentially when the situations encountered
do not match prior expectations. [9] Execution monitoring
enables a robotic system to recognize and classify such
situations caused by unexpected internal (robot) or external
(environment) conditions [10] and provide recovery options.
[11] If the behavior of a robotic system is plan-based,
this is very meaningful for monitoring because the current
state of plan execution provides context and thus certain
expectations. [12] These properties make universal monitor-
ing (introspection / extrospection) and resolution methods
a highly relevant building block for robust LTA. [13][3] In
case of a problem, the robot needs to be able to save the
current state of the plan execution and continue precisely
with this state after the reason for the interruption has been
resolved, which is far from trivial since the original plan
may no longer be applicable, e.g., due to preconditions of
actions and unplanned resource consumption. However, if
the interruption of the plan involves returning to the base
station, such a recovery can always be accompanied by
recharging. All other cases are covered by the integrated
battery monitoring module described in [1].

A. Execution Monitoring State Machine Architecture

Plan execution, i.e., acting and monitoring, is modeled
as a high-level hierarchically structured state machine (cf.
Fig. 1) implemented using the SMACH1 library. Unlike
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many approaches in the literature [12], the capability for
a certain degree of fault tolerance is directly integrated
into the control architecture. The state machine coordi-
nates the entire robot operation and is composed of the
states NORMAL_OPERATION (represented by an embedded
state machine named OPERATION , visualized in Fig. 2,
as well as the two parallel running monitoring states),
CONTINGENCY , CATASTROPHE , and SHUTDOWN .

Fig. 1: HIERARCHICAL STATE MACHINE (HIGH-LEVEL)

The parallel running monitoring states (connected to mon-
itoring nodes for each of the challenges listed in section
IV) are used to interrupt the robot’s operation at any time
when a problematic situation is detected (dashed arrows).
In this case, depending on severity, the respective proce-
dure interrupts OPERATION and triggers a transition to
the appropriate handling state. For instance, the outcome
minor_complication leads to a state transition to
CONTINGENCY where the issue is addressed (cf. cate-
gory (1) in sec. IV). If it is able to solve the issue,
NORMAL_OPERATION resumes (cf. “solved”). In case of
critical_complication or if the robot is not able
to solve the problem (cf. “aggravated”), it ends up in the
CATASTROPHE state and the human operator is notified
(type (2)). The following example will illustrate the con-
cepts. During runtime, the battery does not discharge pre-
cisely according to the plan (e.g. fluctuations due to tempera-
ture). The power management monitoring node would initiate
a transition to CONTINGENCY when it detects that the
battery is already too low to complete the plan until the next
charge stop, but the robot is still able to recover, i.e., drive
back to its base, recharge, and continue the plan execution.
However, it would proceed to CATASTROPHE if it detects
that the battery is so low that it is not possible to reach the
base and recharge, even with an immediate return. This leads
to an event message to CATASTROPHE_MONITORING ,
then to an external failure, which interrupts OPERATION
with a critical_complication and causes the high-
level state machine to transition to CATASTROPHE . The
handling node would then shut down the robot after commu-
nicating the problem. Finally, there is also the case that first a
contingency is launched as the problem still seems to be solv-
able based on current estimations and then it turns out that it
in fact is not (“aggravated”). During the state OPERATION ,



i.e., in the embedded state machine visualized in Fig. 2, the
robot can be in one of two self-explanatory states: IDLE
and EXECUTE_PLAN . In conclusion, there are two types of
problems: Low-level problems that are detected directly, e.g.,
by simple error treatment, and problems that are detected by
the monitoring nodes (cf. external_problem ) with the
consequence that execution is interrupted and the problem is
solved superordinately. Essentially, in one long-term episode,
the robot should stay in NORMAL_OPERATION as long as
the episode is running and no problem has occurred.

Fig. 2: EMBEDDED STATE MACHINE (LOW-LEVEL)

B. Solutions for LTA Challenges

Our approach aims to have a resolver node for each of
the identified challenges. While in the case of contingencies
these nodes actually refer to problem solving, in catastrophe
cases they are more for damage control. Since the focus
of this work is on detection, the operational fallback is to
request assistance from a human operator. [15] Nevertheless,
within the list of identified issues, there is only one that
explicitly leads to a catastrophe condition (power manage-
ment failure). All other problems start with a contingency
and therefore launch at least a simple heuristic that attempts
to resolve the issue. Surprisingly, simple workarounds often
lead to success, such as waiting for a short time, restarting
a component, changing the position slightly or repeating the
task. Despite deterministic repetition of the same operation,
different results can be expected due to the presence of
sufficient nondeterminism (dynamics) in the environment
[15]. Detailed explanations of the simulation of the presented
LTA challenges, the monitoring solutions developed for each,
and available resolution procedures can be found in [8].

VI. EXPERIMENTS AND EVALUATION

The scheme is essentially the same for all potential LTA
challenges in the upcoming experiments: Fault simulation
by publishing on the respective ROS topic, followed by a
triggered monitoring procedure that should detect the prob-
lem, interrupt normal operation and initiate an appropriate
remediation. Various metrics can be used to evaluate the
performance of an LTA system: Hawes et al. [3] suggest
the autonomy percentage to examine how actual autonomous
acting relates to idle time. Steinberg et al. [16] introduce
the metric of time between undesired human interventions,
i.e., situations in which the robot should be able to recover,
as opposed to situations in which human intervention is
expected. Applied to this work, this refers to problems for

which specific solutions have been proposed but have not
been successful. This would manifest in simulated contin-
gency situations ending in a catastrophe. Furthermore, they
propose a metric for information sharing, i.e., the percentage
of time the robot communicates meaningful information to
the operator. Based on the developed architecture, this boils
down to a question of reliability, which is evaluated in
section VI-B. If a problem is properly identified, meaningful
information will be provided with certainty, at least in the
sense of information that led to the detection of the problem.

A. Classification of the Presented Challenges

Initially, the identified LTA challenges are classified ac-
cording to their severity based on their evaluation in simu-
lation together with a comparative contextualization of the
practical case. More interesting in terms of classification
is the present state of the physical robot system, i.e., no
monitoring for the identified issues. In this case, catastrophe
refers to battery failure or timeout and is thus equivalent
to mission abort. Despite the evident potential for mission
failure among some of the identified problems, it is sys-
tematically investigated how the system responds to these
failure cases in simulation without the developed monitoring
procedures. This is critical to verify the expected behavior of
the simulated fault cases. The findings of the classification
are summarized in Tab. I. Crucially, any problem category
that has a “✓” or “(✓)” in the catastrophe column has the
potential to abort the mission without monitoring solutions.
Assuming persistent failures, “✓” means that mission abort
is a certainty, while “(✓)” stands for the possibility. Another
perspective is that “✓” refers to catastrophes caused directly
by the problem, whereas “(✓)” implies indirect causation.
Furthermore, the remaining problems do not interrupt the
mission, but they do invalidate the results both in prac-
tice and simulation. There is only one exception: Drastic
weather changes in the simulation. The actual occurrence
of such events is not simulated, only the information of
their presence. However, since the practical relevance is
obvious, there is no need for further simulation. Thus, all
of the issues identified have the potential to render LTA
deployments worthless in real-world scenarios, highlighting
the importance of addressing all of them.

problem
contingency & catastrophe

(with monitoring)
sim / prac

catastrophe
(without monitoring)

sim prac

potential to render mission worthless
sim prac

power management ✓ ✓ ✓ ✓ ✓
charging failure ✓ ✓ ✓ ✓ ✓

drastic weather change ✓ ✗ (✓) ✗ ✓
sensor failure ✓ ✗ ✗ ✓ ✓

data management ✓ ✗ ✗ ✓ ✓
lost connection ✓ (✓) (✓) ✓ ✓

plan deployment failure ✓ ✓ ✓ ✓ ✓
navigation failure ✓ (✓) (✓) ✓ ✓

incorrect localization ✓ (✓) (✓) ✓ ✓

TABLE I: CLASSIFICATION IN TERMS OF SEVERITY

B. Evaluation of the Monitoring Framework

Now the natural question is to what extent the monitoring
framework improves the situation. For a meaningful evalua-
tion, we perform an LTA episode and randomly simulate the
occurrence of issues from the set of identified problem cate-
gories. Since it is always known which reaction is expected
after a certain simulation, the expected can be compared with



the observed. The following results are based on a frequency
of 1250s, i.e., a random problematic situation occurs every
1250s. However, this is only a lower bound because some of
the simulations can only occur under certain circumstances
and there are never two simultaneous fault simulations. The
frequency was not chosen too high, so that the robot can
still perform tasks (e.g. drive_to , return_to_base ,
charge and scan ) and is not only occupied with error
handling. Experimentally, it turned out that a time per run of
5 hours is sufficient to achieve a certain validity, since several
mission and charge cycles occur and there is enough room for
error simulation. Obviously, the number of missions that take
place during this period depends on the plan that defines such
a mission. The complete plan underlying the experiments,
executed in a loop, can be found in [8]. The rationale behind
it is that it satisfies the constraints for an LTA operation [1]
and provides a variety of situations (plausible representation
of real-world deployment). The 5-hour episode was repeated
10 times, on the one hand to endow the conclusions with
some significance, but on the other hand also to be able
to judge how many of these runs ran successfully to the
end. Ideally, there should be no missions that end in a
catastrophe, since only problems that are in principle solvable
are simulated for this experiment. In order for the runs to be
comparable, the random selection of failure simulation was
initialized with the same seed.
Of 10 runs, 8 were completed successfully. The two aborted
runs are the result of docking failures that could not be
resolved. This is not a flaw of the monitoring framework,
which correctly identified the issues, but rather a matter of
robustness of the integrated docking solution presented in [1].
The first thing to consider is the expected response to error
cases per run in percent. Ideally, this would be 100%, which
would mean that the monitoring detects exactly all simulated
problems and nothing beyond, which was the case in 5/10
runs. This proportion is composed of correct contingency
cases, i.e., when exactly the expected condition occurs, which
means that the monitoring worked correctly, and correct non-
contingency cases, where there is no contingency expected
and none occurs. In general, across the problem categories,
there are some conditions that are somewhat problematic but
do not cross the boundary of contingency. Thus, the latter
category is used to verify that the monitoring solutions are
not configured too restrictively to ensure that the robot does
not constantly try to solve imaginary problems. The remain-
ing unexpected responses are composed of false positives,
false negatives, and finally unexpected contingencies, i.e.,
cases where a contingency situation is expected due to a
simulated failure but a different type of problem is detected.
It is very crucial to note that false positives and unexpected
contingencies are not necessarily a fault of the monitoring
framework or its configuration. A significant majority of the
cases is related to problems in the simulation that were not
simulated as part of an experiment, but actually occur and
are thus correctly detected. In order to actually evaluate the
performance of the monitoring framework and not include

other aspects such as the robustness of the docking solution,
these correctly identified but not simulated problems are
manually removed from the results. On average, the number
of simulated problem cases is 13.75 per episode. The average
proportion of expected responses to these error cases across
all runs is 95.89%, which highlights a reasonable reliability
of the system. The few unexpected responses consist of some
false positives with respect to localization problems. Appar-
ently, some of the monitoring approaches are configured to
be too sensitive. In addition, there is a total of two false
negatives for the same simulated problem, namely divergence
between odometry and GNSS estimates of the total distance
traveled. This is most likely due to the fact that the way
this is simulated is not perfect for all circumstances and
should be fairly easy to resolve. Moreover, on average, the
robot completed 3 missions with a total of 88.75 tasks and
required an average of 10.38 charge cycles. Per episode, the
robot traveled an average total distance of 967.1 meters in
5.06 hours, estimated from odometry data. The autonomy
percentage illustrates that the majority of the runtime is spent
on actual autonomous tasks, on average 96.28%.

VII. CONCLUSION AND FUTURE WORK

Practically relevant challenges to the LTA of mobile
outdoor robots were identified, classified in terms of their
potential impact and implemented in simulation. Based on
the results, it can be concluded that the proposed frame-
work drastically improves the resilience with respect to the
identified challenges. The initial goal of assigning each of
the identified problems to a different category (cf. sec-
tion IV) was achieved, and the experiments demonstrate
a certain level of reliability. Even if an episode fails, as
in the two cases of experimental evaluation, catastrophe
conditions are always communicated to the human operator,
which is a huge improvement. The monitoring and resolution
approaches are incorporated into a generic framework with
as few assumptions about specific systems and scenarios
as possible. While the context and many of the challenges
studied are specific to outdoor scenarios, the framework
itself is generally applicable to indoor scenarios. Since the
system was developed within ROS, universality ends when
considering other middlewares, although the concepts in this
work should apply to non-ROS systems as well.
In total, there are 48 problem instances that can be explicitly
simulated, many other cases that are explicitly addressed by
monitoring procedures, and numerous potential problems that
are implicitly covered. The overall architecture has proven
to be suitable for this type of non-nominal plan execution. In
particular, due to the parallel running monitoring nodes, the
tight coupling of acting and monitoring in general, and the
modularity that enables extensibility and reconfigurability.
For a robotic system to use the monitoring framework, the
embedded OPERATION state machine would have to be
replaced by the system’s own operational model with two
basic assumptions. First, it must communicate predefined
information about the mode of the system via a ROS topic.
Second, all active targets should be interruptible via a specific



ROS message. Finally, new monitoring and resolution nodes
can be easily added by customizing the framework’s launch
file and publishing to the predefined topics to communicate
identified problems, severity and resolution progress.
Now that the presented framework performs well in simula-
tion, a natural next step is to conduct field tests and demon-
strate it on the physical robot platform. Further next steps
include long-term data acquisition to learn from experience
and more elaborate resolution techniques.
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