Engineering Applications of Artificial Intelligence 126 (2023) 106727

Contents lists available at ScienceDirect
Artificial
Intelligence

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Converting semantic web services into formal planning domain descriptions M)

Check for

to enable manufacturing process planning and scheduling in industry 4.0
Lukas Malburg *, Patrick Klein, Ralph Bergmann

Artificial Intelligence and Intelligent Information Systems, University of Trier, Universitdtsring 15, Trier, 54296, Germany
German Research Center for Artificial Intelligence (DFKI), Branch University of Trier, Universitdtsring 15, Trier, 54296, Germany

ARTICLE INFO ABSTRACT

Keywords:

Semantic web services

Industry 4.0

Automated planning

Planning domain definition language
Cyber-physical workflows

To build intelligent manufacturing systems that react flexibly in case of failures or unexpected circumstances,
manufacturing capabilities of production systems must be utilized as much as possible. Artificial Intelligence
(AD) and, in particular, automated planning can contribute to this by enabling flexible production processes.
To efficiently leverage automated planning, an almost complete planning domain description of the real-
world is necessary. However, creating such planning descriptions is a demanding and error-prone task that
requires high manual efforts even for domain experts. In addition, maintaining the encoded knowledge
is laborious and, thus, can lead to outdated domain descriptions. To reduce the high efforts, already
existing knowledge can be reused and transformed automatically into planning descriptions to benefit from
organization-wide knowledge engineering activities. This paper presents a novel approach that reduces the
described efforts by reusing existing knowledge for planning and scheduling in Industry 4.0 (I4.0). For
this purpose, requirements for developing a converter that transforms existing knowledge are derived from
literature. Based on these requirements, the SWS2PDDL converter is developed that transforms the knowledge
into formal Planning Domain Definition Language (PDDL) descriptions. The approach’s usefulness is verified
by a practical evaluation with a near real-world application scenario by generating failures in a physical smart
factory and evaluating the generated re-planned production processes. When comparing the resulting plan
quality to those achieved by using a manually modeled planning domain by a domain expert, the automatic
transformation by SWS2PDDL leads to comparable or even better results without requiring the otherwise high
manual modeling efforts.

1. Introduction shop floor with high-level systems for decision support in near real-time

are desirable (Riifmann et al., 2015; Malburg et al., 2020a; Rossit et al.,

The ongoing transformation and shift towards more autonomous
and intelligent manufacturing within the context of I4.0 is crucial for
enabling individual mass production and supporting cloud manufactur-
ing (Lasi et al., 2014; Riimann et al., 2015; Kagermann and Wabhlster,
2022). To achieve this, smart manufacturing systems that are easily
configurable and allow a high degree of flexibility during production
are needed (Lasi et al., 2014; RiiBmann et al., 2015; Cheng et al., 2017;
Bergweiler, 2016). For this purpose, the use of Al methods in Cyber-
Physical Production Systems (CPPSs) (Monostori, 2014) is inevitable
(Lee et al., 2014; Monostori, 2014), but still in its infancy. For example,
current production lines often operate isolated and have only limited
capabilities to react to dynamic changes in the environment, i. e., when
processes cannot be executed as previously planned and, thus, have
to be adapted (Malburg et al., 2020a; Malburg and Bergmann, 2022;
Malburg et al., 2023b,a). To remedy this situation, constant re-planning
and scheduling to optimize the production and a closer coupling of the

2019b,a; Seiger et al., 2022).

For using and applying AI methods like automated planning
(Haslum et al., 2019; Ghallab, 2004; Ghallab et al., 2016; Fox and Long,
2003) efficiently, a formal and complete planning domain description
of the real world is required. The PDDL (McDermott et al., 1998) is
the de facto standard for expressing planning models for state-of-the-
art planners (Haslum et al., 2019). However, creating PDDL planning
domain descriptions is a demanding and error-prone task that requires
high manual modeling efforts even for domain experts (Nguyen et al.,
2017; Zhuo et al., 2013; Jilani, 2020; McCluskey et al., 2009). Even if
complete planning domain descriptions are available in real-world ap-
plication scenarios, maintaining the stored knowledge encoded in plain
PDDL files is tedious, resulting in additional maintenance efforts to
keep knowledge representations and planning domain descriptions con-
sistent (McCluskey et al., 2021; Wickler et al., 2015). This is especially
the case in manufacturing environments, where numerous machine

* Corresponding author at: German Research Center for Artificial Intelligence (DFKI), Branch University of Trier, Universititsring 15, Trier, 54296, Germany.
E-mail addresses: malburgl@uni-trier.de (L. Malburg), kleinp@uni-trier.de (P. Klein), bergmann@uni-trier.de (R. Bergmann).

https://doi.org/10.1016/j.engappai.2023.106727

Received 7 August 2022; Received in revised form 31 March 2023; Accepted 25 June 2023

Available online xxxx

0952-1976/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.engappai.2023.106727
https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.106727&domain=pdf
mailto:malburgl@uni-trier.de
mailto:kleinp@uni-trier.de
mailto:bergmann@uni-trier.de
https://doi.org/10.1016/j.engappai.2023.106727
http://creativecommons.org/licenses/by/4.0/

L. Malburg, P. Klein and R. Bergmann

parameters and mutual relationships between machine functionalities
must be considered, and factory configurations may change regularly.
To remedy the high manual modeling and acquisition efforts, several
methods and tools have been proposed for automated domain model
learning (Jilani, 2020). These methods, however, partly only derive
incomplete planning models and do not address the maintenance of
encoded knowledge. In contrast to these automated learning methods,
it can be relied on already available knowledge, e.g., production-
specific knowledge in the form of ontologies (Lemaignan et al., 2006;
Mazzola et al.,, 2016), as a single source of truth (Sesboiié et al.,
2022) and a shared semantic model, e. g., as required to develop digital
twins (Boschert and Rosen, 2016). The advantage of using one shared
semantic model is the utilization of established knowledge engineering
activities of the company (Wickler et al., 2015) to ensure that the model
is up-to-date and well-modeled. In addition, there is only a single initial
effort in defining the transformation from the already used knowledge
representation into a PDDL model required, in contrast to building and
constantly updating and maintaining an isolated PDDL planning model
to obtain useful and high-quality planning results.

The goal of this paper is to present a new approach to automatically
convert already available knowledge into a formal PDDL planning
domain description to reduce the described efforts and to use this
knowledge for manufacturing process planning and scheduling in 14.0.
For this purpose, (1) we derive requirements that should be satisfied by
a converter and, in general, for using Al planning in Business Process
Management (BPM) based on literature research, (2) we present a
SWS2PDDL converter that transforms the already encoded knowledge
in Semantic Web Services (SWSs) and ontologies to generate PDDL
planning domain descriptions by supporting several PDDL language
levels, and (3) we show in a practical evaluation with a near real-
world application scenario how the automatically generated domain
description can be applied for production planning and scheduling
in 14.0. To demonstrate the suitability of the proposed approach in
an experimental evaluation, we use a physical Fischertechnik (FT)
smart factory for process-based research in 4.0 (Malburg et al., 2020a;
Malburg and Bergmann, 2022; Malburg et al., 2023a; Seiger et al.,
2022; Malburg et al., 2020c; Klein et al., 2019; Malburg et al., 2021;
Klein et al., 2021; Malburg et al., 2023b). Using this physical smart
factory for demonstration and evaluation of the approach strengthens
the results and enables the validation of the approach in a scenario that
is closer to real-world environments.

The paper is structured following the Design Science Research (DSR)
methodology for information systems research proposed by Hevner
et al. (2004). First, Section 2 describes the foundations that compro-
mise the physical FT smart factory used for research, the use case of
BPM and automated planning in smart manufacturing. In addition, we
derive requirements based on literature research that are important
for developing the research artifact. In Section 3, related approaches
are presented and compared w.r. t. the derived requirements. Based on
this knowledge base (Rigor-Knowledge Base in Hevner et al. (2004)),
we can ensure that the developed research artifact consisting of a
SWS2PDDL converter for transforming a semantic model into a for-
mal PDDL planning domain is rigorously constructed (Develop/Build
in Hevner et al. (2004)). To justify the utility and relevance of the
artifact for the addressed problems, an experimental evaluation is con-
ducted by using state-of-the-art planning frameworks and comparing
manually modeled planning domain descriptions and the ones gener-
ated by SWS2PDDL. To compare the created planning domains, we
use quantitative metrics such as the number of actions, the average
number of parameters, or the average number of preconditions and
effects. In addition, we compare the results of planning by measuring
the time needed for planning and the time needed for executing the
generated plans (Justify/Evaluate in Hevner et al. (2004)). By applying
the research artifact to a real-world application scenario during the
practical evaluation, it is shown that the developed artifact is useful for
real environments (Relevance-Environment in Hevner et al. (2004)). Fi-
nally, we summarize the contributions and limitations of the proposed
approach in Section 6 as well as a conclusion is given, and future work
is discussed in Section 7.

Engineering Applications of Artificial Intelligence 126 (2023) 106727

2. Foundations and requirements

Since it is often difficult to conduct research with real production
lines due to safety concerns and industry secrets, Learning Factories
(Abele et al., 2017) for simulating real production environments can
be used. The advantages of using such learning factories are that they
enable the development and evaluation of research artifacts in a closed,
protected environment but at much lower prices before transferring
to real-world production (Malburg et al., 2020a). In Section 2.1, the
used Fischertechnik (FT) physical smart factory for emulating real
production environments is introduced. Afterwards, a Business Process
Management (BPM) abstraction stack to conduct BPM related research
in this context is presented in Section 2.2. The BPM abstraction stack
is implemented as a service-based architecture that abstracts low-level
control commands as services that can be used in higher-level systems
(Seiger et al., 2022; Malburg et al., 2020c). This enables the use of BPM
in smart manufacturing to control the smart factory and in turn to react
to events. In addition, we use semantics to describe the capabilities
of the smart factory by using a domain ontology (Klein et al., 2019).
Automated planning and scheduling techniques can be used in 14.0 to
re-plan the current production in case of failures. For this purpose, the
foundations of automated planning and scheduling are presented in
Section 2.3. In relation to the DSR (Hevner et al., 2004) methodology,
the foundations represent the knowledge base consisting of all relevant
theories, methods, and models. The knowledge base is used to ensure
research rigor of the proposed research artifact.

2.1. Industry 4.0 physical smart factory model

For conducting applied research in the field of 14.0, small-scale
physical factories are often used for the evaluation and demonstration
of feasibility. This approach is useful as a first step because a real
production cannot simply be interrupted for testing purposes (Polge
et al., 2020) as well as there is a high potential of possible issues with
major consequences, e. g., repair costs due to damages. In contrast, the
models used for this purpose are called Learning Factories (Abele et al.,
2017) since their primary purpose is to gain knowledge and estimate
the potential usefulness, e. g., through the evaluation of novel artifacts,
before implementing them in a complex real-world manufacturing
environment. For instance, small-scale physical factories are used for Al
research in the context of 14.0 for multi-agent production systems (Cala
et al., 2016), predictive maintenance (Klein and Bergmann, 2019), and
BPM in smart manufacturing (Malburg et al., 2020a; Seiger et al., 2022;
Malburg and Bergmann, 2022; Malburg et al., 2023a,b; Kirikkayis et al.,
2023).

For our research, we use a physical smart factory that consists of
two similar shop floors connected for the exchange of workpieces, as
shown in Fig. 1. There are four workstations on each shop floor with six
identical machines: a Sorting Machine (SM) with color recognition, a
multiprocessing workstation with Oven (OV), a Milling Machine (MM)
and a Workstation Transport (WT) connecting the two, a High-Bay
Warehouse (HBW) and a Vacuum Gripper Robot (VGR). In addition,
there are individual machines on each shop floor, i.e., a Punching
Machine (PM) and a Human Workstation (HW) on the first shop floor
and a Drilling Machine (DM) on the second one. For control purposes,
there are several light barriers, switches, and capacitive sensors on
each shop floor. Moreover, the first shop floor is extended with dedi-
cated sensors such as acceleration, differential pressure, and absolute
orientation sensors. There are RFID readers/writers integrated into
workstations on both shop floors and in the high-bay warehouses, creat-
ing 28 communication points. This enables tracking of each workpiece
and retrieving the required manufacturing operations and parameters,
which can be modified during production if necessary. Further, a
camera is positioned above the two shop floors for detecting and

L. Malburg, P. Klein and R. Bergmann

Punching g
Machine

Milling Machine 1
(MM 1)

Sorting Machine 1
(SM_1)

e

uman Work- 7
Station (HW_1);

Engineering Applications of Artificial Intelligence 126 (2023) 106727

e
| \High-Bay Warehouse 2 (HBW_2)

\ 7

Oven 2 (OV_2)
— o

|| Drilling Sorting Machine 2~ Milling Machine 2
High-Bay Warehouse 1'| Machine (SM_2) (MM _2)
(HBW _1) | (DM._2)
Shop Floor 1 0 Shop Floor 2,

Fig. 1. The physical Fischertechnik smart factory.
Source: Malburg et al. (2020a).

tracking the workpieces during production (Malburg et al., 2021)." A
video of the FT smart factory executing a manufacturing process and
tracking workpieces by machine learning can be found in Malburg et al.
(2020Db).

2.2. Business process management for smart manufacturing

The combination and integration of BPM with the Internet of Things
(IoT) is beneficial for both sides, since real-time data can be used in
Workflow Management Systems (WfMSs) to control processes in an
event-driven way and the WfMS can in turn trigger actuation in the
IoT environment (Janiesch et al., 2020). To benefit from BPM solutions
in smart IoT environments, the functionalities of actuators and sensors
must be encapsulated to be available in a coarse-grained manner at
a higher level (Malburg et al., 2020c,a; Seiger et al., 2022). In this
section, we present a BPM abstraction stack based on previous work
(Malburg et al., 2020a; Seiger et al., 2022; Malburg et al., 2020c) to
explain how processes in smart factories can be controlled by WfMSs.
In addition, we present how knowledge for the physical smart factory
is represented (Klein et al., 2019; Malburg et al., 2020c). Fig. 2 depicts
the abstraction stack with five individual layers and the overall Seman-
tics that are presented in the following (more information about the
individual layers and their implementation for the smart factory can
be found in Seiger et al. (2022)).

2.2.1. Hardware layer

The Hardware Layer contains the individual actuators and sensors
of the shop floor. Typically, the components of this layer are executing
low-level and hard-wired programs, programmed in proprietary and
specialized languages (e. g., G-code or C-code) with rigid and perma-
nent routines. Interoperability between the components is limited so
that the components mainly work isolated (Malburg et al., 2020c,a;
Seiger et al., 2022).

1 More information about the FT smart factory can be found at https:
//iot.uni-trier.de.

Semantics

HTTP HTTP

il
’-
]
/__HTTP
¥ 4

Business Process Layer O
o H
4
? ? @

RPC RPC RPC
i ® ® ® ®
D L
omain Layer ‘#@ ‘ ® ‘® ‘ @
‘ T Sockets ‘ T ‘ fSockets ‘ T
v v v v
Control Layer @ 9 §& 8 O
| 4 | 4 14 4
J_ { | TDrivers i |] T Drivers i {
M ML o vl v v
Hardware Layer £ p @

Fig. 2. Business process management abstraction layer with semantics.
Source: Based on Malburg et al. (2020a).

2.2.2. Control layer

To access the functionality of the Hardware Layer, very often propri-
etary protocols and drivers (Monostori, 2014) are used by the Control
Layer. In industry, the Control Layer is often implemented as embedded
control application (e. g., Programmable Logic Controllers, PLC) that is
closely related to the corresponding hardware and especially tailored.
In the smart factory model, the commands that are provided by the
embedded control application from FT are, for example, methods to
start or stop motors or to obtain measured values of a certain sensor
(Malburg et al., 2020c,a; Seiger et al., 2022).

2.2.3. Domain layer

The rather fine-grained methods of the Control Layer are further
abstracted as coarse-grained methods by using an object-oriented pro-
gramming language for the smart factory in the Domain Layer. The
methods from the Domain Layer provide the functionalities of the smart
factory such as burn, milling, or drilling. Each of these functionalities

https://iot.uni-trier.de
https://iot.uni-trier.de

L. Malburg, P. Klein and R. Bergmann

Engineering Applications of Artificial Intelligence 126 (2023) 106727

GR_1_

PickUpAnd

© 4%} Bucket {%} Human Worker(Transport | proquct
HBW_1 VGR_1_ <+ VGR_1_ HW_1_ ressed Green Produced
Unload PickUpAnd PickUpAnd Human_ Button
New Order Transport Transport Review @{/GR 1
Received OV 1 Burn S

PickUpAnd

Transport) production
Failed

Human Worker
Pressed Red
Button

Fig. 3. Sheet metal manufacturing process as BPMN 2.0 model.

Source: Malburg et al. (2023b).

consists of several smaller actions that are composed together (Malburg
et al., 2020c,a; Seiger et al., 2022). An example of which actions the
burn functionality is composed of can be found in Seiger et al. (2022).

2.2.4. Web service layer

The Web Service Layer contains RESTful web services that are built
one-to-one from the provided methods of the Domain Layer, i.e., one
functionality of the Domain Layer such as burn results in one corre-
sponding web service (Malburg et al., 2020c,a; Seiger et al., 2022). In
addition, the web services are semantically enriched (see Section 2.2.6).

2.2.5. Business process layer

At the top of the used abstraction stack, manufacturing processes
can be created and executed in the FT smart factory (see Section 2.1).
In our work, we use the Camunda® WfMS to execute Business Process
Model and Notation (BPMN)® 2.0 processes. Fig. 3 shows a sheet metal
manufacturing process modeled with BPMN 2.0 service tasks. After an
order is received, an unprocessed steel slab is unloaded from the HBW.
Afterwards, it is transported to the oven for burning. At the same time,
the empty bucket in which the unprocessed steel slab was contained
in is in turn stored in the HBW. After the burn task, the workpiece is
transported to the review station and manually controlled by a human.
If the workpiece is properly burned, the human worker confirms this by
pressing the green button and, thus, the production of the workpiece
is finished. In the other case, the human worker determines that the
quality is not sufficient and indicates this by pressing the red button.
This causes the workpiece to be discarded. In both cases, the produced
sensor data of the factory is monitored, and a message is sent to the
Camunda WfMS which button was pressed by the human worker at
the human workstation. To be able to recognize such events during
process execution, a Complex Event Processing (CEP) engine processes
the sensor data from the smart factory by using the web services of
the service layer and derives higher level events for process execution
in the WEMS. In addition to the CEP engine, also a Planning Component
could be part of the business process layer to adapt processes according
to exceptions and the current state of the smart factory (Malburg and
Bergmann, 2022; Malburg et al., 2023a,b). In Malburg and Bergmann
(2022), we present an architectural framework for adaptive workflow
management that describes which components could be used and how
they interact in the business process layer.

2.2.6. Semantics

Since plenty of I4.0 scenarios are knowledge-intensive, a com-
prehensive and complete knowledge representation has an important
role. Many industry initiatives have built so-called knowledge graphs
to represent domain knowledge about a manufacturing environment
(e.g., Kalayci et al., 2020; Hubauer et al., 2018). For this purpose, se-
mantic technologies and especially the Web Ontology Language (OWL)
(Hitzler et al., 2012) are considered as appropriate to build such an
industrial information model (Kharlamov et al., 2016) that provides
classes, properties, individuals, and data values to express complex

2 https://camunda.com/.
3 https://www.omg.org/spec/BPMN/2.0.2/.

knowledge about individuals, groups of individuals, and their relation-
ships (Hitzler et al., 2012). For this reason, Semantics can be used
by each layer in the BPM abstraction stack. In previous work, we
have presented the FTOnto* domain ontology (Klein et al., 2019) that
semantically describes the physical smart factory used. The ontology is
based on well-established standards and ontologies from the Industrial
Internet of Things (IIoT) area. In the FTOnto, each sensor, actuator, op-
eration for processing and transport, and the workpieces are described
semantically with the aim of modeling a digital representation of the
structural properties of the whole manufacturing system.

In addition to this part of the semantic model, the domain ontology
is enhanced by SWSs that represent the capabilities of the smart factory
(Malburg et al., 2020c; Seiger et al., 2022). For this purpose, a self-
adopted and remodeled version of OWL for Services (OWL-S) (Martin
et al., 2007, 2004) is used. This has resulted in the use of only one
service class that corresponds to the Service Profile in OWL-S in which
each service’s functionality is described w.r.t. its Inputs, Outputs,
Preconditions, and Effects (IOPEs). An illustration of the semantic anno-
tations of a web service as a graph is depicted in Fig. 4 in which violet
rectangles represent instances of classes and classes are represented
by orange ellipses. In addition, green rectangles with rounded corners
depict data properties and edges between the nodes indicate relations,
i.e., object and data properties. The SWS is called pickUpAndTransport
and has two parameters (start and end) for receiving variable start
and end positions. Due to the variety of pickup and drop off positions,
there are 81 possible combinations for this single web service in the
first shop floor and 64 in the second one. Since different parameters,
e. g., positions, can have different preconditions and effects, this aspect
also has to be considered for start and end in the semantic descriptions.
There are five preconditions related to the service depicted in Fig. 4,
which must be satisfied at different times, i. e., at start, at end, or over
all of service execution. These are, for instance, that the end position
of the transport (i. e., oven) is available and ready as well as the light
barrier that monitors this position must not be interrupted because that
indicates an empty storage space. We would like to point out that these
preconditions in turn can refer to another web service. The incoming
responses of the preconditions are verified outside the knowledge base
to enable verification in near real-time. The benefit of this procedure
is that we do not need to continuously import large amounts of raw
sensor data that are required to reason within the knowledge base
to verify preconditions and effects. In particular, this could lead to a
significant overhead for reasoning and possibly lead to wrong and not
close to real-time information for decision-making. Furthermore, this
procedure is applied to effects in the same way (see Malburg et al.
(2020c) for more details). As depicted in Fig. 4, the exemplary service
has only a single effect to check whether the service has been executed
successfully. In this case, the effect checks whether the light barrier,
which was not interrupted for the corresponding precondition, has
now been interrupted, i.e., it is verified that the workpiece has been
transported from the first sink of the sorting machine to the oven and,
thus, the execution was successful (Malburg et al., 2020c).

4 https://gitlab.rlp.net/iot-lab-uni- trier/ftonto.

https://camunda.com/
https://www.omg.org/spec/BPMN/2.0.2/
https://gitlab.rlp.net/iot-lab-uni-trier/ftonto

L. Malburg, P. Klein and R. Bergmann

[ov_1_pos] [sm_1_sink 1 pos]

Engineering Applications of Artificial Intelligence 126 (2023) 106727

http://127.0.0.1:5000/vgr/

~ A pick_up_and_transport?resource=vgr 1&
- hasName Coordinate start=sm_1_sink 1 pos&end=ov_1 pos
hasName R - >
- SM_1_Sink_1
Coordinate OV1 P4 .
T - bindg%rgument < Machine
bindsA t Para_VGR_Pick U :
B b - SR P hasURL .-~ Para_VGR_1_
Para VGR_Pick Up_ And_TransPort_Start o N Resource E Y
" hasOutput : :
And_TransPort End hasInput_ hasInput " haslnput bindsArgument 5 hasName
~ N 4
. Service. VGR Pick [hasDuration--»
Service ~ D------- _ VGR 1
: Up_And_Transport |€—————hasService
\ 4

Service_OV1_Status Of
Light_Barrier_5

hasEffectAtEnd

isChi:kedBy isCheckedBy

hasPreconditionAtStart,
~ \
hasPreconditionAtStart L.

PreCond OV 1 State
Of Machine Ready

PreCond_VGR_1_State_

hasPreconc}itioﬁAtStar},y Of Machine Ready

Effect OV_1_ PreCond OV_1_
Status_ Of Light Barrier Status Of Light Barrier

5_Interrupted_True 5_Interrupted_False

PreCond_WT_1_Check_
Position_Oven_False

PreCond SM_1 Status
Of Light Barrier 6_

A G- -2

' ~3zal

Effect

Interrupted_True

Precondition

Fig. 4. Semantic annotations of the Pick Up and Transport service from vacuum gripper robot as a graph.

Source: Based on Malburg et al. (2020c).
2.3. Automated planning in Industry 4.0

To enable more autonomous and intelligent manufacturing systems
in the context of CPPSs (Monostori, 2014), it is necessary to develop
methods that quickly respond to changes that occur during production
and to resolve them automatically in the best case. For this reason,
robust and efficient production planning and scheduling are of high
importance (Monostori, 2014) and also a topic of current research
(Rossit et al., 2019b,a). Automated planning® can be applied for solving
planning problems by computers. For this reason, this technique is
also becoming increasingly important in BPM, in which it can be
used for several purposes and in different phases of the BPM life cy-
cle (Marrella, 2019; Malburg and Bergmann, 2022; Rodriguez-Moreno
et al., 2007; Malburg et al., 2023b). In the following, we introduce the
basics of automated planning. After classical planning is introduced
in Section 2.3.1, the foundations of temporal planning are explained
in Section 2.3.2. Finally, Section 2.3.3 presents the basic concepts for
representing planning domains by using the PDDL.

2.3.1. Classical planning

Classical planning can be employed to plan manufacturing opera-
tions by determining the production processes for each product (see
Fig. 3), i. e., the necessary sequence of manufacturing tasks involved in
producing a specific product. In the following, we introduce classical
planning more formally, based on the definitions of Ghallab et al.
(2016). A classical planning domain consists of a triple ¥ = (S, A,7y),
where:

- S is a finite set of states,
« A is a finite set of actions,

5 Since Automated Planning is a technique from the field of Artificial
Intelligence (AI), it is also often called AI Planning.

* v 1 SXA — S is a partial state transition function. y(s,a) with s € §
and a € A is defined as action a is applicable in the current state
S.

*cost : §SXA — [0,00) is a partial cost function that expresses
arbitrary costs, e. g., time or money spent, for executing the action
a in the current state s. The cost can also be uniform in the sense
that the number of actions reflects the costs for executing them.

Following the definition of Ghallab et al. (2016) for classical planning,
actions are instantaneous and, thus, there is no explicit time, e. g., how
long a state or action holds. Classical planning problems can be solved
by applying actions to an initial state that, in turn, lead to a transition
from one world state to another world state by using the partial state
transition function y. To specify a planning problem

P =(Z.50.5,).

the initial state s, C S, the desired goal state S, €S, and the available
planning actions must be specified in the planning domain ¥ (Haslum
et al., 2019; McDermott et al., 1998; Ghallab et al., 2016). The goal of
the planning process is to find a sequence of actions that transfer the
initial state into the goal state. In addition, the cost for the resulting
plan should be minimal. The resulting plan can be formally defined as
a finite sequence of actions:

r={ay,ay,...,a,)

The length of a resulting plan is |z| = n, and its cost is the sum of the
individual action costs: cost(r) = Y, cost (a;) (Ghallab et al., 2016).

2.3.2. Temporal planning

In contrast to classical planning in which the resulting plan is a
sequence of actions, temporal planning (Fox and Long, 2003; Ghallab
et al., 2016) must be used to combine scheduling techniques with
classical planning to assign when which action is performed. Transfer-
ring this basic idea to production environments means that a temporal

L. Malburg, P. Klein and R. Bergmann

plan represents which manufacturing operations of which production
machines are needed at which concrete time to produce a certain
product. Based on Ghallab et al. (2016) and Fox and Long (2003), the
basic concept of temporal planning are durative actions. A durative action
a € A is defined as:

alt,t’1:t<t

The duration d is defined as a non-negative number 4 > 0 and is
calculated by ¢ —t. Each planning action gets such a duration assigned.
In temporal planning, the cost specified for an action is typically
represented by the duration required to execute the action. Based on the
definition for classical planning in Section 2.3.1, a temporal planning
problem is defined as P = (X, ¢) with ¢y = (A, S, T,C). ¢ is called
a chronicle and consists of the durative planning actions A, the goal
state to achieve and the a priori supported assertions representing the
initial state Sy, 7 as a set of assertions, and for expressing constraints
that are conjunctive linked C (see Ghallab et al. (2016) for a more
formally introduction). In this context, it is worth mentioning that
all assertions, i.e., state descriptions, besides the durative actions, are
also temporally bounded. For this reason, it is now possible to express
whether conditions hold at start, at end, or over all the time of an
action. Based on the definition of a temporal planning problem, a
temporal plan with durative actions is a pair (7, a[d]) with 7 representing
a rational-valued time and a[d] expressing the durative action a € A
and a non-negative rational-valued duration d. A temporal plan consists
of these pairs of durative actions ordered in a sequence of time points
t. In contrast to classical planning, the use of time leads to a significant
increase in computational complexity. More precisely, temporal plan-
ning is EXPSPACE-complete and in general not reducible to classical
PSPACE-complete planning problems (Rintanen, 2007). Consequently,
using temporal planning in practical applications, e.g., for Job Shop
Scheduling, is difficult due to the high computational complexity and,
thus, currently investigated in research (Rossit et al., 2019b,a).

2.3.3. Planning domain description language

After classical and temporal planning are described formally in the
previous section, the basics for representing classical and temporal
planning problems by using the PDDL (McDermott et al., 1998) are
introduced in this section. PDDL in its several versions (see Haslum
et al. (2019) for an overview) is the de facto standard to express
planning problems. In general, two files exist that are used: (1) the
PDDL domain consisting of the specified planning actions that can
be used and (2) the PDDL problem composed of the faced problem
expressed by the initial state of the world and the goal state that
should be reached by the planner. In the following, we first describe
the basic components of PDDL domain descriptions and subsequently,
the representation of PDDL problems.

A PDDL domain description consists of five components: (1) Require-
ments that are specified at the beginning of the domain description and
serve as a hint for the planner, which specific PDDL constructs are used
in the description, (2) Types can be specified to express class hierarchies
and to perform type checking during planning, (3) Predicates are used
to express the properties and values, i.e., true or false, of the real
world, e.g., whether a certain product is located at a position or not,
(4) Constants can be used to express properties that are not variable,
such as a position within the shop floor or a concrete machine of a
certain type, (5) the planning actions themselves that represent state
transitions from one world state into another. For this purpose, pre-
conditions and effects from the defined predicates can be combined
into more complex ones. In addition, Parameters can be specified for
each action, which can be used to configure the action, e.g., specific
configuration settings of a machine in a factory. For applying temporal
planning, the already described components of the domain descrip-
tion are extended by Functions that are used similarly to predicates.
However, functions do not map to the binary values true or false,
but to numbers (fluents). By using functions, it is possible to assign

Engineering Applications of Artificial Intelligence 126 (2023) 106727

a Duration to otherwise instantaneous individual actions, which then
depend, for example, on the selected parameter values of an action.
Fluents and other numerical functions can also be used in classical
planning domains for expressing other properties, such as specifying the
burning temperature of an oven with a minimum and maximum value
as a parameter of an action. By using numerical functions, their initial
values must be specified in the initial state. For example, it is possible to
specify a total-cost function in classical planning, representing the cost
of executing an action and, thus, increasing the total cost accordingly
when the action is selected during planning. For temporal planning, the
total-time can be used to express this.

A planning problem expressed in PDDL consists of an Initial State
in which predicates are pre-initialized. Similarly, the Goal State is
also defined with predicates that should be satisfied after planning.
Moreover, it is possible to use Objects in the problem that express
possible parameter values for actions during planning. To guide the
planning procedure and to find suitable plans, it is possible to define a
Metric that determines when a plan is more suitable than an alternative
plan. For example, it is possible to specify a metric that defines to
minimize the total-cost or total-time so that plans are generated w.r.t.
the lowest cost or the lowest total time (Haslum et al., 2019).

2.4. Requirements

To ensure that the already modeled knowledge about the opera-
tional capabilities of the manufacturing environment, i.e., the SWSs
(Malburg et al.,, 2020c) and the domain ontology of the physical
smart factory (Klein et al., 2019) (see Section 2.2.6), can serve as a
suitable source for automatically deriving a formal planning domain
description expressed in PDDL, the following requirements need to be
addressed in this work. In addition to these requirements, we specify
two requirements for enabling the use of Al planning in BPM in general.
All requirements are based on relevant literature related to Al planning
for service composition and knowledge acquisition, modeling, and
representation. In addition, the requirements rely on our experiences
with knowledge modeling and representation, IoT, and Al planning for
BPM in the context of our smart factory (Environment) following the
DSR methodology (Hevner et al., 2004):

R1 Modeled Inputs, Outputs, Preconditions, and Effects: The modeled
Service-Oriented Architecture (SOA) must contain the relevant infor-
mation to convert it into a corresponding planning domain description.
In this context, the manufacturing capabilities have to be semantically
enriched by IOPEs (Martin et al., 2004; Dur¢ik and Parali¢, 2011). This
modeled knowledge can then be utilized to build the corresponding
planning actions.

R2 Complete Semantic Model: The knowledge representation should
be complete so that every manufacturing capability and also the IoT
environment is modeled in a detailed manner. This is important as
the closed world assumption of PDDL considers not modeled things as
false whereas not modeled aspects in OWL underlay the open world
assumption and, thus, are considered as unknown (Pieske et al., 2022).
Consequently, not represented aspects, e. g., IOPEs or complete actions,
in the knowledge model are not known and, thus, cannot be converted
and used for planning.

R3 Support Several Language Levels of PDDL Specifications: PDDL (Mc-
Dermott et al., 1998) is the de facto standard for representing planning
domain descriptions and available in several different languages (see
Haslum et al. (2019) for an overview). However, the support of plan-
ners for individual language levels is not always fully given and, thus,
often only certain levels or aspects of a language are supported.®
For example, there are only a few planners available that support

6 There exists a comprehensive overview of several planning frameworks
with information about their PDDL support at https://planning.wiki/ref/
planners/atoz.

https://planning.wiki/ref/planners/atoz
https://planning.wiki/ref/planners/atoz

L. Malburg, P. Klein and R. Bergmann

numeric expressions (i.e., fluents or functions) as parameters or in
preconditions and effects. In addition, using numerical expressions in
planning domains increase the problem-solving complexity and can
lead to undecidability, as investigations by Helmert (2002) proved.
Consequently, the planning domain converter should provide a func-
tionality to transform advanced numeric expressions to simpler numeric
functions with precalculated values. If the semantic model contains
numeric values, they should be transformed into discrete value ranges
(e.g., too low, low, normal, high, too high) that can then be used for
planning. For example, the Fast Downward (FD) planner proposed by
Helmert (2006) is one of the most prominent planners for classical
planning. It supports several PDDL languages, but not always complete:
FD supports the use of action costs from PDDL 3.1 but not the more
general numeric fluents from PDDL 2.1.7 In addition, the converter
should provide further configuration possibilities to express properties
of the planning description in different ways. For example, the OPTIC
temporal planner (Benton et al., 2012) cannot handle negative precon-
ditions.® Thus, the converter should provide a transformer that converts
negative preconditions into corresponding negated predicates that can
be used for planning with OPTIC.

R4 Considering Temporal Aspect for Planning: Classical planning is the
most common used in several domains. However, the use of temporal
planning significantly gets attraction recently, e.g., in several inter-
national planning competitions or in research (cf. Rintanen (2007),
Cenamor et al. (2018), Eyerich et al. (2009) and Celorrio et al. (2015)).
This is particularly the case for smart manufacturing in which the use
of temporal aspects, i. e., when which production step is performed on
which machine resource, is important. Therefore, the planning domain
converter should be able to transform the already available knowledge
into a temporal planning domain description expressed in PDDL 2.1
(Fox and Long, 2003) if the additional knowledge required for this
purpose is available.

R5 Available, Extensible, and Simple to Use: A proposed planning domain
converter should be available and extensible for other projects. For this
purpose, the prototypical implementation should be available under
an open-source license, enabling the reuse and modification for own
purposes.

Based on the previously presented concrete requirements that should be
fulfilled by a planning domain converter, we introduce in the following
more General Requirements (GRs) that describe what is necessary for
using Al planning in BPM.

GR1 Reconverting Final Plans to a Common Workflow Representation
Format: After a planner is utilized to generate an appropriate solution,
the final plan must be converted back into a standard that receives the
names of the source domain so that the plans can be evaluated in their
use case. For the application scenario used in this work, it means that
the actions contained in a plan must be mapped back to their corre-
sponding web services for execution in the physical smart factory. Since
we use BPMN 2.0 service tasks for representing production processes
(see Section 2.1), the actions must be transferred into corresponding
process activities in a BPMN model.

GR2 Practical Evaluation with Near Real-World Scenario: Using Al plan-
ning in real-world scenarios can be challenging since there is a lot of
knowledge needed to use Al planning efficiently and in some scenarios
the computational complexity of solving the problem is high. For this
reason, simulations are used in current work to prove the validity and
quality of research approaches (e.g., Marrella et al., 2017). However,
using simulated data for evaluation has the drawback that most of
the data produced does not necessarily reflect run-time properties and
behaviors and, thus, is sometimes strongly simplified. For this purpose,
an approach using Al planning in context of BPM should be practical
evaluated in a near real-world scenario, i. e., with a physical application
scenario.

7 https://planning.wiki/ref/planners/fd.
8 See https://nms.kcl.ac.uk/planning/software/optic.html for more details.

Engineering Applications of Artificial Intelligence 126 (2023) 106727
3. Related work

First, we discuss related approaches that build semantic models,
e.g., domain ontologies, knowledge graphs, etc., for production en-
vironments in Section 3.1. In this context, we want to highlight that
knowledge engineering and knowledge management for production
environments is increasingly investigated in current research. In addi-
tion, modeled knowledge about manufacturing capabilities is typically
already available in practical applications. Based on that, we present
related work in Section 3.2 that utilizes already modeled knowledge in
ontologies or SWSs to translate this encoded knowledge into a corre-
sponding planning domain description and, thus, limiting the typically
high knowledge acquisition and modeling efforts. However, most of
these approaches are not used in the context of 14.0 or in BPM and
IoT. Finally, we present in Section 3.3 further approaches and methods
to acquire the needed knowledge for using Al planning that go beyond
techniques for reusing and translating already modeled knowledge. In
general, these methods can be divided into inductive and analytical
learning methods.

3.1. Knowledge representation of manufacturing capabilities

An architecture and an ontology for integrating web services for
flexible manufacturing systems are presented by Cheng et al. (2017).
For this purpose, a service is described semantically by which actuator
provides it, which production operation is realized, its URL and a
description class, which is not further discussed. Whereas Puttonen
et al. (2013) use OWL-S to describe web services semantically, similar
to this work. However, they do not directly integrate them with a
domain ontology of their manufacturing environment. Without inte-
grating domain knowledge, it is difficult to automatically convert the
captured knowledge into a planning domain description in later stages,
since this requires converting general knowledge about the production
environment, e.g., classes for planning types or properties for plan-
ning predicates, besides the services themselves. The SOA presented
by Schnicke et al. (2020) describes services w.r.t. their capabilities,
expenses, and quality. For finding a suitable service, matchmaking
based on tag values is conducted. Unfortunately, this approach makes
it difficult to automatically discover and orchestrate web services by
applying Al techniques, since no established semantic approach for
web service modeling is used. Among the listed related approaches, we
are not aware of any work that explicitly deals with the validation of
preconditions and effects of web services for CPPSs during execution.
To evaluate preconditions before executing a service and effects after
execution, typically the domain ontology and especially its instances
must be updated according to the current state of the real world by
defining queries of the Query Language for RDF (SPARQL) (e. g., Cheng
et al.,, 2017; Puttonen et al., 2013). It can be expected that this leads
to high reasoning efforts to ensure that the knowledge base is complete
and up-to-date. Based on experimental investigations, we assume that
continuous updates and reasoning are rather not feasible in near real-
time w.r.t. the amount of data and complexity of the knowledge base
due to the computational effort. Consequently, this procedure poses
an issue for real-world application scenarios (cf. GR2). The used SOA
presented in Malburg et al. (2020c) aims to make production control
more flexible by using semantically enriched web services integrated
into an existing knowledge base of the manufacturing environment,
i.e., a domain ontology (Klein et al., 2019). The work considers the
reasoning complexity of real-time applications and, thus, does not
update the knowledge base continuously.

3.2. Translating semantic annotations for web service composition with
automated planning

Automated planning can be used to orchestrate and compose man-
ufacturing processes from scratch or parts of them for adaptation by

https://planning.wiki/ref/planners/fd
https://nms.kcl.ac.uk/planning/software/optic.html

L. Malburg, P. Klein and R. Bergmann

using a complete domain model with corresponding actions that can
be applied, an initial state, and a goal state (cf. Section 2.3). However,
obtaining a complete planning domain description is a demanding and
error-prone task. In addition, the maintenance of encoded knowledge
in PDDL planning domain descriptions is associated with a high effort,
since changes are made in plain PDDL files. Therefore, planning domain
descriptions are often incomplete in real-world application scenarios
and can only be completed and maintained at great expense (Nguyen
et al., 2017; Zhuo et al., 2013; McCluskey et al., 2009, 2021). Since
14.0 manufacturing systems are typically built on SOAs using asset
administration shells (e.g., Puttonen et al., 2013; Schnicke et al.,
2020; Cheng et al., 2017; Seiger et al., 2022; Bader and Maleshkova,
2019) combined with knowledge representations (e.g., ontologies or
knowledge graphs), the reuse of this already formalized knowledge can
reduce the high acquisition and manual modeling effort for creating
PDDL domain descriptions and is less error-prone, resulting in almost
complete planning domain descriptions. In addition, the maintenance
of encoded knowledge in ontologies and other knowledge representa-
tions is much easier by using well-known frameworks with graphical
user interfaces (e. g., Protégé”) than performing changes in plain files.
For this reason, approaches that use knowledge representations and
translate the entailed encoded knowledge into corresponding planning
domain descriptions are presented in the following.

Similar to the proposed approach, Chen and Yang (2005) use SWSs
and an event calculus-based planner for process generation. For this
purpose, they convert the SWSs to their planning model. Similar to
that is the work of Yang and Qin (2010) in which modeled OWL-S
processes based on SWSs are translated to PDDL domains for automatic
web service composition. Moreover, Puttonen et al. (2013) propose
an approach that uses SWSs to execute manufacturing processes using
three software agents represented as web services. One of these agents,
called Service Monitor, is a specialized web service that performs web
service composition similar to automated planning by a web service
discovery technique w.r.t. a given production goal and the current
state of the world made available by a domain ontology. For this
purpose, they use OWL to describe the state of the production system
as well as OWL-S and SPARQL expressions to semantically describe the
available web services that provide production capabilities. However,
they do not convert the SWSs into a corresponding PDDL description
for using established planning frameworks.

Klusch et al. (2005) present an OWL-S service composition planner
called OWLS-XPlan that consists of several components. The first one
is a converter called OWLS2PDDL that translates the SWSs and the
corresponding domain ontology into a proprietary XML dialect named
PDDXML. The second one is the automated planning component called
XPlan that uses the created PDDXML to generate a solution based on an
action-based FastForward planning combined with a Hierarchical Task
Network (HTN) planner. In addition, the third component conducts
re-planning during the execution of the plan to check whether the
native plan can be properly executed or not. Similar to Klusch et al.
(2005) and Kim and Kim (2007) also propose an OWLS2PDDL converter
that converts OWL-S 1.1 service descriptions to PDDL 2.1 domains.
Hatzi et al. (2009) present the PORSCE II system that composite SWSs
by also using planning techniques. Compared to Klusch et al. (2005),
they use HTN planning to solve the service composition problem as a
planning problem. Their system consists of four components, namely
the OWL-S parser, the transformation component, the OWL ontology
manager, and a visualizer. Duréik and Parali¢ (2011) present a system
in which the task of automated web service composition is converted
into a corresponding planning problem. For this purpose, they use
modeled OWL ontologies and OWL-S in which the conditions of web
services are represented with the Semantic Web Rule Language (SWRL).
In addition to this, the process specification of OWL-S is used and the
goal of the process is converted into a corresponding PDDL planning

9 https://protege.stanford.edu/.

Engineering Applications of Artificial Intelligence 126 (2023) 106727

problem. Similar to this approach is the work by Louadah et al. (2021).
They also present a converter that transforms OWL-S services into
corresponding planning actions to plan maintenance operations for
trains. Daosabah et al. (2021a,b) present the Context-Intentional Service
Composition Architecture (CISCA) for the composition of web services
by using Al planning. For this purpose, one part of the architecture is a
converter that uses the SWSs described in OWL and OWL-S and trans-
lates them into a correspondingPDDL planning domain description.
The Knowledge Engineering Web Interface (KEWI) framework proposed
by Wickler et al. (2015) supports users in developing and modeling
planning tasks. For this purpose, knowledge can be represented and
modeled by using the web interface. To enable the use of Al planning,
the modeled knowledge can automatically be converted into corre-
sponding PDDL constructs. In their evaluation, they show that the
automatically generated PDDL is equal or better for the two problems
compared to the PDDL modeled by an expert. Although these results
are impressive, the used examples in the experiment are simplified
and, thus, further more intensive evaluations are outstanding. Hoebert
et al. (2020) present an approach to convert OWL ontologies into
corresponding PDDL constructs. However, the approach is presented
very vague and, thus, it is not described how the planning actions are
automatically translated from the domain ontology into PDDL. Pieske
et al. (2022) present prerequisites for their production platform system,
in which they will use OWL for describing semantic knowledge about
devices and capabilities. Thereafter, they plan to convert these semantic
annotations into PDDL. For this reason, their prerequisites also contain
the results of their comparison between the possibilities and charac-
teristics for expressing knowledge in OWL with the possibilities and
characteristics in PDDL. However, they do not propose a converter in
their work, but they plan to develop one.

3.3. Acquisition of knowledge for automated planning

In addition to the approaches presented in the previous sections,
there exist several further methods that can be applied to acquire
knowledge for Al planning. The work of Jilani (2020) discusses sev-
eral techniques for automated domain model learning. Basically, these
methods can be divided into inductive and analytical learning methods.
In the following, we briefly sketch these two branches of learning
methods and give some references to concrete approaches.

Inductive Learning Methods are characterized by using training
data that is used to derive general applicable rules that describe the
correlations in the data (Jilani, 2020). One such inductive learning
method is implemented in the Opmaker system by McCluskey et al.
(2009). In their approach, they use generated plan sequences from
a domain expert. Based on that, the required action knowledge is
automatically derived. In contrast to reusing already available knowl-
edge such as in the approach presented in this work, they transform
knowledge encoded in the form of plans to new knowledge in the form
of planning action descriptions. Similar to this work is the HTNLearn
algorithm by Zhuo et al. (2014). In their approach, they use plan traces
that are partially annotated with additional information, e.g., state
information or conditions that must hold before and after the action.
Based on this, they create a HTN with decomposition rules for tasks
that builds the basis for hierarchical planning. The main benefit of
inductive learning methods is that they generate new knowledge from
available knowledge. However, one drawback is that these techniques
need mostly a lot of training data to generate qualitative results and
that the generated knowledge does not necessarily have to be valid
(Jilani, 2020).

Analytical Learning Methods are in contrast to inductive learning
methods based on a reasoning process (Jilani, 2020). In this process,
new knowledge is generated by inferencing about already available
knowledge. The main advantage of this process is that the new gen-
erated knowledge is valid. However, the newly generated knowledge
is not really new, but derived from already existing knowledge. Ana-
lytical learning methods are based on reasoning, whereas the approach

https://protege.stanford.edu/

L. Malburg, P. Klein and R. Bergmann

Table 1

Engineering Applications of Artificial Intelligence 126 (2023) 106727

Comparison of requirements addressed by related work on reusing knowledge for building planning domain descriptions. (v') = addressed, (v')

= partially addressed, (X) = not addressed, / = not assessable.

Related work R1 R2 R3 R4 R5 GR1 GR2
Wickler et al. (2015) v v X X X X)
Duréik and Parali¢ (2011) v v X X X X X
Puttonen et al. (2013) v v X X X) - OWL-S W)
Chen and Yang (2005) v v X X X () - WSL X
Yang and Qin (2010) v / X X X X X
Klusch et al. (2005) v / X X)) - OWL-S X
Kim and Kim (2007) v / X X X X X
Hatzi et al. (2009) v / X X X X — OWL-S W)
Daosabah et al. (2021a,b) v / X X X () - OWL-S W)
Louadah et al. (2021) v v X v X X)
Hoebert et al. (2020) / / X X X) - OWL /

presented in this work is based on a pure transformation process. Both
methods have one thing in common: if the knowledge available is
incorrect or incomplete, the results of the analytical methods might
also be inaccurate (Jilani, 2020). One system for analytical learning
referenced in Jilani (2020) is the PRODIGY system (Carbonell et al.,
1991). It uses the methodology of case-based reasoning and, thus, the
stored experience to learn control rules and the domain model.

3.4. Summary and research gaps

To ensure rigorous research, it is required to build the artifact upon
established methods and approaches (cf. Rigor cycle in DSR methodol-
ogy Hevner et al., 2004). This process also includes the discussion and
evaluation of current approaches based on certain criteria. Accordingly,
we summarize and analyze the current approaches for reusing and
transforming already modeled and encoded knowledge for AI planning
(see Section 3.2) in this section. In addition, we present research gaps
that are currently not investigated by related work. For this purpose, we
characterize the research contributions of each approach by the derived
requirements (see Section 2.4). Table 1 provides an overview to which
degree the derived requirements are already addressed by related ap-
proaches. In this context, requirements marked with v are completely
fulfilled, requirements marked with (v') are partially fulfilled, require-
ments marked with X are not fulfilled, and requirements marked with
/ are not assessable by the descriptions in the corresponding paper.

Overall, it can be seen that all related approaches focus on certain
requirements but do not examine all of them together to the extent as
proposed in the approach in this work. R1 (Modeled Inputs, Outputs,
Preconditions, and Effects) related to the modeling of IOPEs is ad-
dressed by each approach, since it builds the basis for planning actions
and, thus, is inevitably needed. In addition, R2 (Complete Semantic
Model) relates to the aspect that a complete semantic model is essential
for using Al planning due to the differences caused by the open and
closed world assumptions. In some approaches, it is described that an
own ontology has been created and that this is the basis for the transfor-
mation into a planning domain description. These approaches are rated
with v, for all others it is not possible to assess whether a semantic
model is available and how complete it is, i.e., we marked them with
/. For R3 (Support of Several Language Levels of PDDL Specifications),
R4 (Considering Temporal Aspect for Planning), and R5 (Available,
Extensible, and Simple to Use), it can be seen that almost none of the
current approaches considers these requirements sufficiently in their
approaches. The only recent work that considers temporal aspects (cf.
R4) that are necessary for integrating scheduling in Al planning is the
work by Louadah et al. (2021). All other approaches mostly support
PDDL 2.1, but only instantaneous actions and not durative ones. In
addition, only the approach of Klusch et al. (2005) is available by
asking the author directly (cf. R5). However, the converter is only
executable under certain conditions and packed in a JAR-file. For these
reasons, it cannot be modified to own features in the semantic model
and, thus, it is not easily usable. All other existing converters presented
in related approaches are not publicly available and, thus, cannot be

extended and used for own purposes. Considering the GRs presented
in Section 2.4, some approaches convert the resulting plan back to
the OWL-S process description or to some other format, such as WSL
or OWL (cf. GR1 - Reconverting Final Plans to a Common Workflow
Representation Format). Even if the process description in OWL-S seems
to be close to the description of processes in BPMN, there are two signif-
icant disadvantages: (1) OWL-S process descriptions cannot be executed
by state-of-the-art WfMSs since processes represented in this language
are not natively supported and (2) some aspects cannot be represented
in OWL-S process descriptions to the same extent as it is possible in
BPMN, e.g., no events can be modeled. For GR2 (Practical Evalua-
tion with Near Real-World Scenario), it can be determined that some
approaches evaluate their approaches by using a simulation model
(e.g., Puttonen et al., 2013) or by using exemplary planning problems
from previous international planning competitions (e. g., Wickler et al.,
2015). In addition, some approaches present case studies that are based
on a real-world scenario in which the approach should be used in the
future (e. g., Louadah et al., 2021; Hatzi et al., 2009; Daosabah et al.,
2021b,a). All in all, there is a lack of practical evaluations with near
real-world scenarios enabling the evaluation of whether the automati-
cally generated planning domain achieves comparable planning results
to a domain modeled by a domain expert. Consequently, the transfer
of the proposed approaches to practical application scenarios cannot be
justified. For this purpose, we evaluate the proposed approach with the
physical smart factory presented in Section 2.1, which poses additional
challenges due to ad-hoc interventions and runtime behavior that can
only laboriously be simulated with data while additionally providing
useful insights for practicability, feasibility, and for transferring the
approach to real production environments (Malburg et al., 2020a).

4. Converting semantics into formal planning domain descrip-
tions

In this section, we present how an already available semantic model
(cf. Semantics in 2.2) can be transformed into a formal planning domain
description by developing a SWS2PDDL converter as a research artifact
of the DSR Develop/Build phase (Hevner et al., 2004). This transfor-
mation builds the basis to plan manufacturing processes to control
the physical smart factory used and to react to unexpected behavior
during runtime (Malburg et al., 2023b,a; Malburg and Bergmann, 2022;
Marrella et al., 2017). In addition, the conversion into a planning
problem aims to use state-of-the-art planners for production planning
and scheduling in I4.0 (Rossit et al., 2019b,a). By using the PDDL
standard, it is possible to flexibly choose planners, if they support the
required language level, based on their properties for a certain use case.
In the following, we present an overview of the architecture of the
developed SWS2PDDL converter and how the individual components
of the semantic model are mapped to corresponding counterparts in
PDDL in Section 4.1. Then, Section 4.2 presents a simplified pseudocode
of the converter and how the required information is gathered by
using SPARQL queries. Finally, the conversion procedure is explained
utilizing a running example in Section 4.3.

L. Malburg, P. Klein and R. Bergmann

Engineering Applications of Artificial Intelligence 126 (2023) 106727

Semantic .
‘Web Services Semantic Web —
*| Service Parser -
(OWL-S) Planning
D] v .
. omart PDDL Domain
Domain D . Generator Plannine Fil
Ontology ;Ontoloo mall;;lzrser mll/;;?tir "
(OWL) &Y
X
Smart Factory \—, Planning
Planning > Problem
Problem Generator PDDL Problem
Fig. 5. Architecture overview of the SWS2PDDL converter.
Source: According to Kim and Kim (2007).
OWL-S Planning Action OWL PDDL Domain Planning Problem PDDL Problem
1 N H -
] Planning : Classes T ! Env1ronmental} Initi
> ; —> ypes : nitial State
\Servme Namej Action Name : : States
() ; =|) Processes
Input Planning g Instances |—>»| Constants Objects
Parameter J=| ¢ States
p § =1 :
o Planning | | . . : Processes
> 5| | Properties [—>» Predicates : —> Goal State
Precondition Precondition 5‘) Goals
Planning
L Effect Effect ;
Output
- H H

Fig. 6. Mapping of SWSs, the domain ontology, and the planning problem to PDDL constructs.

Source: According to Kim and Kim (2007).
4.1. Architectural overview and general approach

In this section, we present the components of the SWS2PDDL con-
verter. Fig. 5 depicts an architectural overview of the SWS2PDDL
components (italic font) that are needed to convert the Semantics pre-
sented in Section 2.2. The semantic model consisting of the SWSs and
the corresponding domain ontology as well as the planning problem
occurred in the smart factory are the inputs of the converter and the
formal PDDL domain and problem descriptions the outputs (bold font).
To generate the planning domain, the domain ontology FTOnto and
the developed SWSs are processed by the Domain Ontology Parser and
the Semantic Web Service Parser respectively. For this purpose, we use
the open-source framework Apache Jena'® for accessing the semantic
model, i. e., the modeled knowledge represented in OWL and OWL-S.
The parsers convert the stored knowledge into an intermediate format
that allows to transform the SWSs into corresponding planning actions.
For this purpose, the individual components of the SWSs are mapped to
equivalent planning constructs (see Fig. 6). In this process, the Service
Name is mapped to the Planning Action Name and the individual Input
parameters of the SWSs are converted to Planning Parameters in PDDL.
Similarly, the Preconditions and Effects of the service are mapped to Pre-
conditions and Effects of an action in PDDL respectively. The Output of a
service execution is, in most cases, a single message that is delivered to
the client with information regarding the service execution time or with
detailed information if a failure of the service occurs. For this reason,
there is no counterpart for this in PDDL. Besides the model knowledge
about the capabilities of the environment, e.g., the capabilities of
resources in the physical smart factory, general knowledge about the

10 https://jena.apache.org/.

10

environment represented in domain ontologies is used to specify the
environment within the planning domain. Classes representing groups
of certain things, e. g., a class of certain machines, in the ontology are
converted into corresponding Types in PDDL. Concrete Instances, e. g., a
machine of a certain class or the positions in the factory, are trans-
ferred to typed Constants in the PDDL planning domain. The Properties,
e. g., the fact that a certain state occurs after executing an activity, are
expressed by corresponding Predicates. Once this mapping is performed
and the information is converted into the intermediate representation
used, the Planning Domain Generator is applied to build the domain. For
this purpose, we use the constructs and methods defined by the PDDL4J
Java library!! (Pellier and Fiorino, 2018). PDDL4J is also used to finally
write the planning domain into a plain file (see Planning File Writer).
To determine the current Planning Problem to be solved, we need
information about the Environmental State in which the process is
executed, e.g., from the sensors and actuators of the physical smart
factory and from the currently executed processes in the WEMS. This
information is required to create the Initial State in the PDDL problem
(cf. Section 2.3). It is important to note that we assume a static
and deterministic state during planning. Thus, state changes such as
changed sensor values during planning time are not directly considered
(cf. Section 5.1). The processes currently executed in the environment
by the WfMS are used to derive the current state for planning, i. e., the
initial state. In addition, the processes executed by the WfMS can be
uniquely identified by their process ID. This ID is converted to an Object
in the planning problem and used to map the individual processing
steps proposed in the resulting plan to the corresponding production
processes. The modeled processes define the production steps for a

11 https://github.com/pellierd/pddl4j.

https://jena.apache.org/
https://github.com/pellierd/pddl4j

L. Malburg, P. Klein and R. Bergmann

product and, thus, it is either possible to derive the Goal State of
the planning problem from the respective Processes Goals, i.e., the
process output that should be achieved after finishing the process (see
Malburg et al. (2023b) for a detailed example), or to derive it from the
final characteristics a workpiece should have at the end of production.
Similar to the planning domain generation, the creation of the planning
problem is performed by the Planning Problem Generator and the writing
of the problem file is done with the PDDL4J library (see Planning File
Writer).

4.2. Conversion procedure

In this section, we present the procedure of converting SWSs into
PDDL, i.e., a formal planning domain description (see Section 2.3.3).
The top-level pseudocode of the SWS2PDDL converter is shown in Al-
gorithm 1 and details regarding the conversion for the used application
scenario are presented in Section 4.3. The inputs to the algorithm
are the semantic model semModel, i.e., a domain ontology and the
modeled SWSs, the states of the environment envStates in which the
processes are executed, the states of the processes processesStates, and
the goals of the processes processesGoals, i.e., the final products, that
should be achieved by processes execution. In addition, the algorithm’s
output is a PDDL domain and a corresponding PDDL problem. The
algorithm starts with an empty domain and problem (Lines 1-2 in Alg.
1). In Line 3, we iterate over each service from the ontology. Thereafter,
we initiate a planning action pa and assign the name and the parameters
from the service sws to the variables pa.name and pa.parameters from
the planning action by using a SPARQL query (Lines 4-6 in Alg. 1).
However, inputs of a service are only converted to planning action
parameters if they cannot be directly represented by constants. The
same procedure is performed for the preconditions and the effects of
a service (Lines 7-8 in Alg. 1). Listing 1 depicts a simplified SPARQL
query that is used to collect preconditions and effects from a service.
After defining the prefixes used for executing the SPARQL query (Lines
1-5 in Lst. 1), the variables that are returned by executing the query are
specified (Line 6 in Lst. 1). By using the uniquely identifiable base URL
of a service, the corresponding conditions for the group of services in
the ontology is queried (Line 8 in Lst. 1). Thereafter, the preconditions
and effects, are retrieved (Lines 9-23 in Lst. 1). Since the SWSs define
at which time a specific precondition or effect should be satisfied, we
use the UNION statement to combine all of them. After collecting all
preconditions and effects from the service groups that are relevant for
the service and which can be more than one group of conditions, we
search for their corresponding state that they represent (Lines 24-26
in Lst. 1). For this purpose, we express planning states with sentences
composed of triples, i. e., subject, predicate, and object. Each sentence
represents an Atomic World State (AWS) that is required for planning as
a precondition or holds after executing an action as an effect. For ex-
ample, an AWS could be [workpiece, at, ov_1_pos] representing the state
that a workpiece is located at the oven on the first shop floor. As the
proposed converter supports temporal planning (see R4), the duration
is gathered by a further SPARQL query from the service and thereafter
a durative action is created, which is inserted into the planning domain
(Lines 9-11 in Alg. 1). In this context, it is important to notice that all
gathered preconditions and effects are used for defining preconditions
and effects of the durative action. To be able to use PDDL 2.1 without
durative actions, the corresponding parameter (cf. Parameter 1 in Alg.
1) can be set to false. In this case, the cost for executing the service
is gathered by a SPARQL query and subsequently an instantaneous
planning action is generated and inserted to the planning domain. In
this context, not all gathered preconditions and effects are transformed
into corresponding planning preconditions and effects, since some of
them are only required for temporal planning (Lines 12-14 in Alg. 1).
After all SWSs are transformed into corresponding planning actions, the
further descriptions for the planning domain are created, if required:
(1) the predicates, (2) the constants, (3) the functions, and (4) the

11

Engineering Applications of Artificial Intelligence 126 (2023) 106727

requirements for the domain that are always inevitably needed (Lines
15-18 in Alg. 1). Thereafter, several transformers, i. e., transformation
procedures, can be applied. First, a duration function in the domain
and a corresponding duration metric in the problem is created if a
temporal planning domain is requested (Lines 19-23 in Alg. 1). If
non-temporal planning is used, a cost function in the domain and a
corresponding cost metric in the problem is created (Lines 24-28 in
Alg. 1). In addition, it is checked whether the requirements should
be inserted into the planning problem or not, since some planners
cannot handle requirements in the problem file (Lines 29-30 in Alg. 1).
As several planners do not support negative preconditions or numeric
fluents (cf. R3), we propose two further transformers (Lines 31-34 in
Alg. 1).

Listing 1: Collecting Preconditions and Effects from Semantic Model.

PREFIX rdf: 1
<http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>
PREFIX owl: <http://www.w3.o0rg/2002/07/owl#> 2
PREFIX rdfs: 3

<http://www.w3.0rg/2000/01/rdf -schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 4
PREFIX ftonto: <http://iot.uni-trier.de/FTOnto#> 5
SELECT ?r 7so 7sp 7o0o0 6
WHERE { 7
?serviceGroupConditions ftonto:onBindsBaseURL 8
?baseUrl.
{ 9
?serviceGroupConditions 10
ftonto:preconditionsImplyAtStart 7aws.
BIND (ftonto:preconditionsImplyAtStart as 11
?r).
} 12
UNION { 13
?serviceGroupConditions 14
ftonto:preconditionsImplyAtEnd 7aws.
BIND (ftonto:preconditionsImplyAtEnd as ?7r). 15
} 16
UNION { 17
?serviceGroupConditions 18
ftonto:preconditionsImplyOverAll 7aws.
BIND (ftonto:preconditionsImplyOverAll as 19
?r) .
} 20
UNION A 21
N 22
} 23
7aws ftonto:awsSubject 7?so. 24
7aws ftonto:awsPredicate 7po. 25
?aws ftonto:awsObject 7oo. 26
} 27

The first one transforms the used negative preconditions into equiv-
alent negated predicates, i.e., (not (predicate(x))) is converted to
(not_predicate(x)). The other one transforms numeric fluents into other
descriptions. For example, the FD planner (Helmert, 2006) does not
support the full spectrum of numeric fluents. However, action costs
and some simple numeric functions can be used. For this reason, the
proposed converter transforms the numeric fluents and advanced func-
tions into simpler functions by resolving parameters and precalculating
all permutations by adding further functions in the converter. After
applying the transformers to the created planning domain description,
PDDLA4/J is initialized, meaning that the needed requirements are set
in the exporter and some other general settings are made (Line 35 in
Alg. 1). Based on that, the export function from PDDL4J is executed,
which creates the planning domain and planning problem represented
as PDDL (Lines 36-37 in Alg. 1). One advantage of using PDDL4J is that
it is ensured that the planning domain and problem are syntactically
correct and no own parser/exporter must be developed, i. e., there are
no problems like forgetting a bracket. Furthermore, simple semantic
errors such as dismissed to define the duration for a durative action
or wrong types for constants and objects are logged and can then be
easily fixed. Thereafter, the generated domain and problem is returned
(Line 38).

L. Malburg, P. Klein and R. Bergmann

Engineering Applications of Artificial Intelligence 126 (2023) 106727

Algorithm 1: Pseudocode of SWS2PDDL Converter

Input: Semantic Model semM odel, Environmental States envState, Processes States processesStates, Processes Goals processesGoal's
Output: PDDL Planning Domain domain, PDDL Planning Problem problem

Parameter 1: Boolean Flag temporal to get the Temporal Planning Domain

Parameter 2: Boolean Flag noNegative Preconditions to Remove Negative Preconditions from Planning Domain

Parameter 3: Boolean Flag noNumeric Fluents to Remove Numeric Expressions from Planning Domain

Parameter 4: Boolean Flag requirementsInProblem to write Requirements in Planning Problem

domain = @;
problem = @;

N

forall sws € semModel do
init_planning_action(pa);

pa.name «— get_N ame(sws);

pa.parameters «— get_Parameters(sws);
pa.preconditions «— get_Preconditions(sws);
pa.ef fects <« get_E f fects(sws);

®w N o u h W

9 if temporal = true then

10 pa.duration «<— get_Duration(sws);

11 domain.actions «<— domain.actions U create_durative_action(pa);
12 else

13
14

pa.cost «— get_Cost(sws);
domain.actions «<— domain.actions U create_action(pa);

15
16
17
18

domain.predicates «— create_predicates(domain);
domain.constants «— create_constants(domain);
domain. functions «— create_functions(domain);
domain.requirements «— create_requirements(domain);

if temporal = true then
domain.durationFunction «— construct_duration_function(domain);
problem.metric «— construct_duration_metric(problem);

19
20
21
22
23

24 else

25 domain.cost Function «— construct_cost_function(domain);
26 problem.metric «— construct_cost_metric(problem);

27
28

if requirementsInProblem = true then
L problem.requirements «<— domain.requirements;

29
3

=

if noNegative Preconditions = true then
L domain = trans form_preconditions(domain);

3
32

-

if noNumeric Fluents = true then
L domain = trans f orm_numeric Fluents(domain);

33
34

35 init_pddl4j_exporter(pddl4j);

v

3

[}

domain = pddl4j.export_domain(domain);

37 problem = pddl4j.export_problem(problem);

N

38 return domain, problem;

problem.initial State «— construct_temporal_initial State(domain, envStates, processesStates);
problem.goal State «— construct_temporal_goal State(domain, processesGoals);

problem.initial State «— construct_initial State(domain, envS'tates, processesStates);
problem.goal State «— construct_goal State(domain, processesGoals);

4.3. Implementation and example from smart manufacturing application
scenario

In this section, the conversion procedure is presented by using an
example from the used smart manufacturing application scenario (see
Section 2.1). In this context, we present how parts of the semantic
model consisting of the domain ontology FTOnto (Klein et al., 2019)
and the SWSs (Malburg et al., 2020c) are converted to equivalent PDDL
constructs by using the proposed SWS2PDDL algorithm (see Algo. 1).
For this purpose, the Pick Up and Transport service depicted in Fig. 4
is used as a running example in the following. Listing 2 depicts the
planning action converted from the SWS illustrated in Fig. 4. The

12

depicted planning action contains only one parameter (Line 4 in Lst. 2),
i.e., the process ID. All other inputs of the Pick Up and Transport
service, such as the resource executing the service, the start, and the
end position can be directly specified by using planning constants,
i.e., vgr_1 and sm_1_sink_1_pos, ov_l1_pos. In addition, the preconditions
(Line 5-8 in Lst. 2) and effects (Line 9-12 in Lst. 2) are converted
into predicates by using the collected AWS (see Lines 24-26 in Lst. 1),
such as that the light barrier at the oven must be interrupted as an
effect (at ?processID ov_l_pos). The cost for executing the service is
expressed by an effect indicating that the total-cost function increases
by the specified value (Line 12 in Lst. 2).

L. Malburg, P. Klein and R. Bergmann

As already mentioned in Section 2.3, the consideration of temporal
aspects is necessary in many environments, such as 14.0 to sched-
ule when which step is performed on which machine (Rossit et al.,
2019b,a). The creation of such a temporal planning domain is similar
to the procedure used for non-temporal planning. Listing 3 depicts the
durative planning action converted from the SWS illustrated in Fig. 4.
For this reason, the duration of each service is specified as a duration in
the durative action in temporal domains (see Fig. 4 and Line 5 in Lst. 3).
In addition, the time-specific preconditions and effects are considered
during the conversion. This leads to the fact that the used predicates
for expressing preconditions and effects are extended by at start, over
all, or at end (Fox and Long, 2003) compared to Listing 1 for classical
planning (Lines 6-14 in Lst. 3).

Listing 2: Classic Planning Action for the Pick Up And Transport
Service.
(:action Service_VGR_Pick_Up_And_Transport_ 1
With_Resource_VGR_1_With_Start_Sink_1_With_ 2
End_0V_1 3
:parameters (?processID - processID) 4
:precondition 5
(and (at ?processID sm_1_sink_1_pos) 6
(isready vgr_1) 7
(not (isinactive vgr_1))) 8
ceffect 9
(and (at ?processID ov_1_pos) 10
(not (at ?processID sm_1_sink_1_pos)) 11
(increase (total-cost) 48.0)) 12
) 13

Listing 3: Durative Planning Action for the Pick Up And Transport
Service.

(:durative-action Service_VGR_Pick_ 1
Up_And_Transport_With_Resource_ 2
VGR_1_With_Start_Sink_1_With_End_0V_1 3
:parameters (?processID - processID) 4
:duration (=7duration 48.0) 5
:condition (and 6
(at start (at ?processID sm_1_sink_1_pos)) 7

(at start (isReady vgr_1)) 8

(over all (mot (isInactive vgr_1)))) 9
:effect (and 10

(at start (not (isReady vgr_1))) 11

(at start (not (at 7processID 12

sm_1_sink_1_pos)))

(at end (at 7processID ov_1_pos)) 13

(at end (isReady vgr_1))) 14

) 15

After automatically generating the planning domain description,
the planning descriptions can be used to resolve failures in the smart
factory (see Malburg et al. (2023b) for more details). In this context,
Al planning is used to find a plan that solves the current problem
and, thus, the generated plan can be executed in the smart factory.
For this purpose, the previously executed process serves as a basis,
and it is examined based on the generated plan which processing
steps have to be inserted, deleted, or modified to resolve the failure.
The resulting adapted process can then be deployed and continued in
the Camunda WfMS at that point where the process was previously
stopped. If changes have occurred due to the dynamic environment,
and it causes that the generated plan is no longer executable, re-
planning and scheduling can be performed to address this new situation
(Malburg et al., 2020a; Malburg and Bergmann, 2022; Malburg et al.,
2023b,a).

5. Experimental evaluation

In this section, we evaluate the use of a semantic model composed
of a domain ontology and SWSs for automatically generating formal

13

Engineering Applications of Artificial Intelligence 126 (2023) 106727

planning domain and problem descriptions expressed in PDDL (see
Section 4). These domain descriptions build the basis to plan and sched-
ule production processes in the physical smart factory. We consider a
scenario in which a production component, i. e., a processing machine,
is suddenly out of order and the currently running production processes
must be replanned accordingly. Thus, the smart factory is used to
generate five planning problems randomly to be solved by state-of-the-
art planners, i.e., the FD planner (Helmert, 2006) and the Temporal
Fast Downward (TFD) temporal planner (Eyerich et al.,, 2009). In
addition to the automatically generated planning domain and problem
description, we modeled another one manually based on domain expert
knowledge in which the same planners solve the same tasks. In the
end, the plans generated by the same planner for the same problem but
by using the two different planning domain descriptions are compared
by several characteristics, e.g., the plan length and the cost. The
results permit conclusions whether the application of the used semantic
model for transformation into a formal planning domain description in
PDDL (cf. Section 4) is possible and successful. Thus, regarding the
applied DSR methodology, the evaluation aims to justify the utility
and relevance of the developed artifact for the addressed problems
(Justify/Evaluate and Relevance-Environment in Hevner et al. (2004)).
In the following, we describe the experimental setup in Section 5.1 and
the results of the experiment in Section 5.2.

5.1. Experimental setup

For the conducted experiments, we use the described physical smart
factory (cf. Section 2.1). We assume that each shop floor simulates
an individual production line of a real-world production environment.
In each production line, there are five different sheet metal processes
(similar to the one shown in Fig. 3) planned and executed. To obtain
near real world re-planning problems, a sudden failure, i. e., out of or-
der, during the production is injected in one manufacturing resource of
the factory. For this purpose, a failure generation engine that randomly
chooses (1) one of both shop floors, i.e., the first or second one, (2)
one manufacturing resource from one of these shop floors,'? and (3) a
time slot between three and 15 min to turn the component from this
point off."* After the failure has been occurred in the smart factory,
we stop all processes and capture their current state to use them as
the initial planning state and their further planned production process
sequence containing the final workpiece properties as the planning goal
state. By using this procedure, we generate five problems that should
be solved by the planning frameworks to continue production based on
the current production state of the processes and by considering the
failed component. This component is marked in the planning domain
accordingly so that it could not be used by the manufacturing processes
anymore. Thus, other components that can perform the required activ-
ities to reach the desired goal must be used by adapting the production
processes, possibly even by using production capacities of the other
production line (see Malburg et al. (2023b) for a similar experimental
setup). In the experiments, we use FD (Helmert, 2006) as a non-
temporal planner and TFD (Eyerich et al., 2009) as a temporal planner.
FD can be used with different search algorithms with different search
heuristics during planning. We use two different configurations: A*
search with the landmark-cut heuristic (Imcut) (Helmert and Domshlak,
2009) and a lazy greedy best-first search with preferred operators and
the queue alternation method as well as the context-enhanced additive
heuristic (hcea) (Helmert and Geffner, 2008). TFD cannot be configured
with different search algorithms and search heuristics. By default, the
hcea is used in a modified form by TFD (Eyerich et al., 2009). In the ex-
periments, we use a 180-second timeout for each planning run. Besides

12 Please note that we have excluded the vacuum gripper robots and the
high-bay warehouses as central components from this set.

13 The problems generated also occur regularly in the smart factory even
without explicitly generating them, e.g., a defect caused by the light barrier
not working correctly.

L. Malburg, P. Klein and R. Bergmann

Table 2
Characteristics of used planning domain descriptions for experimental evaluation.
Number of Avg. Avg. Avg.
Domain Actions/Types/ Parameters Preconditions Effects per
Predicates per Action per Action Action
Non-Temporal
Expert Domain 37/34/50 3.41 6.24 4.11
Non-Temporal
SWS2PDDL Domain 267/31/26 1.14 4.80 3.29
Temporal
Expert Domain 37/34/50 3.46 6.27 5.32
Temporal
267/31/26 1.14 4.80 4.35

SWS2PDDL Domain

the non-temporal and temporal domain generated by the SWS2PDDL
converter, we also apply the corresponding manually modeled domains
of a domain expert. Table 2 illustrates the differences between the
manually modeled domain descriptions of the domain expert and the
ones generated by the proposed SWS2PDDL converter. The domain
descriptions, i. e., non-temporal and temporal, modeled by the domain
expert contain 37 planning actions and required approx. 60 up to
75 h of modeling effort for each domain. The domain expert has solid
experience in the field of Al planning and knowledge representation.
In addition, the expert had access to recent textbooks, e.g., Ghallab
(2004), Ghallab et al. (2016) and Haslum et al. (2019), and other
material about automated planning and PDDL. Since the development
of the planning domain started in parallel with the development of
the service-based architecture and the contained SWSs (Malburg et al.,
2020c), the expert could not rely on the knowledge contained therein.
However, the expert is well-versed in the application scenario used
(see Sections 2.1 and 2.2) and has in-depth knowledge of the possible
manufacturing capabilities within the smart factory. The created do-
mains have been created for the first time in 2020 and since then, the
expert has manually maintained them in case of changes. Only after
completion of the service-based architecture, the expert could access
and use the existing knowledge for revisions. The goal of the manually
created expert domain is to model the capabilities of the smart factory
as accurately as possible. In contrast, the automatically generated do-
mains do not require any additional manual effort since they leverage
the existing semantic model (see Section 2.2.6) of the smart factory,
resulting in 267 planning actions. The converter needs approximately
15 s to create one domain, including the time to read and parse the
semantic model and to execute the SPARQL queries. In this context, the
aim is to investigate if the provided semantic model which is converted
into a planning domain description is capable of formalizing the real
world similar to the expert who has modeled it manually. The different
amount of generated planning actions can be explained by the fact
that the domain expert has profound knowledge of how to generalize
several manufacturing operations to one planning action, e.g., for
reducing the modeling effort. For this purpose, the expert extends
the parameterization (cf. the higher amount of average parameters
per action) of planning actions. This also results in a higher number
of preconditions (cf. the higher amount of average preconditions per
action) checked for execution and a higher number of effects (cf. the
higher amount of average effects per action) used after the execution of
an action. In contrast, the SWS2PDDL converter generates one planning
action for each possible manufacturing operation, i.e., each modeled
SWS corresponds to one planning action because the knowledge needed
for transferring a group of services to one planning action is currently
not modeled in the ontology. Whereas the number of types is nearly
similar, the number of predicates modeled by the expert is nearly twice
as high as the predicates generated automatically by SWS2PDDL. This is
because the expert relies on predicates for representing the capabilities
of machines, whereas the SWS2PDDL converter uses different kinds of
types and corresponding objects in the problem description to specify
concrete manufacturing capabilities.

14

Engineering Applications of Artificial Intelligence 126 (2023) 106727

To compare the quality of the generated plans, we compare the
plan length, the costs'* for executing the plans, the generated and
expanded nodes during search, and the average compilation and search
times of the individual planners of five evaluation runs. A virtual
machine with an Intel Xeon Gold 6130 CPU (8 virtual cores) with
2.10 GHz (turboboost 3.70 GHz) with 16 GB RAM, running Ubuntu
16.04 is used for the experiments. Table 3 depicts the five randomly
generated problems that are used as initial state for the planners in the
experiments.'®

5.2. Experimental results

For the first experiment, we use the FD planner (Helmert, 2006)
with the previously described planning domains. FD is a non-temporal
planner and only generates a sequence of actions that transit the initial
planning state to the desired goal state. For this reason, only the
processes that are directly affected by the defect of the component are
included in the planning problem, assuming that the other processes
can be continued independently as planned (cf. Number of Affected
Processes in Table 3). This means that in this case, temporal aspects
such as when which process step is executed on which resource are not
considered. Furthermore, the aspect that an adaptation of an affected
process may influence another process that is not affected by the failure
is also not addressed.

Table 4 lists the individual results for the experiment with FD by
using the planning domain manually generated by the domain expert
and the planning domain automatically generated by the SWS2PDDL
converter. The generated plans are compared based on their length
(Plan Length), their costs (Total Cost), and by determining the number
of generated and expanded nodes representing the planning complex-
ity. In addition, the average search time (Avg Total Time) for each
planning problem is given in seconds. For comparing the planning
domain generated by the expert and the SWS2PDDL converter, we focus
on the results generated by applying the Imcut heuristic during A*
search because those correspond to the optimal solution in contrast
to the results generated by the hcea heuristic from a greedy search
algorithm. Comparing the two problems which take more than one
second to generate a plan, i.e., problem 1 and 5, in both cases, the
generated/expanded nodes and avg. total time are multiple times lower
using the domain generated by SWS2PDDL. Whereas the number of
generated/expanded nodes is still lower for the other two solvable
problems, i.e., problem 2 and 3, the avg. total times are comparable
since both take only a fraction of a second to solve the problem. The
plans generated based on the SWS2PDDL domain also lead to lower or
similar total costs and plan lengths compared to those obtained from
the expert’s domain. It is important to note that no solution could be
generated for the fourth problem as all required machines for recovery
are not functional, i. e., workflow executability cannot be achieved. For
the results obtained by using a greedy search algorithm with the hcea
heuristic, the average planning time decreases to less than a second
and verifies the fast search speed of this type of search. However,
we can observe that, except for problem 3, the resulting plans are
different w.r.t. plan length and total costs compared to the optimal
one found by A* search. For instance, finding the optimal plan for
the first problem in the expert domain takes around 40x more time,
i.e., from 0.59 to 24.72 s, but also reduces the total costs for executing
the plan to nearly the half, i.e., from 1335 to 778. In the planning
domain generated by SWS2PDDL, finding the optimal plan for problem
1 takes only around 14x more time, i.e., from 0.57 to 7.39 s, but also
reduces the cost significantly from 965 to 652. Based on that, it can

14 In the non-temporal planning this corresponds to the result of the total-
cost function and in the temporal planning to the total-time for executing the
plan, i.e., makespan.

15 The used planning domains and corresponding planning problems can be
found at https://gitlab.rlp.net/iot-lab-uni-trier/eaai-2023-journal.

https://gitlab.rlp.net/iot-lab-uni-trier/eaai-2023-journal

L. Malburg, P. Klein and R. Bergmann

Engineering Applications of Artificial Intelligence 126 (2023) 106727

Table 3
Overview of generated planning problems.
Number of Number of
Affef ted . Affected Component Affected Running
Production Line
Processes Processes
Problem 1 2 Milling Machine 2 6
Problem 2 1 Oven 1 6
Problem 3 1 Punching Machine 1 6
Problem 4 2 Sorting Machine 3 7
Problem 5 1 Workstation Transport 2 10
Table 4
Results of non-temporal production process planning.
Planning Domain from Expert Planning Domain from SWS2PDDL
Generated / Avg. Generated / Avg.
Plan Total Plan Total
Expanded Total Expanded Total
Length Cost Length Cost
Nodes Time [s] Nodes Time [s]
Problem 1 Imcut 24 778 139409/4305 24.72 22 652 55385/1599 7.39
hcea 33 1335 210201/5675 0.59 32 965 279357/6238 0.57
Problem 2 Imcut 14 599 8325/385 0.82 15 541 5123/231 0.63
hcea 18 770 832/31 0.19 20 681 903/29 0.28
Problem 3 Imcut 6 320 354/16 0.19 6 320 261/11 0.26
hcea 6 320 195/6 0.18 7 347 236/9 0.25
Problem4 /mcut — — — 0.15 — — — 0.17
hcea — — — 0.15 — — — 0.17
Problem 5 Imcut 21 803 476834/11878 99.86 19 676 53174/1368 14.00
hcea 25 1224 70860/1773 0.38 33 1239 70863/1728 0.43
Table 5
Results of temporal production process planning and scheduling.
Planning Domain from Expert Planning Domain from SWS2PDDL
Generated / Avg. Generated / Avg.
Plan Plan
Makespan [s] Expanded Total Makespan [s] Expanded Total
Length Length
Nodes Time [s] Nodes Time [s]
Problem 1 48 899.23 144885/5437 343 53 1008.30 323393/10058 10.93
Problem 2 47 1096.29 237059/9954 7.77 43 865.23 204017/5548 5.80
Problem 3 21 475.08 76915/4350 1.28 21 426.08 31129/3239 2.27
Problem 4 — — — 0.00 — — — 0.07
Problem 5 — — — 180.87 — — — 180.70

be observed that A* search is more appropriate for the automatically
generated domain, as it has a significantly better ratio between invested
computing time and resulted output. In contrast to this, the expert
domain with less planning actions is better suited for a non-optimal
greedy search. We checked each generated plan and determined that
in some cases, the plans do not differ that much from each other.
However, in some cases and in particular by using the expert domain,
the plans contain some not necessarily required steps, e. g., individual
transport steps or multiple trips to the same component. All in all,
the results indicate the usefulness of planning domains automatically
generated by the proposed SWS2PDDL converter for the application
scenario (see Section 2.2).

Table 5 illustrates the results of the experiments with the TFD
planner (Eyerich et al., 2009) and the previously described planning
domains. In contrast to the first experiment, temporal aspects are
considered in this experiment and, thus, all processes, even those that
are not directly affected by the failure, are replanned to achieve a
global near optimal allocation and utilization of the resources (cf.
Number of Running Processes in Table 3). Fig. 7 illustrates a part of the

15

temporal plan of problem P1.!® Compared to the first experiment, the
plan lengths increased since the schedule of actions is now considered
for generating the solutions. In addition, no solution could be generated
for the fourth problem as the required machines for recovery are not
functional. Besides this, the fifth problem cannot be solved in the
specified time, i. e., the search stopped after 180 s. Comparing the plan
lengths and makespans for problem 1 to 3, it can be determined that
both are comparable for the expert domain and the SWS2PDDL domain.
For the generated/expanded nodes and avg. total time, the results in the
expert domain are slightly favorable compared to those obtained in the
domain generated by SWS2PDDL. This may occur because TFD utilizes
a greedy search, which may not perform as well with a significantly
higher number of planning actions (see Table 2) as for the A* search
used during classical planning (see Table 4).

In summary, the automatically generated planning domain descrip-
tions result in shorter or comparable plan lengths and the plans have
better or comparable costs or makespans, which in turn leads to faster

16 The visualization has been created with the PDDL Extension for Visual
Studio Code by Jan Dolejsi. More information can be found at https://github.
com/jan-dolejsi/vscode-pddl.

https://github.com/jan-dolejsi/vscode-pddl
https://github.com/jan-dolejsi/vscode-pddl

L. Malburg, P. Klein and R. Bergmann

Engineering Applications of Artificial Intelligence 126 (2023) 106727

P service_VGR_Transport_VGR_2_Oven_Sink_1_Dropoff processID_123

Il Service_ MM_Deburr_MM_1_lnitial_Initial processID_114

I Service_ VGR_Transport_VGR_1_High_Bay_Warehouse_Oven processID_113

Service_MM_Transport_MM_1_Initial_Ejection processID_11
Service_SM_Sort_SM_1_lInitial_Sink_1 prcoessID_114

4

I service_OV_Burn_OV_1 Maxi Thin processID_113
Service_SM_Transport_SM_2_Sink_1_Dropoff_Corner processID_123
Service_VGR_Transport_VGR_2_High_Bay_Warehouse_Oven processID_121
Service_DM_Cylindrical_Drill_DM_2_Corner_Drill Quantity_4 CylindricalDrillSize_5

Fig. 7. Visualization of an excerpt from the temporal plan of P1.

and more efficient production planning and scheduling in 14.0. For
all generated plans, we verified that those can be physically executed
in the smart factory. The differences in plan length and cost between
the domain created by the domain expert and the domain generated
by SWS2PDDL, even when an optimal A* search has been used, are
probably caused due to the different knowledge representations (see
Table 2). This different representation of knowledge encoded in PDDL
domain descriptions can result in slightly different plans. Another
reason could be the lack of knowledge in the expert domain, e.g., by
missing preconditions or effects. However, we have not identified
any inconsistency or lack of knowledge in the expert domains during
verification. Finally, the expert domains and also the planning problems
are more than 1000 lines long and, thus, the complexity and error-
proneness are high. At the same time, the maintainability is difficult
even for domain experts and errors can easily occur. The results there-
fore highlight the importance of a converter that reuses existing and
tested knowledge and converts it into a suitable representation for
Al planning. Updating of knowledge can then easily be performed in
designated knowledge engineering tools and no further modifications to
the planning domains are required. Thus, the proposed converter limits
the knowledge acquisition and manual modeling efforts for generating
complete planning domain descriptions or supports domain experts in
creating complete domain models.

6. Summary of contributions and limitations for practical applica-
tion

In this section, we first discuss the results of the experimental
evaluation based on the requirements defined in Section 2.4. There-
after, limitations and barriers for practical application of the proposed
approach are discussed.

The first requirement R1 addresses modeled IOPEs and the second
one R2 a semantic model that contains all relevant information, i. e., to
be complete. Based on the results of the experimental evaluation, both
requirements can be considered as fulfilled, indicating that the used
implementation of the SWSs and the domain ontology are complete
and appropriate. The third requirement R3 to support different PDDL
language levels is addressed by providing options to apply several
transformers. For instance, it is possible to transform negative pre-
conditions into equivalent negated predicates in the planning domain
description. In addition, it is possible to precalculate advanced numeric
functions and, thus, to ensure that a planner without complete support
for numeric fluents can handle the domain with its supported language
level. Moreover, it is possible to write custom transformers that can
be used for planning domain generation. The fourth requirement R4
addresses the support of temporal aspects and, thus, the creation of
PDDL planning domain and problem descriptions that can be used for
temporal planning. Based on the results of the experimental evaluation,
the requirement can be considered as fulfilled, as the converter can
create a temporal planning domain with which the generated problems
can be solved with similar results to the domain created by a domain

16

expert. The fifth requirement R5 demands the availability, extensibility,
and simplicity of the implemented SWS2PDDL converter. We address
this requirement by making the source code under an open-source
license publicly available!” and show how the converter’s implemen-
tation is designed (cf. Section 4.1). By defining different modules, the
functions are clearly structured and separated from each other. By
using and implementing transformers, extensions can be easily added to
customize the generated output for specific purposes. The first general
requirement GR1 requests to reconvert plans into a common workflow
representation format. For our process-based research work (Malburg
et al., 2023b,a; Malburg and Bergmann, 2022; Malburg et al., 2020a,c),
we developed another converter that transforms generated plans into
corresponding BPMN 2.0 process models (see Malburg et al. (2023b) for
an example of such a converted plan). The second general requirement
GR2 addresses the practical evaluation with a near real-world scenario.
As we conduct the evaluation with a physical smart factory (cf.
Section 2.1) and, thus, the problems generated can be considered as
near real-world problems, the requirement can be assumed as fulfilled.
In addition, the use of the physical smart factory enables an easier
transfer to real production environments.

As outlined in the discussion of R5, the implementation of the
developed SWS2PDDL converter is publicly available, which enables
other researchers to apply it and foster further research with much
fewer efforts. However, some limitations and barriers exist for using
the implemented converter to transform an already available semantic
model into a formal PDDL planning domain description in a different
setting. These include how resources required for production processes,
such as machines, tools, and materials are semantically represented, as
there is no standard and, thus, a need for some specific adaptions to
other ontologies and semantic models can be necessary. For example,
in the domain ontology FTOnto (Klein et al., 2019), we use concepts
for representing machine resources by established and well-known
ontologies (e. g., the Manufacturing Concept from MASON (Lemaignan
et al., 2006) and the main classes of SOSA). Furthermore, there are
several possibilities to describe IOPEs that are inevitably required for
converting SWSs into a formal PDDL planning domain. For example,
OWL-S can be used for representing IOPEs and is most commonly
applied. However, it is also possible to represent IOPEs by using SWRL
or the Web Service Modeling Ontology (WSMO) (Roman et al., 2005).
Consequently, and dependent on the concrete representation and mod-
eling of the SWSs, there could be further effort for adapting SPARQL
queries in the SWS2PDDL converter to collect the required action name,
preconditions, effects, and parameters. This highlights how important
a well-structured and extensible implementation is (cf. GR1) to make
reusing the converter for other settings possible. All in all, adapting
the converter for individual research purposes leads to significantly
less implementation work than developing a PDDL converter from
scratch. Furthermore, the converter is based on established frameworks,
e. g., Apache Jena and PDDL4J, which are well suited for the described
purpose due to their runtime properties and their numerous features.

17 The source code of the SWS2PDDL converter is freely available at https:
//gitlab.rlp.net/iot-lab-uni-trier/sws2pddl-converter.

https://gitlab.rlp.net/iot-lab-uni-trier/sws2pddl-converter
https://gitlab.rlp.net/iot-lab-uni-trier/sws2pddl-converter

L. Malburg, P. Klein and R. Bergmann
7. Conclusion and future work

In this work, we present how already available knowledge rep-
resented as a semantic model can be converted into a formal PDDL
planning domain description for automated planning and scheduling in
14.0. By reusing existing knowledge, the efforts for manual acquisition
and laborious modeling of planning domain descriptions are signifi-
cantly reduced. In addition, maintenance activities can be performed
much easier, ensuring that the planning domain is always up-to-date
and inconsistencies or mistakes are not inserted during this process.
For this purpose, requirements are derived from literature that should
be fulfilled by a converter. In addition, general requirements are pre-
sented that are important for applying Al planning in BPM, i.e., in
the proposed smart manufacturing application scenario. The developed
SWS2PDDL converter is applied to a semantic model composed of SWSs
and a domain model of a physical smart factory. For the evaluation,
the use case of a workstation failure that requires the re-planning of
currently executed production processes is employed. The resulting
plans to fix the misleading situations are compared to those obtained
from a planning domain description that is generated manually by
a domain expert. The results validate that for classical and temporal
planning, the automatically generated planning domain descriptions
result in similar or better plans than using the expert’s one. This
highlights the quality and general usefulness for limiting knowledge
modeling and acquisition efforts of the proposed SWS2PDDL converter.

In future work, we want to investigate the topic of using Al planning
to achieve more flexibility, robustness, and resilience of manufacturing
processes for 14.0 further. In this context, we are currently working
on the integration of Al planning with case-based reasoning to incor-
porate experiential knowledge during problem-solving (Malburg and
Bergmann, 2022; Malburg et al., 2023a). This is especially useful since
planning domains are often not complete in real-world application
domains and, thus, planning from scratch is difficult to apply (Nguyen
et al., 2017; Zhuo et al., 2013). In addition, repairing plans, e.g., by
reusing already available plans stored in a case base for upcoming prob-
lem situations, is in most practical applications better than replanning
completely from scratch (Borrajo et al., 2014; Nebel and Koehler, 1995;
Babli et al., 2023). By combining case-based reasoning and Al planning,
it can also be investigated whether the knowledge stored in cases can
be used to learn parts of a planning domain description, similar to
McCluskey et al. (2009). In this context, it can also be investigated how
Large Language Models (LLMs) can be used for reducing the efforts
required to create comprehensive planning descriptions and to assist
experts during knowledge engineering. Currently, there is first work
(e.g., Liu et al., 2023; Valmeekam et al., 2023; Guan et al., 2023) deal-
ing with using LLMs for Al planning, but research is still in its infancy.
Monitoring the smart environment to detect faults and predictions of
failures from data-driven monitoring and complex event processing
systems (e. g., Klein et al., 2021; Malburg et al., 2023b; Seiger et al.,
2022; Malburg et al., 2023c) is a further topic for future research.
In this regard, the use of semantic technologies to achieve interoper-
ability between the different systems, i. e., planning and monitoring, is
required to enable them to work together, and this research direction is
still important for 14.0 (Kagermann and Wabhlster, 2022). Furthermore,
due to the common occurrence of incomplete planning domains in real-
world applications (Nguyen et al., 2017; Zhuo et al., 2013), it could
be investigated how the result of the proposed SWS2PDDL converter
can be used for completion and correction of an existing, incomplete
PDDL model. Moreover, it is possible to enhance the converter so that
more than one SWS is transformed to a single planning action, as
currently mostly performed by domain experts that have knowledge
about dependencies between SWSs and how they can be abstracted.
To use such a representation for the SWS2PDDL converter, further
knowledge is required, e.g., about service groups, common precondi-
tions, effects, and parameters. Future work could investigate how useful
groups can be derived from the existing knowledge and which further

17

Engineering Applications of Artificial Intelligence 126 (2023) 106727

knowledge is needed. In addition, it can be examined how well which
domain representations perform on current state-of-the-art planners. In
general, achieving more efficient and optimized production processes
are, among the other aspects, important (research) topics for realizing
the vision and corresponding benefits of 14.0 (see Use Case 2 in Malburg
et al. (2020a)). However, the plan quality and the sometimes high
planning times should also be considered. In this context, the already
described incorporation of experience from domain experts such as
in case-based reasoning (Bergmann, 2002; Malburg and Bergmann,
2022; Malburg et al., 2023a) or the use and combination with other
Al methods based on deep learning (e. g., Hoffmann et al., 2022) could
be beneficial as a hybrid approach. In this context, the combination of
case-based reasoning with automated planning has already contributed
to significantly faster problem-solving with good results in the past
(e.g., Borrajo et al., 2014; Cox et al., 2005; Malburg and Bergmann,
2022; Zhuo et al., 2013; Malburg et al., 2023a).

CRediT authorship contribution statement

Lukas Malburg: Conceptualization, Methodology, Software, Valida-
tion, Formal analysis, Investigation, Data curation, Writing — original
draft, Writing — review & editing, Visualization. Patrick Klein: Valida-
tion, Data curation, Writing — original draft, Writing — review & editing.
Ralph Bergmann: Resources, Writing — review & editing, Supervision,
Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
We have shared the link to the data in the manuscript.
Acknowledgments

This work is funded by the Federal Ministry for Economic Affairs
and Climate Action under grant No. 01MD22002C EASY.

References

Abele, E., et al., 2017. Learning factories for future oriented research and education in
manufacturing. CIRP Ann. 66 (2), 803-826.

Babli, M., Sapena, O., Onaindia, E., 2023. Plan commitment: Replanning versus plan
repair. Eng. Appl. Artif. Intell. 123, 106275.

Bader, S.R., Maleshkova, M., 2019. The semantic asset administration shell. In: Acosta
Deibe, M., Cudré-Mauroux, P., Maleshkova, M., Pellegrini, T., Sack, H., Sure-
Vetter, Y. (Eds.), Semantic Systems. In: LNCS Sublibrary, vol. 11702, Springer Open,
pp. 159-174.

Benton, J., Coles, A.J., Coles, A., 2012. Temporal planning with preferences and
time-dependent continuous costs. In: 22nd ICAPS. AAAI, pp. 1-10.

Bergmann, R. (Ed.), 2002. Experience Management: Foundations, Development
Methodology, and Internet-Based Applications. In: LNCS, vol. 2432, Springer.
Bergweiler, S., 2016. Smart factory systems — Fostering cloud-based manufacturing

based on self-monitoring cyber-physical systems. Int. J. Adv. Syst. Meas. 2, 91-101.

Borrajo, D., Roubickovd, A., Serina, 1., 2014. Progress in case-based planning. ACM
Comput. Surv. 47 (2), 35:1-35:39.

Boschert, S., Rosen, R., 2016. Digital twin—The simulation aspect. In: Mechatron.
Futur.. Springer, pp. 59-74.

Cala, A, et al., 2016. Modeling approach for a flexible manufacturing control system.
In: 21st Int. Conf. on Emerg. Technol. and Factory Automat.. IEEE, pp. 1-4.

Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., Veloso, M., 1991.
PRODIGY: An integrated architecture for planning and learning. SIGART Bull. 2 (4),
51-55.

Celorrio, S.J., Jonsson, A., Palacios, H., 2015. Temporal planning with required
concurrency using classical planning. In: 25th ICAPS. AAAI Press, pp. 129-137.
Cenamor, 1., Vallati, M., Chrpa, L., de la Rosa, T., Ferndndez, F., 2018. TemPoRal:
Temporal portfolio algorithm. In: Temporal Track of the International Planning

Competition (IPC).

http://refhub.elsevier.com/S0952-1976(23)00911-9/sb1
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb1
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb1
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb2
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb2
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb2
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb3
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb3
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb3
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb3
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb3
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb3
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb3
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb4
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb4
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb4
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb5
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb5
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb5
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb6
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb6
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb6
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb7
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb7
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb7
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb8
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb8
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb8
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb9
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb9
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb9
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb10
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb10
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb10
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb10
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb10
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb11
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb11
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb11
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb12
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb12
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb12
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb12
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb12

L. Malburg, P. Klein and R. Bergmann

Chen, L., Yang, X., 2005. Applying Al planning to semantic web services for workflow
generation. In: Int. Conf. on Semant., Knowl. and Grid. IEEE, p. 65.

Cheng, H., et al, 2017. Ontology-based web service integration for flexible
manufacturing systems. In: 15th Int. Conf. on Ind. Inf.. IEEE, pp. 351-356.

Cox, M.T., Mufioz-Avila, H., Bergmann, R., 2005. Case-based planning. Knowl. Eng.
Rev. 20 (3), 283-287.

Daosabah, A., Guermah, H., Choukri, I., Nassar, M., 2021a. Integrating context and
intention for optimal semantic web service composition using Al planning. In: 4th
CommNet. IEEE, pp. 1-9.

Daosabah, A., Guermah, H., Nassar, M., 2021b. Dynamic composition of services: an
approach driven by the user’s intention and context. Int. J. Web Eng. Technol. 16
4), 324.

Duréik, Z., Parali¢, J., 2011. Transformation of ontological represented web service
composition problem into a planning one. Acta Electrotech. Inform. 11 (2).

Eyerich, P., Mattmiiller, R., Roger, G., 2009. Using the context-enhanced additive
heuristic for temporal and numeric planning. In: Proc. of the 19th Int. Conf. on
Autom. Plan. and Sched.. AAAI, pp. 130-137.

Fox, M., Long, D., 2003. PDDL2.1: An extension to PDDL for expressing temporal
planning domains. J. Artificial Intelligence Res. 20, 61-124.

Ghallab, M., 2004. Automated Planning: Theory and Practice. In: The Morgan Kaufmann
Series in Al, Elsevier.

Ghallab, M., Nau, D., Traverso, P., 2016. Automated Planning and Acting. Cambridge
University Press.

Guan, L., Valmeekam, K., Sreedharan, S., Kambhampati, S., 2023. Leveraging
pre-trained large language models to construct and utilize world models for
model-based task planning. CoRR abs/2305.14909.

Haslum, P., et al., 2019. An Introduction to the Planning Domain Definition Language.
In: Synth. Lect. on Artif. Intell. and Mach. Learn., Morgan & Claypool.

Hatzi, O., et al., 2009. Semantic web service composition using planning and ontology
concept relevance. In: IEEE/WIC/ACM International Joint Conference on Web
Intelligence and Intelligent Agent Technology. IEEE, pp. 418-421.

Helmert, M., 2002. Decidability and undecidability results for planning with numerical
state variables. In: 6th AIPS. AAAI, pp. 44-53.

Helmert, M., 2006. The fast downward planning system. J. Artificial Intelligence Res.
26, 191-246.

Helmert, M., Domshlak, C., 2009. Landmarks, critical paths and abstractions: What’s
the difference anyway? In: 19th ICAPS. AAAI, pp. 162-169.

Helmert, M., Geffner, H., 2008. Unifying the causal graph and additive heuristics. In:
Proc. of the 18th Int. Conf. on Autom. Plan. and Sched.. AAAL, pp. 140-147.
Hevner, A.R., March, S.T., Park, J., Ram, S., 2004. Design science in information

systems research. MIS Q. 28 (1), 75-105.

Hitzler, P., et al., 2012. OWL 2 Web Ontology Language Primer. W3C Recommendation,
available at https://www.w3.org/TR/2012/REC-owl2-primer-20121211/.

Hoebert, T., Lepuschitz, W., Merdan, M., 2020. Automatic ontology-based plan gen-
eration for an industrial robotics system. In: Proceedings of the Joint Austrian
Computer Vision and Robotics Workshop. Verlag der Technischen Universitédt Graz,
pp. 27-28.

Hoffmann, M., Malburg, L., Bergmann, R., 2022. ProGAN: Toward a framework for
process monitoring and flexibility by change via generative adversarial networks.
In: BPM Workshops. In: LNBIP, Springer, pp. 43-55.

Hubauer, T., et al., 2018. Use cases of the industrial knowledge graph at siemens. In:
Proc. of the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas
Tracks. In: CEUR Workshop Proc., vol. 2180, CEUR-WS.org.

Janiesch, C., et al., 2020. The internet-of-things meets business process management.
A manifesto. IEEE Syst. Man Cybern. Mag. 6 (4), 34-44.

Jilani, R., 2020. Automated domain model learning tools for planning. In: Knowledge
Engineering Tools and Techniques for Al Planning. Springer, pp. 21-46, Ch. 2.

Kagermann, H., Wahlster, W., 2022. Ten years of industrie 4.0. Sci 4 (3).

Kalayci, E.G., et al., 2020. Semantic integration of bosch manufacturing data using
virtual knowledge graphs. In: 19th ISWC. In: LNCS, vol. 12507, Springer, pp.
464-481.

Kharlamov, E., et al., 2016. Capturing industrial information models with ontologies
and constraints. In: 15th ISWC. In: LNCS, vol. 9982, pp. 325-343.

Kim, H.-S., Kim, I.-C., 2007. Mapping semantic web service descriptions to planning
domain knowledge. In: World Congress on Medical Physics & Biomedical Eng.. In:
IFMBE Proc., vol. 14, Springer, pp. 388-391.

Kirikkayis, Y., Gallik, F., Winter, M., Reichert, M., 2023. BPMNE4IoT: A framework for
modeling, executing and monitoring loT-driven processes. Future Internet 15 (3),
90.

Klein, P., Bergmann, R., 2019. Generation of complex data for Al-based predictive
maintenance research with a physical factory model. In: 16th ICINCO. ScitePress,
pp. 40-50.

Klein, P., Malburg, L., Bergmann, R., 2019. FTOnto: A domain ontology for a
fischertechnik simulation production factory by reusing existing ontologies. In:
Proc. of the Conf. LWDA, Vol. 2454. CEUR-WS.org, pp. 253-264.

Klein, P., Weingarz, N., Bergmann, R., 2021. Using expert knowledge for masking
irrelevant data streams in siamese networks for the detection and prediction of
faults. In: IJCNN. pp. 1-10.

Klusch, M., Gerber, A., Schmidt, M., 2005. Semantic web service composition planning
with OWLS-Xplan. In: Agents and the Semantic Web. In: AAAI Technical Report,
vol. FS-05-01, AAAI Press, pp. 55-62.

18

Engineering Applications of Artificial Intelligence 126 (2023) 106727

Lasi, H., et al., 2014. Industry 4.0. BISE 6 (4), 239-242.

Lee, J., Kao, H.-A,, Yang, S., 2014. Service innovation and smart analytics for industry
4.0 and big data environment. Procedia CIRP 16, 3-8.

Lemaignan, S., Siadat, A., Dantan, J.-Y., Semenenko, A., 2006. MASON: A proposal
for an ontology of manufacturing domain. In: Workshop on Distrib. Intell. Syst.:
Collect. Intell. and Its Appl.. IEEE, pp. 195-200.

Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas, J., Stone, P., 2023. LLM+P:
Empowering large language models with optimal planning proficiency. CoRR
abs/2304.11477.

Louadah, H., Papadakis, E., McCluskey, T.L., Tucker, G., Hughes, P., Bevan, A.,
2021. Translating ontological knowledge to PDDL to do planning in train depot
management operations. In: 36th Workshop of the UK Planning and Scheduling
Special Interest Group.

Malburg, L., Bergmann, R., 2022. Towards adaptive workflow management by case-
based reasoning and automated planning. In: 30th ICCBR Workshops, Vol. 3389.
CEUR-WS.org, pp. 211-220.

Malburg, L., Brand, F., Bergmann, R., 2023a. Adaptive management of cyber-physical
workflows by means of case-based reasoning and automated planning. In: 26th
EDOC Workshops. In: LNBIP, vol. 466, Springer, pp. 79-95.

Malburg, L., Hoffmann, M., Bergmann, R., 2023b. Applying MAPE-K control loops for
adaptive workflow management in smart factories. J. Intell. Inf. Syst. 1-29.

Malburg, L., Schultheis, A., Bergmann, R., 2023c. Modeling and using complex IoT time
series data in case-based reasoning: From application scenarios to implementations.
In: Malburg, L., Verma, D. (Eds.), Proceedings of the Workshops at the 31st
International Conference on Case-Based Reasoning (ICCBR-WS 2023) co-located
with the 31st International Conference on Case-Based Reasoning (ICCBR 2023),
Aberdeen, Scotland, UK, July 17, 2023. In: CEUR Workshop Proceedings, 3438,
CEUR-WS.org, pp. 81-96.

Malburg, L., Seiger, R., Bergmann, R., Weber, B., 2020a. Using physical factory
simulation models for business process management research. In: BPM Workshops.
In: LNBIP, vol. 397, Springer, pp. 95-107.

Malburg, L., et al., 2020b. Demo video: Object detection for smart factory processes
by machine learning. http://dx.doi.org/10.6084/m9.figshare.13240784.

Malburg, L., et al., 2020c. Semantic web services for Al-research with physical factory
simulation models in industry 4.0. In: 1st IN4PL. ScitePress, pp. 32-43.

Malburg, L., et al., 2021. Object detection for smart factory processes by machine
learning. Procedia Comput. Sci. 184, 581-588.

Marrella, A., 2019. Automated planning for business process management. J. Data
Semant. 8 (2), 79-98.

Marrella, A., Mecella, M., Sardifa, S., 2017. Intelligent process adaptation in the
SmartPM system. ACM Trans. Intell. Syst. Technol. 8 (2), 25:1-25:43.

Martin, D.L., et al., 2004. OWL-S: Semantic markup for web services - W3C member
submission. URL https://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

Martin, D.L., et al., 2007. Bringing semantics to web services with OWL-S. World Wide
Web 10 (3), 243-277.

Mazzola, L., et al., 2016. CDM-core: A manufacturing domain ontology in OWL2 for
production and maintenance. In: 8th KEOD. pp. 136-143.

McCluskey, T.L., Cresswell, S., Richardson, N.E., West, M.M., 2009. Automated
acquisition of action knowledge. In: 1st ICAART. INSTICC Press, pp. 93-100.
McCluskey, T.L., Louadah, H., Papadakis, E., Tucker, G., Bevan, A., Hughes, P., 2021.
Knowledge engineering for planning and scheduling in the context of ontological
engineering: An application in railway rolling stock maintenance. In: Knowledge

Engineering for Planning and Scheduling Workshop.

McDermott, D.V., et al., 1998. PDDL - The Planning Domain Definition Language:
Technical Report CVC TR-98-003/DCS TR-1165.

Monostori, L., 2014. Cyber-physical production systems: Roots, expectations and R&D
challenges. Procedia CIRP 17, 9-13.

Nebel, B., Koehler, J., 1995. Plan reuse versus plan generation: a theoretical and
empirical analysis. Artificial Intelligence 76 (1-2), 427-454.

Nguyen, T.A., Sreedharan, S., Kambhampati, S., 2017. Robust planning with incomplete
domain models. Artificial Intelligence 245, 134-161.

Pellier, D., Fiorino, H., 2018. PDDL4J: a planning domain description library for java.
J. Exp. Theor. Artif. Intell. 30 (1), 143-176.

Pieske, S., Herfs, W., Zenke, M., Storms, S., Brecher, C., 2022. Semantic modeling of
a cyber-physical biological production platform. In: 2022 27th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, pp.
1-8.

Polge, J., Robert, J., Traon, Y.L., 2020. A case driven study of the use of time series
classification for flexibility in industry 4.0. Sensors 20 (24), 7273.

Puttonen, J., et al., 2013. Semantics-based composition of factory automation processes
encapsulated by web services. IEEE TII 9 (4), 2349-2359.

Rintanen, J., 2007. Complexity of concurrent temporal planning. In: 17th ICAPS. AAAI,
pp. 280-287.

Rodriguez-Moreno, M.D., Borrajo, D., Cesta, A., Oddi, A., 2007. Integrating planning
and scheduling in workflow domains. Expert Syst. Appl. 33 (2), 389-406.

Roman, D., et al., 2005. Web service modeling ontology. Appl. Ontol. 1 (1), 77-106.

Rossit, D.A., Tohmé, F., Frutos, M., 2019a. Industry 4.0: Smart scheduling. Int. J. Prod.
Res. 57 (12), 3802-3813.

http://refhub.elsevier.com/S0952-1976(23)00911-9/sb13
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb13
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb13
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb14
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb14
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb14
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb15
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb15
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb15
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb16
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb16
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb16
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb16
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb16
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb17
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb17
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb17
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb17
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb17
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb18
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb18
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb18
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb19
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb19
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb19
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb19
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb19
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb20
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb20
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb20
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb21
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb21
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb21
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb22
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb22
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb22
http://arxiv.org/abs/2305.14909
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb24
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb24
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb24
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb25
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb25
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb25
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb25
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb25
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb26
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb26
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb26
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb27
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb27
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb27
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb28
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb28
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb28
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb29
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb29
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb29
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb30
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb30
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb30
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb32
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb32
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb32
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb32
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb32
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb32
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb32
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb33
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb33
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb33
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb33
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb33
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb34
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb34
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb34
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb34
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb34
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb35
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb35
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb35
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb36
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb36
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb36
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb37
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb38
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb38
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb38
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb38
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb38
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb39
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb39
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb39
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb40
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb40
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb40
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb40
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb40
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb41
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb41
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb41
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb41
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb41
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb42
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb43
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb43
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb43
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb43
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb43
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb44
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb44
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb44
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb44
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb44
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb45
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb45
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb45
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb45
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb45
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb46
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb47
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb47
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb47
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb48
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb48
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb48
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb48
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb48
http://arxiv.org/abs/2304.11477
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb50
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb50
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb50
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb50
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb50
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb50
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb50
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb51
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb51
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb51
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb51
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb51
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb52
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb52
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb52
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb52
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb52
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb53
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb53
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb53
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb54
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb55
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb55
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb55
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb55
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb55
http://dx.doi.org/10.6084/m9.figshare.13240784
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb57
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb57
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb57
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb58
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb58
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb58
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb59
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb59
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb59
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb60
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb60
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb60
https://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb62
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb62
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb62
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb63
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb63
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb63
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb64
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb64
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb64
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb65
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb65
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb65
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb65
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb65
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb65
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb65
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb66
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb66
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb66
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb67
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb67
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb67
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb68
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb68
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb68
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb69
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb69
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb69
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb70
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb70
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb70
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb71
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb71
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb71
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb71
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb71
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb71
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb71
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb72
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb72
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb72
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb73
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb73
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb73
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb74
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb74
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb74
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb75
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb75
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb75
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb76
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb77
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb77
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb77

L. Malburg, P. Klein and R. Bergmann

Rossit, D.A., et al., 2019b. Production planning and scheduling in cyber-physical
production systems: a review. Int. J. Comput. Integr. Manuf. 32 (4-5), 385-395.

RiiBmann, M., et al., 2015. Industry 4.0: The Future of Productivity and Growth in
Manufacturing Industries, Vol. 9. Boston Consulting Group, pp. 54-89, (1).

Schnicke, F., et al., 2020. Enabling industry 4.0 service-oriented architecture through
digital twins. In: Softw. Archit.. In: CCIS, vol. 1269, Springer, pp. 490-503.

Seiger, R., Malburg, L., Weber, B., Bergmann, R., 2022. Integrating process management
and event processing in smart factories: A systems architecture and use cases. J.
Manuf. Syst. 63, 575-592.

Sesboiié, M., Delestre, N., Kotowicz, J., Khudiyev, A., Zanni-Merk, C., 2022. An
operational architecture for knowledge graph-based systems. In: 26th KES. In:
Procedia Computer Science, vol. 207, Elsevier, pp. 1667-1676.

19

Engineering Applications of Artificial Intelligence 126 (2023) 106727

Valmeekam, K., Sreedharan, S., Marquez, M., Olmo, A., Kambhampati, S., 2023. On the
planning abilities of large language models (A critical investigation with a proposed
benchmark). CoRR abs/2302.06706.

Wickler, G., Chrpa, L., McCluskey, T.L., 2015. Ontological support for modelling plan-
ning knowledge. In: Knowledge Discovery, Knowledge Engineering and Knowledge
Management. In: CCIS, vol. 553, Springer, pp. 293-312.

Yang, B., Qin, Z., 2010. Composing semantic web services with PDDL. Inform. Technol.
J. 9 (1), 48-54.

Zhuo, H.H., Mufoz-Avila, H., Yang, Q., 2014. Learning hierarchical task network
domains from partially observed plan traces. Artificial Intelligence 212, 134-157.

Zhuo, H.H., Nguyen, T.A., Kambhampati, S., 2013. Model-lite case-based planning. In:
27th AAAI. AAAI Press, pp. 1077-1083.

http://refhub.elsevier.com/S0952-1976(23)00911-9/sb78
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb78
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb78
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb79
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb79
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb79
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb80
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb80
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb80
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb81
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb81
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb81
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb81
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb81
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb82
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb82
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb82
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb82
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb82
http://arxiv.org/abs/2302.06706
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb84
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb84
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb84
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb84
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb84
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb85
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb85
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb85
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb86
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb86
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb86
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb87
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb87
http://refhub.elsevier.com/S0952-1976(23)00911-9/sb87

	Converting semantic web services into formal planning domain descriptions to enable manufacturing process planning and scheduling in industry 4.0
	Introduction
	Foundations and Requirements
	Industry 4.0 Physical Smart Factory Model
	Business Process Management for Smart Manufacturing
	Hardware Layer
	Control Layer
	Domain Layer
	Web Service Layer
	Business Process Layer
	Semantics

	Automated Planning in Industry 4.0
	Classical Planning
	Temporal Planning
	Planning Domain Description Language

	Requirements

	Related Work
	Knowledge Representation of Manufacturing Capabilities
	Translating Semantic Annotations for Web Service Composition with Automated Planning
	Acquisition of Knowledge for Automated Planning
	Summary and Research Gaps

	Converting Semantics into Formal Planning Domain Descriptions
	Architectural Overview and General Approach
	Conversion Procedure
	Implementation and Example from Smart Manufacturing Application Scenario

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Summary of Contributions and Limitations for Practical Application
	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

