
A Case-Based Approach for Workflow Flexibility
by Deviation

Lisa Grumbach1 and Ralph Bergmann1,2

1 German Research Center for Artificial Intelligence (DFKI),
Branch University of Trier, Behringstraße 21, D-54296 Trier, Germany

{lisa.grumbach,ralph.bergmann}@dfki.de
2 Business Information Systems II, University of Trier, D-54296 Trier, Germany

bergmann@uni-trier.de
http://www.wi2.uni-trier.de

Abstract. This paper presents a case-based approach for workflow flex-
ibility by deviation. In previous work, a constraint-based workflow model
and engine have been developed that allow for flexible deviations from
predefined workflow models during run-time. When encountering devi-
ations, domain-independent strategies can be applied for a resolution
in order to regain support for the process participant. To improve this
deviation handling, a case-based approach is presented that integrates
experiential knowledge by exploiting previously terminated workflows as
cases. Similar cases are retrieved through a time-series based similarity
measure and reused through null adaptation. The experimental evalua-
tion showed an improvement of the defined utility value concerning the
computed work items, when comparing the constraint-based workflow
engine and the case-based deviation management.

Keywords: Workflow Flexibility · Case-Based Reasoning · Knowl-
edge Management.

1 Introduction

Flexible workflows have been researched for more than a decade [14], as customer-
orientation is becoming more and more important and therefore adapting to spe-
cific needs is substantial. In traditional workflow systems, models are specified
at design-time and describe the ideal order of tasks. During run-time these mod-
els are instantiated and strictly prescribe the order of task execution, whereas
deviations are only possible when circumventing the system. Thus, all possible
execution variants have to be modelled at design-time, which requires a great ef-
fort and is barely possible, as not all situations can be foreseen. A solution would
be to model the standard procedure with few but frequent workflow variants and
allow controlled deviations at run-time. To this end, an approach is necessary
that handles deviations from predefined models in an automated manner and
offers flexibility through continuous support to the process participant about
how to successfully terminate the workflow.

https://orcid.org/0000-0002-2247-8270
https://orcid.org/0000-0002-5515-7158
http://www.wi2.uni-trier.de

2 L. Grumbach, R. Bergmann

On the one hand, we proposed a constraint-based workflow approach, that
is able to retract violated constraints at run-time and subsequently utilize re-
maining constraints for workflow control. On the other hand, domain-specific
knowledge can be used to suggest tasks for workflow progression. For this pur-
pose, we aim at exploiting experiential knowledge.

Flexible workflows are beneficial in several domains, such as production plan-
ning [9] or situation management [11]. We investigate this approach in the con-
text of the exemplary domain of deficiency management in construction. This
workflow is essential in the construction sector, as all projects require a final
approval for which all defects have to be eliminated. For this process, flexibility
is crucial, as not all types of defects and their handling can be known in advance.

In Section 2 relevant foundations for the approach are presented including
workflow flexibility, semantic workflows and our constraint-based workflow en-
gine. In Section 3, the concept of the envisioned case-based deviation manage-
ment is introduced, which aims at enhancing deviation handling capabilities of
the constraint-based workflow engine. The focus is laid on the retrieve and reuse
phase. The approach is evaluated based on an experiment in the chosen domain
of deficiency management in construction that simulates the usage of the flexible
workflow system in Section 4. The paper concludes with reflecting the findings
and giving an outlook on future research in Section 5.

2 Foundations

In this section a basic classification of workflow flexibility and a specification
of the underlying terminology will be given. This includes the used semantic
workflows and our previously presented constraint-based workflow engine.

2.1 Workflow Flexibility

Workflow flexibility can be categorized into four types [15]. Flexibility by Design
requires to incorporate all execution alternatives into the model at design-time.
Flexibility by Underspecification allows instantiating partial models that require
integrating placeholders during design-time, either blank ones or several alterna-
tives, specified during run-time. Flexibility by Change allows interventions dur-
ing run-time and a re-modeling of parts of the workflow. All of these flexibility
variants require either knowledge about all possible alternatives at design-time,
which is impossible, or an adaptation at run-time, which requires expert knowl-
edge concerning workflow modeling. The fourth variant, Flexibility by Deviation
tries to counteract these disadvantages by enabling deviations at run-time, with-
out necessary modeling effort, but still supporting the process participant with
suggestions about the next activities. Thus, single instances may not fit to the
workflow model. Therefore we explicitly distinguish between modeled, denoted
as de jure, and executed workflow, called de facto [1]. The de facto workflow is
not an instantiated de jure workflow, but represents the actually enacted tasks
traced sequentially. Based on this definition we developed a workflow engine

A Case-Based Approach for Workflow Flexibility by Deviation 3

facilitating flexibility by deviation. Only few research exists concerning this ap-
proach, which still requires a manual intervention of the process participant [2].

2.2 Constraint-Based Workflow Engine

During previous projects we developed a flexible workflow engine based on con-
straints. We presented an approach [5,6] that allows flexible deviations from
prescribed workflows, but still maintains control and recommends valid work
items to a limited extent. The proposed method is applied to imperatively mod-
eled block-oriented workflows. Those workflows are constructed through a single
root block element, which in turn consists of a single task node, a sequence of
two block elements or a control-flow block. Start and end of control-flow blocks
are clearly defined through control-flow nodes. An example is shown in Fig. 1.

cs

t2

t3

cjt1 t4

d1 d2

cs cj

Fig. 1. Example Block-Oriented Workflow

The exemplary workflow consists of four task nodes (rectangles), two data
nodes (ovals) and two control-flow nodes (rhombuses), which represent a parallel
control-flow block (“+”). Additionally, the edges denote either control-flow (solid
lines) or data-flow (dashed lines, input or output relation).

In our approach we transform these imperative workflow models into declara-
tive constraints, which indicate sequential dependencies, to be able to determine
task activations and thus possible executions in a specific unterminated state
of the workflow. A constraint satisfaction problem (CSP) is constructed on the
basis of these generated constraints and logged task enactments. A solution of
the CSP is searched for, which tries to calculate a valid sequential enactment
of all already executed and possible future executions of tasks. Thus, with a
solution we are able to recommend valid task enactments. Consider the exam-
ple of Fig. 1, the constraint set as logical formula is constructed as follows:
t1 < t2 ∧ t1 < t3 ∧ t2 < t4 ∧ t3 < t4. If task t1 is executed, a value is assigned,
in this case t1 = 1, and added to the constraint set. Task recommendations are
calculated by regarding possible task assignments of the next sequential value,
in this case 2. Considering the constraint set either with t2 = 2 or with t3 = 2 a
solution is found. Thus, t2 and t3 are added as work items to the work list.

An advantage of using a CSP is that it is easy and fast to retract violated
constraints at run-time for restoring consistency in case of a deviation. Still,
by regarding the remaining constraints valid solutions can be computed. In our
work [5], we described a method which detects deviations and retracts violated

4 L. Grumbach, R. Bergmann

constraints to restore consistency and re-enable the workflow engine to recom-
mend work items. Different domain-independent strategies can be applied that
assume a deviation category and transform the constraint net to adapt to the
deviating situation. However, to apply these strategies, a choice must be made
that requires knowledge about the deviation and the impact of the strategy. To
further automate the deviation handling and to offer more sophisticated decision
support based on experiential knowledge, we proposed a case-based approach.

2.3 Semantic Workflows

In the proposed case-based deviation management, semantic workflows are used
as case representation, as they allow for an enrichment of semantic descriptions
for tasks and data nodes and the workflow as such. Since the similarity assess-
ment is additionally based on these semantic annotations, it is more sophisti-
cated. The utilized specification of semantic workflows is denoted as NESTGraph
[3], and specified as quadruple W = (N,E, S, T) where

– N is a set of nodes and
– E ⊆ N ×N is a set of edges.
– S : N ∪E → Σ associates to each node and each edge a semantic description

from a semantic metadata language Σ.
– T : N ∪ E → Ω associates to each node and each edge a type from Ω.
– Ω contains the following types of nodes: workflow, task, data, control-flow

and types of edges: part-of, data-flow, control-flow and constraint.

ID: t2
Check

Warranty

ID: t5
Check

Responsibility

ID: t4
Investigation/

Verification of Defects

ID: d4
Bill of

Quantities

ID: d2
Approval

ID: t6
Agree for

Compensation

ID: d5
Price

Reduction
ID: d3

Photos of
Inspection

ID: t3
Check Scope

of Work

ID: w1
Deficiency
Management

ID: t1
Receive Notice

of Defects

ID: d1
Description
of Defect

name: Price Reduction
amount: 200

name: Deficiency Management
customer: John Doe
address: 42 Oxford St

name: Receive Notice
of Defects

name: Approval
date: 04.09.2020

name: Description
 of Defect
concern: Light Switch
defect: Wrong Colour

Workflow
Node

Semantic
Description

Task
Node

Date
Node

Part-Of
Edge

Control-Flow
Edge

Data-Flow
Edge

Fig. 2. Exemplary Block-Oriented Semantic Workflow Graph

Fig. 2 shows an excerpt of a workflow instance from the domain of deficiency
management in construction. This workflow consists of six task nodes, five data

A Case-Based Approach for Workflow Flexibility by Deviation 5

Retrieved Case
De Jure

De Facto

Query

Case
Base

Retrieval

Reuse
?

De Jure

De Facto Solution

Fig. 3. Case-Based Deviation Management [5]

nodes and one workflow node. The edges denote either control-flow, data-flow
(input/output relation) or part-of edges. Furthermore, each node is associated
with a semantic description, which contains additional information. In Fig. 2,
some exemplary semantic descriptions are shown. The workflow node relates to
some general information that concerns the whole workflow. The tasks’ semantic
descriptions only contain the name. The additional information of data nodes
differ concerning the attributes. For instance in data node d1 further details are
provided about the description of defect such as concern and defect.

The developed case-based approach[5,13] is presented in the next section.

3 Concept for a Case-Based Deviation Management

The case-based deviation management includes previously terminated workflows
in the decision process of how to continue with the workflow after a deviation
occurred. Fig. 3 shows the overall approach.

Case Structure Terminated workflows are regarded as cases. Each workflow
case is a pair WC = (JC , FC) with JC as de jure workflow, which is the
default model for suggesting an execution order, and FC as de facto workflow,
representing the actually enacted tasks, which are traced sequentially. Both
workflows are represented as NESTGraphs. The query contains a de facto
workflow that has not yet terminated and is facing a deviation concerning
the de jure workflow (see orange node in Fig. 3).

Retrieve When a query is performed, the case base is searched through on
the basis of an adequate similarity measure. The objective is to find similar
de facto workflows whose subsequences match the current instance (see de
facto workflows with blue and orange nodes in Fig. 3), containing a similar
deviation (orange node) compared to the query. The de jure workflow is
so far not considered in the similarity assessment, as the focus is on the
deviation in the de facto workflow. In the retrieved cases, the subsequences

6 L. Grumbach, R. Bergmann

that succeed the deviation (see green-coloured nodes in Fig. 3) should not
be considered when assessing the similarity, as this part is not existent in
the query, but is rather a solution candidate.

Reuse This most similar case or even several similar cases are then used to
recommend tasks. The simplest reuse option, denoted as null adaptation, is
to propose those tasks of the case that followed the subsequence ending with
the deviation (see green-coloured nodes in Fig. 3).

Revise As tasks are only recommended, the process participant is still able to
execute a task that was not part of the solution resulting from the reuse
step. Thus, by continuing the query workflow, the solution can be revised.
Still, an evaluation of the terminated workflow is pending. This assessment
decides whether the revised case can be retained as successful or failed case.

Retain When the query workflow has terminated, its de facto workflow, con-
taining the actual execution, can be integrated in the case base. Ideally,
some kind of validation, positive or negative, is stored with the case in order
to draw the correct conclusions in subsequent reuse steps. Before integrating
single cases, it needs to be evaluated whether the informativeness can be
increased or whether this additional knowledge is already covered by adap-
tation methods. Nevertheless, the case base can be enhanced continuously,
which ultimately leads to a learning system.

This paper focusses on retrieval and reuse. On account of this, two variants
of a similarity measure and one adaptation method are presented. The revise
and retain phase are part of future work and were therefore only presented as
abstract idea.

3.1 Retrieval with a Time-Series Based Similarity Measure

The retrieval phase bases on a similarity measure that is able to compare time
series, presented in our previous work [13]. This measure is applied on the se-
quential de facto workflows and searches for a mapping of tasks considering
edit distance by applying either the Smith-Waterman-Algorithm (SWA) [16] or
warping of elements through the use of dynamic time warping (DTW) [4,12].
Besides, analogously to the vector similarity of Gundersen [7], local mappings
are weighted according to their distance to the currently regarded task based on
the assumption that tasks which are more far in the past have less influence on
the deviation and subsequent tasks. Furthermore, data-flow similarity is included
in the local similarity values of tasks considering their input and output data
objects. The local similarity simT for tasks tQ and tC is used during alignment:

simT (t
Q, tC) =

lt ∗ simN (tQ, tC) + li ∗ simD(NDin

tQ
, NDin

tC
) + lo ∗ simD(NDout

tQ
, NDout

tC
)

lt + li + lo
(1)

A Case-Based Approach for Workflow Flexibility by Deviation 7

Each task node similarity is calculated by comparing the semantic descriptions
of task nodes simN , finding a mapping of ingoing (NDin) and outgoing (NDout)
data nodes simD. Both variants of the similarity measure are based on comput-
ing a scoring matrix, integrating the temporal weighting factor. For more details
we refer to our previous work [13]. The main difference of both methods is visible
in the computation of the scoring matrix. Whereas DTW weights the similar-
ity value according to warp or mapping of elements, SWA includes a penalty,
which can be a constant value or a function, when the mapping origins out of an
insertion or deletion and only considers the similarity when matching elements.
The maximum value in the last row of the matrix represents the non-normalized
global similarity score, which is further normalized to a value sim ∈ [0, 1]. More
details were presented in our previous work [5,13].

3.2 Reuse through Null Adaptation

With the previously presented similarity measure, the most similar terminated
workflow or a set of workflows can be retrieved from the case base. This can
include several distinct cases with the same similarity score. Let retrievedQ be
the set of retrieved cases with the highest similarity values. From these case
workflows, work items can be derived.

Let WCi ∈ retrievedQ be one of the similar cases. Then, one work item
can be derived from the alignment in the scoring matrix. The position in the
de facto workflow of the case that was aligned with the deviating task of the
query needs to be determined (cf. orange-coloured node in Fig. 3). Let align =
{(0, 0), . . . , (n, k)} denote the alignment path. Then, the task tClast ∈ NT

FC
with

position pos(tClast) = k is the task of the case workflow that was the last to be
aligned with an element of the query workflow. All tasks that are subsequent to
tClast were not aligned to tasks of the query. The next one of these tasks can be
recommended to the process participant as the next task, thus at pos(tnext) =
k + 1 (cf. green-coloured nodes in Fig. 3).

workItems ={tnext|tnext ∈ NT
C ∧ pos(tnext) = pos(tClast) + 1∧

WCi = ((NT
C , E, S, T), FC) ∈ retrievedQ}

(2)

This adaptation method is efficient, as it simply bases on the mapping that
origins from the retrieval phase without requiring additional handling.

4 Evaluation

The actual usefulness of the proposed approach considering the exemplary do-
main can only be evaluated in an empirical study with real experts in the con-
struction industry. However, the necessary effort is too high. Instead, we con-
ducted a study with simulated users under the assumption that the simulation
at least roughly reflects the behaviour of real process participants[5].

8 L. Grumbach, R. Bergmann

4.1 Utility Criteria for Defined Process Participant Types

The essential criteria which is investigated is the utility. It is interpreted in
this domain of flexible workflows as the degree to which the workflow can be
terminated successfully. The overall utility can be determined through measuring
the utility of work items during execution. To assess this property, various types
of process participants are regarded in order to investigate and evaluate different
behaviour of process participants and the corresponding reaction of the system.

Experienced The experienced process participant constitutes an expert and
knows how to handle any situation during process execution. This not only
includes the ideal way of completing a workflow, but also recovering after de-
viations in case the workflow system is in an exceptional state without proper
task suggestions. Her/his expectations of a flexible workflow system concern the
support of those workflow instances that s/he would produce. The workflow en-
gine is useful for this expert if the proposed work items correspond to the task
executions s/he has in mind. Hence, utility of the workflow engine is measured
as amount of support in contrast to misguidance. This is assessed by compar-
ing the pursued task execution with the proposed work items of the workflow
engine. If the task, which the experienced process participant would execute, is
not among the list of proposed work items, the workflow engine would lead to a
miscontrol, which is not useful. The utility can then be assessed on the basis of
the ratio of the number of miscontrols (nrOfMiscontrols) and the number of
task executions (nrOfTasks) in a workflow as degree of support:

utilityexperienced = 1− nrOfMiscontrols

nrOfTasks
(3)

Inexperienced The inexperienced process participant, who can be regarded
as a novice, relies on the support of the workflow engine, as s/he is not aware
of the correct workflow execution and does not know how to continue after de-
viations. Each workflow instance executed by him/her is strictly adhering the
suggested work items. Consequently, the success of an inexperienced process par-
ticipant completely depends on the appropriateness of the work items proposed
by the workflow engine. Hence, the workflow instances that can result from the
execution of proposed work items are the basis to assess the degree of utility.
Therefore, these resulting workflow instances can be compared to valid workflow
instances. The minimum edit distance [8] gives information about the amount
of conformance. Relating this edit distance (editDistance) to the total number
of executed tasks (nrOfTasks) in the workflow instance indicates the utility:

utilityinexperienced = 1− editDistance

nrOfTasks
(4)

Non-Conforming The non-conforming process participant executes his/her
workflows in a non-conforming way, which includes executing tasks that are

A Case-Based Approach for Workflow Flexibility by Deviation 9

not part of the proposed work items, thus causing deviations from the de jure
workflow with unknown consequences. The expectation of using a flexible work-
flow system is that, when encountering one of those undesired deviations again,
the guidance leads to a better outcome than before. Successfully supporting a
non-conforming process participant is interpreted as putting him/her back on
the right track. The workflow engine should provide work items in order to re-
cover from an undesired deviation. Taking a workflow instance with more than
one deviation as starting point and letting the process participant complete the
workflow instance, always following the work items proposed by the workflow
engine after the first deviation, an adapted workflow instance emerges. In this
case utility is defined as the improvement with respect to the workflow instance
the user would create without support of the workflow engine, indicated by the
reduction of necessary edit steps. Therefore, the minimum edit distance to a
valid workflow of both the workflow instances that emerge with and without
support of the workflow engine can be compared.

utilitynon−conforming = 1−
(editDistanceNew

nrOfTasksNew)

(editDistanceOriginal
nrOfTasksOriginal)

(5)

4.2 Hypothesis
In the experimental evaluation the following hypotheses are investigated, which
refer to the defined utility criteria and a comparison of the constraint-based
workflow engine and the case-based null adaptation for determining work items.
H1 (Experienced Process Participant): When replaying a valid workflow, the

executed tasks are mostly those proposed by the workflow engine. Con-
sequently, the workflow engine achieves a high utility for the experienced
process participant.

H2 (Inexperienced Process Participant): After a deviation from the workflow
model, workflows can be terminated similarly to valid ones based on the sug-
gestions of the workflow engine. Thus, the edit distance of proposed workflow
instances compared to the most similar case of valid previous executions is
small, indicating a high utility for the inexperienced process participant.

H3 (Non-Conforming Process Participant): The workflow engine can improve
the outcome of workflow instances that have been terminated previously
leading to an invalid workflow. Workflow instances that are terminated ac-
cording to the proposed work items by the workflow engine after the first
deviation have a smaller edit distance to the most similar valid workflow
than the original workflow instance. Consequently, the utility for the non-
conforming process participant is high.

H4 (Comparing the Utility resulting from the Constraint-Based Workflow En-
gine and Null Adaptation): The utility for each type of process participant
is significantly higher when using the case-based null adaptation compared
to using the constraint-based workflow engine.

10 L. Grumbach, R. Bergmann

4.3 Experimental Setup

Figure 4 shows the overall setting of the experimental evaluation.3 As exemplary
use case the domain of deficiency management in construction was regarded.
Therefore two different workflow models were defined in consultation with an
architect as expert. On the one hand, a model that specifies all standard cases
is used as input for the workflow engine, as the situation would be when using a
traditional system (see simple model in Fig. 4). On the other hand, this simple
model was extended with various alternative execution paths, mapping the real-
world handling of deficiencies (see extended model in Fig. 4). Generating this
model means a lot of effort, which is to be avoided in practice. This extended
model served for generating all possible de facto workflows that form the total
list of valid cases in order to evaluate the approach. Based on these de facto

Simple Model

Modified

Simple Model

Total List
of Valid
Cases

Extended Model

Event Log

10 9050

a
b
c

Process

Participant

I

III
II

Experienced
Inexperienced
Non-Conforming

Constraint-Based
Null Adaptation Based on SWA
Null Adaptation Based on DTW

Workflow

Engine

+

 % Cases

List of
Negative

Cases

Queries

Process Participant

Size of Case Base

Type of Query

-

Simulation

Input Parameters:

Mode of Workflow Engine

Case
Base

Fig. 4. Experimental Setup

workflows, workflow executions are simulated.
The experiment is done as a ten-fold cross validation, such that for each single

validation run 10 % of the cases of the total list of cases form the test set, which
are used as queries. The total list of valid cases contains 2.184 positively rated
3 The experiments were made on a laptop with (QuadCore) Intel(R) Core(TM) i7-

10510U CPU @ 1.80GHz 2.30 GHz, 16 GB RAM, 64 bit system, Windows 10.

A Case-Based Approach for Workflow Flexibility by Deviation 11

traces. Each query is simulated as a trace replay several times with different
parameters. The simulation produces an event log that is analysed concerning
the assumed hypotheses. The parameters include:

– mode of workflow engine (a⃝- c⃝), which determines how work items are com-
puted after each task

– size of case base (10/50/90 %)
– type of query (+⃝/ -⃝), positively rated queries are simulated for the ex-

perienced and inexperienced process participants, whereas negatively rated
queries are simulated for the non-conforming process participant.

– type of process participant ((I)/(II)/(III))

Experienced To evaluate the utility for the experienced process participant,
a replay of the cases in the test set is simulated as presented in Fig. 5. For

Workflow
Engine

Experienced Total List
of Valid
Cases

10%

Query

Number of
Miscontrols

Simulation

Process

Participant

Test

A
B
C

Work

List

∈? ∈? ∈?

Replay
10%

A
B
C

A
B
CTrain

Case
Base

50%

90%

Fig. 5. Simulation of the Experienced Process Participant

the experienced process participant, the exact trace is replayed for each query.
During this trace replay, for each task that is replayed and added to the de
facto workflow, it is checked if it is contained in the proposed work items of the
workflow engine. When the trace replay terminates, the utility for experienced
process participants is computed on the basis of the number of miscontrols.

Inexperienced The simulation of the inexperienced process participant is visu-
alized in Fig. 6. In a first step, the query workflows are re-enacted as trace replay.
For this purpose, the constraint-based workflow engine is used as ideal workflow
execution reference using the simple model as input. The point of investigation
concerning utility starts when a deviation occurs, in terms of a task in the replay
that is not part of the work items proposed on the basis of the simple model.
Then, the deviation handling modes of the workflow engine are activated and the
replay is completed following the suggestions of the worklist (see blue-coloured
nodes of Replay in Fig. 6). Work items are picked randomly. When the worklist

12 L. Grumbach, R. Bergmann

Inexperienced

Constraint-Based
Workflow Engine

Total List
of Valid
Cases

10%

Query

Edit
Distance

Simulation

Process

Participant

Test

A
B
C

Work

List

∈?

yes

∈?

no

Replay

A
B
C

Simple Model

Workflow
Engine

A
B
C

Work

List

A
B
C

activates ∈ ∈

10%

50%

90%

Train

Case
Base

Fig. 6. Simulation of the Inexperienced Process Participant

is empty, the workflow instance concludes. This emerging workflow instance can
be rated considering its similarity based on the edit distance compared to the
total list of valid cases resulting in a utility value.

Non-Conforming The non-conforming process participant executes workflow
instances with unknown deviations. Thus, the simulation is not based on the

Non-Conforming

Constraint-Based
Workflow Engine

Total List
of Valid
Cases

Query

Edit
Distance

Simulation

Process

Participant

Test

A
B
C

Work

List

∈?

yes

∈?

no

Replay

A
B
C

Simple Model

Workflow
Engine

A
B
C

Work

List

A
B
C

activates ∈ ∈

List of
Negative

Cases -

10%

50%

90%

Train

Case
Base

Fig. 7. Simulation of the Non-Conforming Process Participant

test set of the total list of valid cases that resulted from the extended workflow

A Case-Based Approach for Workflow Flexibility by Deviation 13

model, but the regarded query workflows are negative cases that were generated
on the basis of a manipulated simple workflow model (see Fig. 7). The simulation
itself is done in the same way as for the inexperienced user. Here, the resulting
similarity value can be compared to the edit distance of the original query and
the improvement can be quantified, which leads to the utility assessment.

4.4 Results

In summary, 31416 trace replays resulted from the experiment in which the
process participants were simulated with the previously described parameters.
The replayed workflows contained ten tasks on average, at maximum 26 and at
least two tasks. The resulting average utility values are presented in Fig. 8.

Fig. 8. Average Utility Values for the Different Types of Process Participant and for
Different Modes of the Workflow Engine (CWE = Constraint-Based Workflow Engine)

Considering the resulting traces of the experienced process participant, the
number of miscontrols ranges from 0 to 11, with an average of four miscontrols.
Referring to the derived utility values, the null adaptation based on a retrieval
with the SWA shows the most conformance with the traces with an average
value of 85 % of tasks that were proposed by the workflow engine, whereas this
holds for only 43 % on average when computing the worklist on the basis of
the constraint-based workflow engine.4 The utility value for the null adaptation
with DTW lies in between. Hence, hypothesis H1 is confirmed for both null
4 The poor performance of the constraint-based workflow engine can be explained

due to the differing inputs of the methods. The only input for the constraint-based
approach is the simplified workflow model with a reduced set of tasks compared to
the extended model. Consequently, work items are only derived from this reduced

14 L. Grumbach, R. Bergmann

adaptation variants, as the workflow traces are largely compliant (> 50 %) with
the proposed work items, which verifies a great support for the experienced
process participants.

Considering the results for the inexperienced process participant, the perfor-
mance is similar. With an average value of 0,87 and 0,97 for both null adaptation
variants, the utility is high and consequently, hypothesis H2 is confirmed for
those two methods. In contrast, the constraint-based workflow engine performs
not as good with an average value of 0,7.

For the non-conforming process participants the results differ significantly,
foremost of the constraint-based workflow engine. Both null adaptation variants
with either the SWA or DTW yield overall high utility values around 0,5 and
higher. The constraint-based workflow engine mostly leads to a negative utility
value, which means it is tending to increase the edit distance slightly, resulting in
an impairment of the support for the non-conforming process participant, as the
original trace is more similar to the most similar valid workflow. Consequently,
hypothesis H3 can be confirmed for both null adaptation methods, but is denied
for the constraint-based workflow engine.

The case-based modes of the workflow engine outperform the constraint-
based one for each type of process participant, confirming hypothesis H4.

5 Conclusion

We presented an approach for workflow flexibility that allows for supporting al-
ternatives when facing deviations during workflow execution. On the one hand
the workflow can be controlled through a constraint-based workflow engine that
uses several domain-independent strategies for conflict resolution, on the other
hand the case-based deviation management on the basis of a time-series simi-
larity measure and two null adaptation variants integrated experiential knowl-
edge for the determination of work items. The experimental evaluation showed
promising results and an improvement of utility when applying the null adapta-
tion methods in the exemplary domain and simulated environment.

In future work, the null adaptation variants could be enhanced through
considering the edit steps similar to trace-based reasoning [10]. Moreover, we
developed an approach based on generative adaptation that includes the con-
straint net in the reuse phase in order to improve flexibility through a transfer
of relational task dependencies instead of fixed task positions [5]. However, the
proposed approach did not perform well and needs a further elaboration and
revision. Furthermore, the evaluation needs to be extended to other domains
and real-world scenarios to show the general applicability.

Acknowledgements. This work is funded by the Federal Ministry for Eco-
nomic Affairs and Climate Action (BMWK) under grant no. 22973.

set, while all additional tasks are not part of the build CSP and therefore cannot
be part of the solution. In contrast, both null adaptations rely on the experiential
knowledge in form of workflow traces, which includes all tasks of the extended model.

A Case-Based Approach for Workflow Flexibility by Deviation 15

References
1. van der Aalst, W.M.P.: Business process management: a comprehensive survey.

ISRN Software Engineering pp. 1–37 (01 2012)
2. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm

for business process support. Data Knowl. Eng. 53(2), 129–162 (2005)
3. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic

workflows. Inf. Syst. 40, 115–127 (2014)
4. Berndt, D.J., Clifford, J.: Using Dynamic Time Warping to Find Patterns in Time

Series. In: Fayyad, U.M., Uthurusamy, R. (eds.) Knowledge Discovery in Databases:
Papers from the 1994 AAAI Workshop, Seattle, Washington, USA, July 1994.
Technical Report WS-94-03. pp. 359–370. AAAI Press (1994)

5. Grumbach, L.: Flexible Workflows - A Constraint- and Case-Based Approach.
Ph.D. thesis, University of Trier, Germany (2023)

6. Grumbach, L., Bergmann, R.: SEMAFLEX: A novel approach for implementing
workflow flexibility by deviation based on constraint satisfaction problem solving.
Expert Syst. J. Knowl. Eng. 38(7) (2021)

7. Gundersen, O.E.: Toward Measuring the Similarity of Complex Event Sequences in
Real-Time. In: Díaz-Agudo, B., Watson, I. (eds.) Case-Based Reasoning Research
and Development - 20th International Conference, ICCBR 2012, Lyon, France,
September 3-6, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7466,
pp. 107–121. Springer (2012)

8. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and re-
versals. Soviet physics. Doklady 10, 707–710 (1965)

9. Malburg, L., Brand, F., Bergmann, R.: Adaptive management of cyber-physical
workflows by means of case-based reasoning and automated planning. In: Sales,
T.P., Proper, H.A., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds.)
Enterprise Design, Operations, and Computing. EDOC 2022 Workshops - IDAMS,
SoEA4EE, TEAR, EDOC Forum, Demonstrations Track and Doctoral Consor-
tium, Bozen-Bolzano, Italy, October 4-7, 2022, Revised Selected Papers. Lecture
Notes in Business Information Processing, vol. 466, pp. 79–95. Springer (2022)

10. Mille, A.: From case-based reasoning to traces-based reasoning. Annu. Rev. Con-
trol. 30(2), 223–232 (2006)

11. Rietzke, E., Maletzki, C., Bergmann, R., Kuhn, N.: Execution of knowledge-
intensive processes by utilizing ontology-based reasoning. J. Data Semant. 10(1-2),
3–18 (2021)

12. Sakoe, H., Chiba, S.: Dynamic Programming Algorithm Optimization for Spoken
Word Recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing
26(1), 43–49 (1978)

13. Schake, E., Grumbach, L., Bergmann, R.: A Time-Series Similarity Measure for
Case-Based Deviation Management to Support Flexible Workflow Execution. In:
Watson, I., Weber, R.O. (eds.) Case-Based Reasoning Research and Development
- 28th International Conference, ICCBR 2020, Salamanca, Spain, June 8-12, 2020,
Proceedings. Lecture Notes in Computer Science, vol. 12311, pp. 33–48. Springer
(2020)

14. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: Process
Flexibility: A Survey of Contemporary Approaches. In: Dietz, J.L.G., Albani, A.,
Barjis, J. (eds.) Advances in Enterprise Engineering I, 4th International Workshop
CIAO! and 4th International Workshop EOMAS, held at CAiSE 2008, Montpel-
lier, France, June 16-17, 2008. Proceedings. Lecture Notes in Business Information
Processing, vol. 10, pp. 16–30. Springer (2008)

16 L. Grumbach, R. Bergmann

15. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: To-
wards a Taxonomy of Process Flexibility. In: Proceedings of the Forum at the
CAiSE’08 Conference, Montpellier, France, June 18-20, 2008. pp. 81–84 (2008)

16. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of molecular biology 147(1), 195–197 (1981)

	A Case-Based Approach for Workflow Flexibility by Deviation

