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Abstract. Cells are essential to life because they provide the functional,
genetic, and communication mechanisms essential for the proper func-
tioning of living organisms. Cell segmentation is pivotal for any biological
hypothesis validation/analysis i.e., to get valuable insights into cell be-
havior, function, diagnosis, and treatment. Deep learning-based segmen-
tation methods have high segmentation precision, however, need fully
annotated segmentation masks for each cell annotated manually by the
experts, which is very laborious and costly. Many approaches have been
developed in the past to reduce the effort required to annotate the data
manually and even though these approaches produce good results, there
is still a noticeable difference in performance when compared to fully su-
pervised methods. To fill that gap, a weakly supervised approach, PACE,
is presented, which uses only the point annotations and the bounding
box for each cell to perform cell instance segmentation. The proposed
approach not only achieves 99.8% of the fully supervised performance,
but it also surpasses the previous state-of-the-art by a margin of more
than 4%.

Keywords: cell segmentation · weakly supervised · point annotation ·
deep learning.

1 Introduction

Cells are the building blocks that make up all living organisms, from uncom-
plicated single-celled bacteria to complex multi-cellular organisms like humans.
They provide the functional, genetic, and communication mechanisms essential
for the proper functioning of living organisms. Cell segmentation is a key tool
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for studying numerous aspects of cellular biology, and it allows researchers to
study cell migration, cell differentiation, cell proliferation, cell physiology, gene
expression patterns, and cell-cell communication in detail. Over the last decade,
significant progress in deep learning-based (DL) approaches [15, 4, 7–9, 14, 16]
for cell segmentation has been achieved. In a fully supervised setting, DL ap-
proaches require fully annotated data for training, with the boundary of each cell
defined by the field experts. Manually defining the boundary of each cell in the
microscopic images is very laborious and costly. In the natural image datasets
like COCO [12], it takes an average of 79.2 seconds to draw a full mask for each
object whereas the bounding box for each object takes only 7 seconds, which
makes it 11 times faster than annotating the boundary of each object [13].

(a) Fully Supervised (b) Weakly Supervised (4-point)

Fig. 1: Fully supervised (a) vs. weakly supervised (b) example. The fully
supervised method needs a full mask, whereas the presented weakly supervised
approach, PACE, needs only the bounding box and the point annotations. The
blue and red points represent whether the point lies on the cell or outside,
respectively.

In the microscopic image analysis domain, the LIVECell dataset [4] is among
the largest and most comprehensive datasets in cell biology research. It contains
more than 1.6 million cells with an average cell density per image higher than
any other publically available datasets in the cell biology research domain i.e,
313, which is almost 55 times more than the EVICAN[14] dataset. Annotating
cells in microscopic images is more challenging than annotating objects in natural
images due to the smaller scale, higher complexity, greater variability, and higher
degree of noise in the images. Manually annotating the boundary of each cell in
the image in the LIVECell dataset takes 46 seconds on average. Mask annotation
time and complexity depend on cell culture morphology and density. Cell culture
BV2 contains up to three thousand cells in some images, packed densely together,
which makes it very hard for even the experts to identify the boundaries of the
cells.
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Fig. 2:Annotation time for different point-supervision on the LIVECell
dataset. Labeling as many as 4 points per cell instance instead of the fully
supervised (segmentation mask) annotation takes 23.04% of the total time spent
on annotating the full mask for each cell and is 4.34x faster.

There is a significant amount of unlabeled cellular data available in the cell
biology domain that has not been annotated for cell instance segmentation.
Without annotations, this data cannot be used to train supervised DL models
for cell instance segmentation. This means that the full potential of the data
cannot be realized, as it is not being used to improve the accuracy and efficiency
of cell segmentation algorithms. That is the reason why there is a need for a
weakly supervised approach to perform cell segmentation and minimize the time
and expert knowledge required in the annotation of data for the fully supervised
methods. To address this issue, this paper presents a weakly supervised approach
for cell segmentation, PACE, which requires only the bounding box and point
annotations inside the bounding box for each cell to perform the task of cell
segmentation. Figure 1 demonstrates the difference in the annotation required
for the fully supervised methods 1a and the proposed weakly supervised method
1b. For the proposed weakly supervised, the first step is drawing the bounding
boxes which take around ∼ 7 seconds per cell. After that random points are
generated automatically inside the bounding boxes and the annotator only has
to identify whether the point lies on the cell or outside, which takes ∼ 0.9
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seconds. Fig. 2 provides insights into the annotation time required for different
point supervision methods compared to the fully supervised method. Considering
just one point for training saves us more than 82% (5.2x faster) of the total time
required in labeling the data for the fully supervised method. Similarly, 23.04%
(4.34x faster) and 30.87% (3.24x faster) of the total time spent on the annotation
of the fully supervised method is needed for 4- and 8-points respectively. The
main contributions of this study are as follows:

1. An end-to-end pipeline for weakly supervised point-based cell segmentation,
PACE, using Cascade Mask R-CNN [1], Feature pyramid Network [11] with
ResNeSt-200 [17], and bilinear interpolation [3].

2. Evaluation of the proposed approach using different point labels to examine
the impact on the performance. Achieved 99.8% of the fully supervised per-
formance using PACE with 8-point labels with a significant reduction in the
time required for data annotation.

3. Outperformed the state-of-the-art method, Point2Mask [10], by a margin of
4.3%.

2 Related Work

Many different deep learning-based approaches [8, 7, 9, 16, 14] have been devel-
oped using the EVICAN [14] and the LIVECell dataset[4]. The Anchor-based
method reported in the LIVECell paper achieved 47.89% mask mAP. How-
ever, the annotations required for training deep learning models are often time-
consuming and challenging to obtain. To address this issue, weakly supervised
or semi-supervised learning approaches have been proposed to reduce the an-
notation burden. Weakly supervised approaches like image tags [18], points [2],
and missing annotations [5] have been proposed.
Khalid et al. (2022) [10] proposed Point2Mask, an approach for cell segmenta-
tion using the bounding box and the points instead of the full mask. Point2Mask
achieved 99.2% (43.53%) of the fully supervised performance (43.90%) using just
6-point labels, saving more than 70% of the time required in annotating the full
masks for the cells in the LIVECell dataset. Point2Mask used Mask R-CNN with
ResNet-50.

3 PACE: The Proposed Approach

Fig. 3 provides a system overview of PACE. The proposed method is based on
Cascade Mask R-CNN [1], Feature Pyramid Network [12], ResNeSt-200 [17] and
Deformable Convolution. The proposed pipeline is composed of three blocks.

3.1 Backbone

The purpose of the backbone in the proposed method is to extract feature maps
from the input image at different scales. The backbone is composed of Feature
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Fig. 3: System overview of the PACE pipeline for weakly supervised
cell segmentation. The input image is passed to the proposed pipeline and
the output image with cell detection and segmentation is produced.

Pyramid Network (FPN) [11] along with ResNeSt-200 [17]. FPN consists of a
bottom-up pathway and a top-down pathway. The bottom-up pathway extracts
feature maps from the input image at different scales using a series of convolu-
tional layers. ResNeSt-200 with deformable convolution is used as a feed-forward
CNN architecture in the bottom-up pathway of the proposed approach. The top-
down pathway merges feature from the bottom-up pathway using lateral con-
nections and upsampling with features from higher-resolution layers to create a
feature pyramid.

3.2 Region Proposal Network

Multi-scale features from the FPN are further processed by the Region Proposal
Network (RPN), which detects the regions that contain cells and match them
to the groundtruth. The matching is done by generating anchors on the input
image. After the generation of anchor boxes, the next step is to associate the
groundtruth bounding boxes with the generated anchors. The anchors generated
are then matched to the groundtruth by taking Intersection over Union (IoU)
between anchors and groundtruth. If IoU is larger than the defined threshold of
0.7, the anchor is linked to one of the groundtruth boxes and assigned to the
foreground. If the IoU is greater than 0.3 and smaller than 0.7, it is considered
background and otherwise ignored.

3.3 Prediction Head

At the prediction head, we have groundtruth boxes, proposal boxes from RPN,
and feature maps from FPN. The job of the prediction head is to predict the
class, bounding box, and binary mask for each region of interest. We are using
a 3-stage Cascade Mask R-CNN [1] as the prediction head, which is an exten-
sion of Mask R-CNN [6] with the addition of cascade stages to further improve
the segmentation performance. Cascade Mask R-CNN addresses the problem of
making predictions that are more accurate on a pixel level. The architectures
like Mask R-CNN usually malfunction while accurately detecting objects of vari-
able quality and size in an image. This is mainly because the models are trained
using a single IoU threshold i.e., 0.5, meaning that the prediction which has
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Fig. 4: PACE weak segmentation supervision illustration. For a 7x7 pre-
diction mask on the regular grid (green color indicates foreground cell predic-
tion), the predictions are obtained at the exact location of the groundtruth
points with bilinear interpolation. Blue and red points indicate cell and back-
ground groundtruth points, respectively. The cell contour line is for illustration
only.

over 50% match with the groundtruth will be regarded as positive samples. This
can cause the model to create inaccurate proposals. To address this problem,
Cascade Mask R-CNN presents a multi-stage network with the IoU threshold
increasing for each stage i.e., 0.5, 0.6, and 0.7 to refine the predictions. A mask
branch is added in the final stage parallel to the box branch, which is composed
of a small Fully Convolutional Network (FCN) to predict a segmentation mask
for each RoI in a pixel-to-pixel manner to achieve the task of instance segmen-
tation.
In fully-supervised training, the full mask for each cell is available as the ground-
truth; whereas in the proposed approach only the point labels are available as the
groundtruth for training. The fully supervised method is trained by extracting
a matching regular grid of labels from the groundtruth full mask. In contrast,
the proposed approach uses point supervision instead of mask supervision. Pre-
dictions are approximated in the locations of the groundtruth points from the
predictions on the grid using bilinear interpolation (see Fig. 4)[3]. When the
prediction and the groundtruth labels are on the same point, the loss can be
calculated similarly to the full supervision.
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4 Dataset

In the cell biology domain, there exist numerous publically available datasets to
facilitate cellular research. Among these datasets, LIVECell [4] dataset has been
chosen for this study due to its size and quality. The LIVECell dataset is among
the largest and most comprehensive datasets in cell biology research, comprising
more than 1.6 million cells in 5,239 images. LIVECell dataset consists of eight
morphologically distinct cell cultures, which makes it diverse and challenging.
The average cell density in the LIVECell dataset is also very high i.e., 313 cells
per image, which is almost 55 times more than the EVICAN [14] dataset.
For the training of the proposed pipeline, the full masks are discarded and re-
placed with different point labels. In order to analyze the impact of different
point labels on the segmentation performance, six different point labels (1, 2, 4,
6, 8, 10) are generated automatically and randomly for each cell of the training
data. The point can either be on the cell (‘1’) or anywhere inside or on the edge
of the bounding box (‘0’).

5 Evaluation Metrics

Standard COCO evaluation protocol [12] is adapted to evaluate the performance
of the proposed weakly supervised method with the same modification of the area
ranges and the maximum number of detections as reported in [4]. For the eval-
uation, the mean average precision for both object detection and segmentation
tasks at different IoU thresholds of 0.5 (mAP50), 0.75 (mAP75), and 0.5:0.95 in
the steps of 0.05 (mAP) is reported. To identify the performance of the model
on objects of varied sizes, we have also included mAP for different area ranges.

6 Experimental Setup

The performance of the proposed weakly supervised approach, PACE, and the
state-of-the-art (SotA) method, Point2Mask [10], have been reported along with
their fully supervised counterparts using the LIVECell dataset. For point-super-
vised weak cell segmentation, six different training experiments are reported for
PACE and Point2Mask with 1-,2-,4-,6-,8-, and 10-point labels.
Training for both methods use the same settings with a learning rate of 0.02,
and a momentum of 0.9 using a stochastic gradient descent-based solver. A 3x
training schedule is used for the training of both methods. Anchor sizes and
aspect ratios were set to 8, 16, 32, 64, 128, and 0.5, 1, 2, 3, 4 for all the settings.
For data augmentation, images are flipped horizontally on a random basis to
reduce the risk of over-fitting. All training used multi-scale data augmentation,
meaning that image sizes were randomly changed from the original 520×704
pixels to size with the same ratios, but the shortest side was set to one of (440,
480, 520, 580, 620) pixels.
The checkpoints selection for each training was based on the validation average
precision, with 4,000 being chosen for 1-, 6-, and 10-point training, 4,500 for
2-point, 3,000 for 4-point, and 5,000 for 8-point training.
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Table 1: Detection and segmentation average precision scores on differ-
ent IoU thresholds and area range for full mask supervision and N -point super-
vision using different weak supervision methods i.e., Point2Mask[10] and the
proposed method, PACE. The best and the second-best results for each method
are represented in green and blue color, respectively.

AP AP50 AP75 APs APm APl
Method Supervision

Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg.

Full mask 43.12 43.90 78.94 78.07 43.26 45.75 44.31 42.30 43.01 43.33 47.01 51.92
1-point 42.67 42.37 78.71 77.58 42.46 42.96 43.91 41.33 42.16 41.37 46.19 48.64
2-points 42.75 42.86 78.49 77.62 42.81 43.79 43.95 41.53 42.81 42.30 46.61 50.38
4-points 43.01 43.17 79.50 77.91 42.96 44.60 43.97 41.68 43.07 42.77 47.24 51.40
6-points 43.32 43.53 79.69 78.18 43.31 44.93 44.54 42.06 43.31 43.31 46.97 51.52
8-points 42.97 43.41 78.86 78.00 43.18 44.83 43.95 41.83 42.54 42.77 46.94 51.44

Point2Mask
[10]

10-points 42.93 43.40 78.71 77.97 43.10 44.81 44.12 41.80 42.81 43.04 47.01 51.65

Full mask 48.43 47.89 81.44 80.80 51.41 51.64 48.50 45.75 49.49 48.33 54.18 56.94
1-point 48.87 47.54 81.55 80.71 52.11 51.07 48.73 45.48 48.98 48.00 53.47 55.72
2-points 48.54 47.45 81.65 81.03 51.67 50.87 48.66 45.55 48.74 47.88 53.26 55.54
4-points 48.56 47.73 81.58 80.89 51.83 51.21 48.26 45.28 49.86 48.60 54.75 57.33
6-points 47.81 47.24 81.21 80.60 50.33 50.65 47.47 44.50 48.70 48.18 54.48 56.86
8-points 48.51 47.81 81.69 80.88 51.86 51.74 48.40 45.47 48.66 48.39 54.02 56.68

PACE

10-points 48.18 47.68 81.26 80.76 51.27 51.53 48.12 45.40 48.68 48.22 53.59 56.77

Results Table 1 shows the overall detection and segmentation average pre-
cision scores for Point2Mask[10] and PACE on the LIVECell dataset. For the
full mask supervision setting, segmentation AP scores of 43.90% and 47.89%
for Point2Mask and PACE, respectively. In the case of 1-point supervision, the
proposed approach, PACE, achieves an improvement of over 5% compared to
Point2Mask. The performance of PACE also surpasses Point2Mask for higher
levels of supervision. Specifically, for 2-, 4-, 6-, 8-, and 10-points, PACE outper-
forms Point2Mask by margins of 4.5%, 4.6%, 3.7%, 4.4%, and 4.3%, respectively.

7 Analysis and Discussion

In this section, we present and discuss the results of our proposed point-supervised
pipeline for cell segmentation and compare it with the state-of-the-art method,
Point2Mask[10]. Results in Table 1 and Fig. 5 suggest that for 6 different point
labels used for training, we have achieved 98.6% to 99.8% of the fully supervised
performance. Even with just 1-point label per cell instance (P1), we were able to
achieve 99.3% of the fully supervised performance, which shows that by saving
almost 83% of the time spent on full mask annotations, we can still achieve the
segmentation result close to the fully supervised training. For 4-, and 10-point
labels, 99.7% and 99.6% of the fully supervised performance are achieved. The
best performance is observed for the 8-point label with a segmentation mAP
score of 47.81%, which is 99.8% of the fully supervised performance.
In comparison to the SotA i.e., Point2Mask, PACE outperforms the best per-
forming 6-point supervision (P6) with just 1-point supervision (P1) by a margin
of 4%. Point2Mask achieved 99.16% of the fully supervised performance with
6-point labels, whereas, PACE achieves 99.83% of the LIVECell Anchor-based
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Fig. 5: Training with different numbers of points and full mask for
Point2Mask[10] and PACE. Point2Mask results are shown in orange triangles
and PACE results are shown in blue stars. PACE trained on LIVECell with
as few as 1 labeled point per cell instance (P1) outperforms the best result of
Point2Mask trained with 6 points (P1) by a margin of 4%. The best performance
of PACE is seen for (P8) with Mask AP score of 47.81%.

[4] fully supervised method with 8-point labels. It shows that with only a 0.17%
loss in performance, we can save almost 70% of the time spent on full mask
annotations. With just a 1-point label (P1), Point2Mask achieved 96.51% of the
fully supervised performance, whereas, the proposed method achieves 99.27%.
Fig. 6 displays the comparison results of inference using the Point2Mask and
PACE models on test images. These models were trained using different num-
bers of point annotations. Point2Mask results are depicted in the left column,
while the PACE results are represented in the right column. The solid yellow
lines indicate the groundtruth mask for each cell, while the dotted red lines
represent the predictions made by the model. The rows colored in red, gray,
and blue represent the inference results obtained from models trained with 2, 6,
and 8 points, respectively. The label ”AP50” displayed on top of each prediction
sub-image denotes the segmentation average precision score at the IoU threshold
of 0.5. The top row represents the results for the models trained with 2-point
labels. The inference result of the Point2Mask model reveals some instances of
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Point2Mask [10] PACE
AP50 = 79.1 AP50 = 85.3

AP50 = 82.2 AP50 = 86.8

AP50 = 77.2 AP50 = 88.0

2-point 6-point 8-point

Fig. 6: Inference results using different point labels for Point2Mask [10] and
the proposed approach, PACE. The Point2Mask and PACE results are shown
in the left and right columns, respectively. Groundtruth masks are represented
by solid yellow lines while dotted red lines show the predictions made by the
models. The red, gray, and blue rows represent the inference results obtained
from the models trained on 2, 6, and 8-point annotations, respectively. Some
cell instances where Point2Mask failed and PACE achieved better segmentation
results are also highlighted.

false positives and splitting of a large cell into two. In contrast, the proposed
approach, PACE, exhibits better performance in such cases. To provide a clearer
picture of the results, specific parts of the images where the SotA Point2Mask
model failed to segment cells accurately were zoomed in. It can be observed that
PACE is able to segment these specific parts of the images with more precision.
The middle row (colored in gray) shows the results obtained from the models
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trained with 6-point labels. It is evident that the proposed weak cell supervi-
sion approach performs relatively well with an AP50 score of 86.8. The last row
depicts the inference results for the model trained with 8-point labels. PACE
outperforms Point2Mask, as the latter segments two cells as one in one instance,
while PACE correctly identifies them as two separate cells. Both methods ex-
hibit some false positives, and in a few cases, the groundtruth is unavailable for
certain cells.
The proposed approach has enabled us to achieve performance that is close
to full supervision while significantly reducing the time required to annotate
the data compared to full mask annotation. Results indicate that even with 1-
point supervision during training, we can achieve over 99.3% of the performance
achieved with full supervision. Moreover, the proposed approach can also reduce
the level of expertise required from biologists to establish cell boundaries. By
reducing the time and effort required for data annotation, the proposed method
allows for the analysis of more data in a shorter amount of time. The proposed
approach can be scaled up to larger and more complex datasets without a cor-
responding increase in the amount of manual labor and expertise required for
data annotation. This increased efficiency in data analysis could lead to a better
understanding of biological and medical phenomena, potentially leading to the
development of new treatments and diagnostic tools.

8 Conclusion

PACE provides an improved approach for weakly supervised cell segmentation
using point labels for training instead of the full mask. With just a 1-point label,
more than 80% of the time spent on full mask annotations can be saved with just
a 0.7% loss in performance compared to the fully supervised method. By utilizing
the results of this study, we have demonstrated that it is possible to decrease the
time and costs associated with fully annotating the data. In addition, we can
also minimize the level of expert knowledge required from biologists to establish
cell boundaries. The proposed point-supervised approach can also potentially
increase the scalability of cell segmentation studies in biology and medicine.
Using the proposed approach, a substantial amount of unlabeled image-based
cellular data can be utilized, which in turn can help in conducting larger-scale
studies and analyses. The proposed approach could further the research in the
field of biology and medicine, potentially leading to new discoveries, as more
data can be analyzed in a shorter amount of time.
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