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Abstract

Recent advances in machine learning, particu-
larly deep learning, have enabled autonomous
systems to perceive and comprehend objects and
their environments in a perceptual subsymbolic
manner. These systems can now perform object
detection, sensor data fusion, and language un-
derstanding tasks. However, there is a growing
need to enhance these systems to understand ob-
jects and their environments more conceptually
and symbolically. It is essential to consider both
the explicit teaching provided by humans (e.g.,
describing a situation or explaining how to act)
and the implicit teaching obtained by observing
human behavior (e.g., through the system’s sen-
sors) to achieve this level of powerful artificial
intelligence. Thus, the system must be designed
with multimodal input and output capabilities to
support implicit and explicit interaction models.
In this position paper, we argue for considering
both types of inputs, as well as human-in-the-loop
and incremental learning techniques, for advanc-
ing the field of artificial intelligence and enabling
autonomous systems to learn like humans. We
propose several hypotheses and design guidelines
and highlight a use case from related work to
achieve this goal.

1. Introduction

Human-centered artificial intelligence (HCAI) is an excit-
ing new area of research that is attracting increasing atten-
tion from researchers of both artificial intelligence (Al) and
human-computer interaction (HCI) (Xu, 2019; Nowak et al.,
2018; Bryson & Theodorou, 2019; Shneiderman, 2020).
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Despite the significant progress that has been made in devel-
oping autonomous systems, these systems still rely heavily
on human operators, whether local or remote, to step in and
assist or take control in situations where the system is unable
to proceed. This highlights the need for HCAI techniques
to promote trust, control, and reliability between users and
machines (Shneiderman, 2020). However, developing and
implementing these concepts remains a challenging and
complex task (Nowak et al., 2018). As a result, there is still
much room for improvement and further research in this
field (Bryson & Theodorou, 2019).

When it comes to multimodal interaction, a variety of ap-
proaches have been explored using early and late data fusion
techniques (Dong et al., 2009; Karpov & Yusupov, 2018).
For example, researchers have studied hand and gaze fu-
sion techniques for interacting with screen-based indoor
systems (Kim et al., 2017; Zhang et al., 2015). In the auto-
motive domain, there has been a focus on controlling the
vehicle and the infotainment system using touch-based ap-
proaches and multimodal combinations of hand gestures,
gaze, and speech (Sezgin et al., 2009; Riimelin et al., 2013;
Fujimura et al., 2013; Roider et al., 2017; NeBelrath et al.,
2016). Furthermore, it is crucial to consider the impact of
cognitive load on driver ability to perform when using these
interfaces and how it affects driving performance (Fuller,
2005; Brown et al., 2020; Islam et al., 2020; Barua et al.,
2020; Solovey et al., 2014), which emphasizes the signifi-
cance of personalization. Thus, we suggest that future work
should focus on building autonomous systems that can learn
and adapt to new situations, such as new classes, domains,
or tasks (Van de Ven & Tolias, 2019; Von Rueden et al.,
2019). This will require shifting the focus from data-driven
learning to interactive learning or human-in-the-loop learn-
ing, where the human plays a crucial role in supporting the
system’s learning process.

The proposed research concept focuses on developing adap-
tive and personalized approaches for human-in-the-loop
learning that will enhance system performance and promote
trust toward a reliable and controllable HCAI, as highlighted
in Figure 1. More specifically, we highlight multiple meth-
ods and techniques for learning-based adapted models uti-
lizing transfer-of-learning and propose some new aspects
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Figure 1. Overview of the envisioned user-centered neuro-symbolic human-in-the-loop learning system. The novice user and the learning
agent (e.g., robot or autonomous vehicle) are in a continuous feedback loop, starting with the user’s demonstrations, then judging the

agent’s output, and providing support through thorough feedback.

for continual learning for future work. Although these ap-
proaches apply to different domains, we focus on the au-
tomotive domain as an example of the rich work on driver
personalization. More specifically, we demonstrate our sug-
gestion on some of our previous work in the field of adaptive
user interaction for the automotive domain (Gomaa et al.,
2020; 2021; Gomaa, 2022; Gomaa et al., 2022; Meiser et al.,
2022; Feld et al., 2019); however, the underlying learning
techniques are valid for other domains as well.

2. Background and related work

Adaptive multimodal interaction combining speech, hand
gestures, and gaze has been a topic of interest for the re-
search community for the last 20 years in multiple domains,
including robotics and automotive applications (Rogers
et al., 2000; Hassel & Hagen, 2005; Janarthanam & Lemon,
2014; Manawadu et al., 2017; Zhang et al., 2015; Neverova
et al., 2015; Gnjatovi¢ et al., 2012). Despite the previ-
ously discussed significant advances in the adaptation of
multimodal interaction, a personalized user-centered ap-
proach is still lacking. Thus, an important goal and factor in
the proposed research work is user-specific personalization
through incremental learning techniques (Van de Ven & To-
lias, 2019; Gepperth & Hammer, 2016). As an example, in
the automotive domain, researchers attempted multimodal
fusion approaches for in-vehicle object selection in multiple
works (Roider & Gross, 2018; Aftab et al., 2020; Sezgin

et al., 2009). However, in-vehicle object referencing ap-
proaches do not generalize directly to outside-the-vehicle
referencing, as the object’s environment is static, limited,
and in close proximity. Consequently, Moniri et al. (Moniri
& Miiller, 2012) studied the single task of outside-the-
vehicle referencing from the passenger seat using pointing,
head pose, and eye gaze. Similarly, Aftab et al. (Aftab et al.,
2021) combined these modalities using a late fusion ap-
proach based on a neural network to reference objects from
a stationary vehicle. While these approaches showed great
promise, they still considered only a subsymbolic method
for adaptation with a focus on data-driven approaches and
did not consider user-specific behavior further.

Several approaches have proposed ways to insert human
knowledge into neural networks as a way of initialization,
to guide network refinement, and to extract symbolic in-
formation from the network (Shavlik, 1994; Von Rueden
et al., 2019). More recent attempts have tried to combine
deep learning with knowledge bases in joint models (e.g.,
for construction and population) (Ratner & Ré, 2018; Adel,
2018). Some work has focused on integrating neural net-
works with classical planning by mapping subsymbolic in-
put to symbolic one, which automatic planners can use (Asai
& Fukunaga, 2018). Others have used Logic Tensor Net-
works to enable learning from noisy data in the presence
of logical constraints by combining low-level features with
high-level concepts (Serafini & Garcez, 2016; Donadello
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et al., 2017). Other approaches include psychologically
inspired cognitive architectures having a goal-directed orga-
nizational hierarchy with parallel subsymbolic algorithms
running at the lower levels and symbolic ones running seri-
ally at the higher levels (Kelley, 2006). While subsymbolic
learning methods, such as neural networks, have shown re-
markable results in fields such as computer vision, NLP, and
NLU, one problem they suffer from is a lack of explainabil-
ity. On the other hand, while symbolic learning is “legible”
by humans, it can lead to combinatorial growth that makes
unfeasible solutions to complex problems (Biiker, 1998).
When combining both types of learning, it could be possible
to obtain advantages while overcoming the disadvantages.
For example, a teacher might teach a robot how to tidy up a
table full of bottles in different stages. In the first stage, the
teacher might guide the robot’s arm, showing it how to clear
one bottle from the table (subsymbolic learning by exam-
ple). In the next stage, when the basic movements have been
acquired, supervised learning can continue through verbal
instructions (symbolic learning by instruction) (Grumbach,
1995).

3. Research Questions and Hypotheses

In line with the previous motivation and related work, the
following research questions were developed to answer pre-
vious challenges from an abstract point of view while focus-
ing on three factors Input features (i.e., Agent World View),
Underlying design aspects (i.e., Multimodal interaction),
and Learning method (i.e., Neuro-symbolic Adaptation and
Continuous Learning). We envision these research ques-
tions as guidelines for future research on human-centered
artificial intelligence.

e Agent World View (RQ1): Which features of the
agent (i.e., autonomous system) and the context (i.e.,
human behavior) can be used to detect and classify
user interaction situations, and which devices are avail-
able to provide them efficiently (e.g., investigating user
behavior as in (Gomaa et al., 2020))?

Given the multitude of sensors available for an au-
tonomous system, possibly dynamic and not perma-
nently available, a specific question will be to select
the right level of granularity and fusion at which it can
be combined with symbolic knowledge. This involves
merging the available context information, both from
sensors and world knowledge, combined with implicit
user input (Knox & Stone, 2009; Cui et al., 2021),
to characterize the situation in a structured way. For
example, in an industry scenario, a worker’s current
task and the available robots would provide such input.
In an autonomous vehicle scenario, knowledge about
other passengers may help interpret the user’s goals
and possible interaction. Based on available plans and

solutions, a system has to estimate the success of a
particular solution.

Multimodal Interaction (RQ2): What aspects of sys-
tem and interface design can be utilized of the given
modalities in terms of fusion techniques, temporal de-
pendencies, and learning models to achieve optimal
performance (e.g., reference detection as in (Gomaa
et al., 2021) and estimation of mental workload in (Go-
maa et al., 2022; Meiser et al., 2022))?

To achieve an end-to-end multimodal fusion frame-
work, it is vital to exhaustively investigate the interac-
tion between the given modalities in terms of perfor-
mance, timing, user behavior, and fusion techniques.
While well-established, widely used data fusion ap-
proaches, such as late- and early-fusion approaches,
are utilized here, more novel and empirical hybrid
approaches should also be considered that combine
heuristics with learning-based data fusion to achieve
optimum performance. Additionally, there exists a
timing dependency (e.g., modalities’ relative onset) be-
tween the modalities that the system can exploit. Thus,
the time frames can be analyzed separately with no
connection, or a pattern could be learned from intra-
(within the modality) and inter- (among the modalities)
dependencies.

Neuro-symbolic Adaptation and Continual Learn-
ing (RQ3): How can the system adapt to the per-
formance of user-specific tasks (Gomaa et al., 2021;
Meiser et al., 2022)? How can the system be designed
to continuously gather feedback from the user (both
implicitly and explicitly) to guarantee constant develop-
ment and enhancement of the underlying algorithms?
How would that affect the system’s reliability and user
trust?

Adaptation can be achieved at the architecture level us-
ing incremental learning (Gepperth & Hammer, 2016).
Transfer learning (i.e., naive fine tuning) faces several
challenges such as forgetting previously learned infor-
mation (i.e., catastrophic forgetting), ever-changing
features (i.e., concept shift), and how fast a model
should be adapted (i.e., stability-plasticity dilemma).
Some solutions have been proposed for each of these
challenges (Schlimmer & Granger, 1986; Polikar et al.,
2001; Von Rueden et al., 2019). For continuous learn-
ing, there is a focus on increasing the number of classes
a neural network can predict, expanding datasets, and
exploring the influence of update intervals and batch
sizes used for adaptation (Kéding et al., 2016; Van de
Ven & Tolias, 2019). To adapt an initial model to a dif-
ferent domain, we find suitable methods in the domain
of incremental learning (Long et al., 2017; Jie et al.,
2011; De Lange et al., 2021).
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Figure 2. Proposed approach for model adaptation to generate personalized models through transfer and incremental learning techniques

from (Gomaa, 2022).

4. Proposed Methodology

The proposed method follows the previously mentioned re-
search questions to propose a multistage approach to reach
an adaptive neuro-symbolic autonomous system with con-
tinuous user feedback (as seen in Figure 1).

The first stage of the proposed plan is to understand the vari-
ances in driver behavior when performing the multimodal
referencing task as in (Gomaa et al., 2020; 2022; Riimelin
et al., 2013). As an example, in the automotive domain,
drivers perform different multimodal gestures to control
the vehicle and query surrounding objects. These individual
differences could be exploited by the system for personaliza-
tion and adaptation through a user-centered design approach.
Drivers could be clustered based on single-modality perfor-
mance, and a switching mechanism could be applied within
the overall system (Gomaa et al., 2020) to maximize overall
performance (i.e., turn gaze detection off for user accompa-
nied by wandering behavior of the eye and thus low accuracy
of gaze detection). Furthermore, understanding the mental
workload patterns of users could be exploited by the system
and also to enhance its performance through model adapta-
tion and personalization (Gomaa et al., 2022). The second
stage would be creating an end-to-end learning-based multi-
modal fusion framework through constant and exhaustive
monitoring of the users through system sensors. This is an
initial step to automate the previously mentioned heuristics
by the system (Gomaa et al., 2021) using hybrid learning
where a pattern could be learned from intra- (within the
modality) and inter- (among the modalities) dependencies.
However, adaptation is an inherently continuous paradigm;
thus, it is considered an ongoing process along the user ob-
servations and the multimodal fusion stages in drivers’ cat-
egorization (i.e., clustering) and hybrid fusion approaches,
respectively. Although model adaptation, in the previous
context, is one alternative to the one-model-fits-all approach,

it still groups users in a particular model (i.e., cluster), con-
stituting a many-models-fits-all approach. However, a more
personalized approach would utilize transfer-of-learning and
incremental learning techniques to eventually reach a single
model or continuously adapting model per user. Figure 2
shows an approach to achieving these personalized models
through incremental learning techniques. The data set is
initially divided into training, validation, and test sets as in
traditional learning approaches. The model is trained on
X participants’ data while the hyperparameters are chosen
and validated on Z participants’ data, and the final model
is tested on Y participants’ data. On the other hand, for
the adaptation approach, each participant’s data from the Y
test set are further split (e.g., equally) into subtrain and sub-
test sets where the model is retrained and fine-tuned on the
user-specific training data to produce personalized model
weights that are optimized for this user. To assess the effect
of this approach, the personalized model is tested on the
same participant sub-test data and compared against other
participants’ sub-test data.

While the previous approaches optimize system perfor-
mance based on current individual behavior, this behavior
could change over time due to situational, emotional, or
mental load variations and learning effects. Thus, a continu-
ous learning approach is considered where the user can give
feedback to the system implicitly (e.g., via dissatisfied looks
or grunting as visual or auditory cues) or explicitly (e.g.,
repeating the given voice command). To achieve this goal,
the study and data collection phase should include different
variations in the situational and mental state for internal
and external validity. Finally, situation-adapting learning
techniques could be further utilized in this context, such
as graph classification and node selection (e.g., Relational
Graph Neural Networks (Jing et al., 2020)), learning from
the driver’s behavior (e.g., Efficient Learning from Demon-
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Figure 3. Clustering drivers’ pointing and gaze behavior based on
the system’s perceived performance (i.e., referencing accuracy)
from (Gomaa et al., 2020).
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Figure 4. RMSE results comparing different personalized models
among themselves (based on the sample weight of the user-specific
data) and against the UBM (i.e., generalized model) from (Gomaa
et al., 2021).

strations (Li et al., 2022)), and learning from the driver’s
feedback (e.g., Implicit Human Feedback Learner (Cui et al.,
2021)).

Since the main focus of this work is on adaptation and
user-specific personalization, Figure 3 and Figure 4 show
examples of related work results focusing on the adaptation
aspect of (Gomaa et al., 2020). Specifically, Figure 3 shows
how drivers’ referencing actions could be clustered based on
pointing and gaze modality performance separately; then,
each cluster is trained independently. Thus, each cluster
model weight would be adapted to the cluster pointing- and
gaze-specific accuracy. This resembles the hybrid-fusion ap-
proach discussed earlier. Similarly, Figure 4 highlights the
results of the incremental learning personalization approach
previously discussed in (Gomaa et al., 2021). It compares
the personalized model subtest data against the average of
the other non-personalized subtest data using the Root Mean
Square Error (RMSE) metric. The figure also highlights fur-
ther enhancement of this personalization approach; it was

noticed that adding the subtrain data of the personalized
participant to the existing generalized model (also called
Universal Background Model (UBM)) data with a 1:1 ratio
is not the optimum solution due to its insignificant contribu-
tion size. Therefore, personalized participant subtrain data
was emphasized (e.g., repeating the data multiple times),
and its ratio increased for the training data X with a ratio
of 1:2, 1:5, etc. until the optimum sample weight could
be determined. While we focus precisely on these results
for the referencing task, the methodology applies to any
regression problem with a similar setup. Thus, it can be
generalized to multiple sensors and multimodal platforms.

5. Conclusion

Although designing user-specific interfaces is a complex
and multifaceted process involving various considerations
that this work cannot entirely describe, our position paper
examines several essential aspects to facilitate this design
process. Specifically, we discuss adapting learning mod-
els, including incremental and transfer learning, to enable
personalized interaction with the system. This work also
emphasizes the importance of system engineering consider-
ations, such as real-time processing and system robustness,
to ensure that user-specific interfaces are reliable and trust-
worthy. This paper highlights important considerations for
future studies focused on human-centered artificial intel-
ligence and trustworthy interfaces. In particular, we em-
phasize the importance of continuous learning and hybrid
learning approaches to enable user-centered design that en-
hances the user experience. By following these guidelines,
researchers can develop personalized and adaptive interfaces
that respond to individual users’ needs and behaviors, ulti-
mately improving their satisfaction and engagement with
the system. Furthermore, future research in this area should
focus on developing frameworks and methodologies to as-
sess the effectiveness of user-specific interfaces and explore
the ethical and societal implications of these technologies.
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