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Overview: We first provide complete implementation de-
tails of our experiments on dark object detection in Ap-
pendix 1.1, face detection in Appendix 1.2, semantic seg-
mentation in Appendix 1.3, and video object detection in
Appendix 1.4. Then, we present the quantitative and qualita-
tive analysis in Appendix 2.1, 2.2, and 2.3. We compare and
visualize the learned features between RetinaNet and Fea-
turized Query R-CNN in Appendix 2.4. We discuss the per-
formance in terms of learned representation and predictions
between our intra-scale feature enhancement network and the
DCENet [12, 18] in Appendix 2.5. The performance compar-
ison between our FeatEnHancer and unsupervised domain
adaptation methods is provided in Appendix 2.6. Finally, in
Appendix 2.7, we discuss the performance-efficiency trade-
off between our FeatEnHancer, Low-Light Image Enhance-
ment (LLIE) approaches, and task-specific state-of-the-art
methods.

1. Implementation Details
1.1. Dark Object Detection

For dark object detection experiments on real-world data,
we adopt RetinaNet [19] as a typical detector and Featurized
Query R-CNN [44] (FQ R-CNN) as an advanced object
detection framework to report results. The implementation of
FeatEnHancer with FQ R-CNN is based on detectron2 [36]
with ResNet-101 [14] as the backbone network pre-trained
with COCO [20] weights. For the training, a batch size of 8
is employed with all the images resized to a maximum scale
of 1333 x 800. Our training follows a 50K scheduler using
ADAMW [23] optimizer with an initial learning rate set to
0.0000025, which is divided by 10 both at 42000 and 47000
iterations. All experiments are carried out on RTX-2080 Ti
GPU.

For RetinaNet, images are resized to 640x 640, and we

train the network using 1 x schedule' in mmdetection [2] (12
epochs using SGD optimizer [28] with an initial learning rate
of 0.001). For evaluation, along with the common practice
of employing mAP@IoU=0.5, we report mAP@IoU=0.5:95
using [20] for completeness. Note that for each object de-
tection framework, we adopt the same settings while repro-
ducing results of our work, baseline, LLIE approaches, and
task-specific state-of-the-art methods.

We compare our FeatEnHancer to several state-of-the-
art LLIE methods, including KIND [46], RAUS [27],
EnGAN [17], MBLLEN [10], Zero-DCE [12], Zero-
DCE++ [12], and state-of-the-art dark object detection
method, MAET [6]. For LLIE methods, all images are
enhanced from their released checkpoints and propagated to
the detector. In case of MAET [6], we pre-train the detector
using their proposed degrading pipeline and then fine-tune it
on both datasets to establish a direct comparison.

1.2. Face Detection

The DARK FACE [41] dataset comprises dark human
faces of various sizes in low-illuminated environments. In
order to capture the tiny human faces, the images are resized
to a maximum of 1333 x 800 and 1500 x 1000 for FQ
R-CNN [44] and RetinaNet [19], respectively. The other
settings and hyperparameters are identical to the Dark Object
detection experiments explained in Appendix. 1.1.

1.3. Semantic Segmentation

The semantic segmentation with FeatEnHancer is im-
plemented using MMSegmentation [4], where the images
are resized to 2048 x 1024 for the training. For direct
comparison with previous state-of-the-art method [39], we
use DeepLabV3+ [3], an encoder-decoder style segmentor
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with ResNet-50 [14] as the backbone for nighttime semantic
segmentation. The backbone is initialized with pre-trained
ImageNet [8] weights, and we use a batch size of 4 for
the training. The SGD [28] optimizer following a 20K
scheduler’ of MMSegmentation [4] is employed with a base
learning rate of 0.01 and a weight decay of 0.0005. For the
direct comparison with the LLIE methods, we enhance all
the images before passing them to the segmentor as done in
Appendix. 1.1. The Mean Intersection over Inion (mloU)
is used to report the segmentation results in comparison to
the baseline, LLIE approaches and existing state-of-the-art
method Xue et al. [39].

1.4. Video Object Detection

Besides object detection and semantic segmentation on
images, we extend our experiments to the video domain to
test the generalization capabilities of the proposed FeatEn-
Hancer. The video object detection under low-light vision is
evaluated on the recently emerged DarkVision dataset [42]
(see Table 1 in the main paper). Although the dataset is not
publicly available yet, we sincerely thank the authors of [42]
for providing prompt access to its subset. To evaluate our
FeatEnHancer under the low-light setting, we take the low-
end camera split on two different illumination levels, i.e., 0.2
and 3.2. For ablation studies, we adopt a 3.2% illumination
level split.

We consider SELSA [35] as our baseline due to its sim-
ple and effective design and impressive performance on
video object detection benchmarks [29, 7]. As the back-
bone network, we use ResNet-50 [14] pre-trained on Im-
ageNet [8]. For the detection, we apply Region Proposal
Network (RPN) [26] on the output of conv4 to generate
candidate proposals on each frame. In RPN, a total of 12 an-
chors with four scales {4, 8,16, 32} and three aspect ratios
{0.5,1.0,2.0} are used. The final 300 proposals are selected
from each frame. In summary, we follow identical experi-
mental settings by following the config of 1x schedule’ in
mmtracking [5].

To establish a direct comparison, we enhance all video
frames first through LLIE methods and feed these frames to
the baseline, as done in Appendix. 1.1. For our method, we
integrate FeatEnHancer in the baseline in an end-to-end
fashion (see Fig. 2 in the main paper). Following stan-
dard practice in video object detection [11, 13, 35], the
mAP@IoU=0.5 is utilized as an evaluation metric to re-
port results. Note that the goal of this experiment is not to
surpass prior state-of-the-art results on dark video object
detection [42]. Instead, the target is to demonstrate the ef-

Zhttps://github.com/open-mmlab/mmsegmentation/
blob/master/configs/_base_/schedules/schedule_20k.
py

3https://github.com/open-mmlab/mmtracking/blob/
master/configs/vid/selsa/selsa_faster_rcnn_r50_
dc5_1x_imagenetvid.py

fectiveness and generalization capabilities of the proposed
FeatEnHancer in the video domain. Furthermore, we believe
that far better results can be attained by incorporating our
FeatEnHancer with better baselines and optimal experimen-
tal configurations.

2. Results and Discussion
2.1. Detailed Results on ExDark

Table I summarizes the exhaustive quantitative analy-
sis, comparing our FeatEnHancer with several LLIE ap-
proaches, including RAUS [27], KIND [46], EnGAN [17],
MBLLEN [10], Zero-DCE [12], Zero-DCE++ [18], and
state-of-the-art dark object detection method MAET [6] on
the ExDark dataset [22]. It is evident that our FeatEnHancer
yields impressive improvements using both object detec-
tion frameworks. Furthermore, we exhibit a comprehensive
qualitative analysis in Fig. I. Despite the visually unappeal-
ing images, the detector equipped with our FeatEnHancer
produces accurate detections compared to other LLIE and
existing state-of-the-art methods. By looking at the first row
of Fig. [, note that while all methods detect the bigger boat,
they all miss the smaller boat. However, our FeatEnHancer,
enriched with hierarchical multi-scale features, conveniently
detects both of the boats. Similarly, bigger and smaller cars
are accurately detected by our method in the same figure.
These architectural innovations contribute to remarkable im-
provements in the baseline and deliver new state-of-the-art
mAPs5, of 86.3 on the ExDark dataset with Featurized Query
R-CNN.

2.2. Detailed Results on DARK FACE

We demonstrate a qualitative comparison of our FeatEn-
Hancer with existing LLIE methods and existing state-of-
the-art dark object detection method on the DARK FACE
dataset in Fig. II. Albeit the darkness and tiny faces, our
FeatEnHancer provides strong visual cues to the detector
and brings maximum gains in the baseline compared to other
methods.

2.3. Detailed Results on ACDC

In Table II, we present a detailed quantitative analy-
sis, comparing our FeatEnHancer with several LLIE ap-
proaches, including RetinexNet [34], DRBN [38], FIDE [40],
KIND [46], EnGAN [17], Zero-DCE [12], SSIENet [45],
and prior state-of-the-art nighttime semantic segmentation
method Xue et al. [39] on the ACDC dataset [30]. The results
show that our FeatEnHancer generates powerful semantic
representations, producing significant boosts in the baseline
performance and leading to a new state-of-the-art mIoU of
54.9. Moreover, we illustrate a detailed visual comparison
in Fig. III. Note that our method produces accurate segmen-
tations in both cases of small objects, such as traffic signs
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Figure I: Visual comparison of FeatEnHancer with several LLIE approaches and a previous state-of-art dark object
detection method on the ExDark dataset. Zoom in for the best view.
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Figure II: Visual comparison of FeatEnHancer with several LLIE approaches and an existing state-of-the-art dark
object detection method on the DARK FACE dataset. Zoom in for the best view.

(second row) and larger objects, such as trains and terrains
(first and fourth row). These extra gains demonstrate the
effectiveness of the hierarchical multi-scale feature learning
and scale-aware attentional feature aggregation schemes in
the proposed method.

2.4. Analysing Features from RetinaNet and Fea-
turized Query R-CNN

During experiments with RetinaNet and Featurized Query
R-CNN on ExDark and DARK FACE datasets, we observe
that our FeatEnHancer brings inferior improvements with
RetinaNet (+0.5 mAP5q), compared to Featurized Query
R-CNN ( +11.8 mAPs5) (see Table I). Therefore, we visu-
alize both the learned hierarchical representations of our
FeatEnHancer and feature activations from the backbone
network (Res4 block) in Fig. IV. Note that an identical back-

bone network of ResNet-50 is employed with both object
detectors. From the figure, one can see that with RetinaNet,
weaker representations are produced by our method, leading
to suboptimal feature extraction, causing inferior gains. On
the other hand, with an improved detector like Featurized
Query R-CNN, our FeatEnHancer produces more meaning-
ful representations, enabling subsequent backbone networks
to extract suitable features. This behaviour is aligned with
our network design which is optimized using a task-related
loss function. Therefore, our FeatEnHancer can be inte-
grated with advanced downstream vision methods to achieve
substantial gains.



Method Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motorbike People Table APS0 AP75 mAP
Ret FQ Ret FQ Ret FQ Ret FQ Ret FQ Ret FQ Ret FQ Ret FQ Ret FQ Ret FQ Ret FQ Ret FQ Ret FQ Ret FQ Ret FQ
Baseline 504 57.1 409 420 342 458 731 739 574 564 452 412 420 394 462 465 506 522 402 367 41.6 428 335 305 721 745 514 441 463 470
RAUS [27] 494 539 379 438 336 425 683 695 536 529 415 426 409 472 410 477 485 481 374 397 398 439 333 443 647 770 441 490 440 481
KIND [46] 494 556 388 460 345 461 724 717 565 578 41.6 480 40.1 484 446 560 508 51.8 390 443 41.0 451 323 474 707 805 496 572 451 515
Zero-DCE++[18] | 50.0 534 398 450 341 444 722 714 566 551 417 469 410 450 442 476 502 504 403 447 404 417 322 444 703 795 50.1 492 452 492
EnGAN [17] 495 551 399 472 337 433 726 745 561 577 420 469 403 492 431 554 501 53.1 388 450 407 458 31.6 49.1 704 80.0 49.7 587 449 519
MBLLEN [10] 50.1 554 38.0 450 338 472 726 726 573 59.6 417 465 414 466 435 526 498 519 406 457 41.0 461 325 477 706 800 490 583 451 510
Zero-DCE [12] 50.8 558 39.6 470 349 452 735 730 567 59.0 402 468 41.0 481 441 539 500 529 395 474 408 465 323 481 7T1.0 806 498 567 452 520
MAET [12] 508 562 39.8 47.8 357 453 745 733 569 594 409 469 417 487 445 543 505 539 397 477 409 467 326 484 718 81.6 498 567 457 524

FeatEnHancer | 51.0 603 41.6 49.1 47.6 537 698 784 542 621 475 521 418

519

41.0 577 345 427 508 458 544 403 469 726 863 514 63.6 464 565

Table I: Detailed comparison of FeatEnHancer with LLIE approaches and existing state-of-the-art dark object detection
method on the ExDark dataset. Here, Ret and FQ represent RetinaNet and Featurized Query R-CNN, respectively. Results
obtained on the commonly used evaluation metrics are highlighted. Our FeatEnHancer consistently boosts the baseline
performance and achieves new state-of-the-art results with Featurized Query R-CNN.
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Figure III: Visual comparison of FeatEnHancer with several LLIE approaches and a previous state-of-art nighttime
semantic segmentation method on the ACDC dataset. Zoom in for the best view.

2.5. Comparing FEN in FeatEnHancer with
DCENet in Zero-DCE [12, 18]

Our intra-scale feature enhancement network (FEN) is
inspired by the enhancement network DCENet employed
in [12] and [18]. However, we incorporate several mod-
ifications, such as learning feature enhancement at multi-
ple scales and scale-aware attentional feature aggregation
schemes. For direct comparison, we exhibit the learned en-
hanced representations from both Zero-DCE, Zero-DCE++
and our FeatEnHancer in Fig. V. All three visualizations are
achieved from identical experimental settings on the ExDark
validation set. It is obvious that the proposed modification
in our FEN produces more meaningful semantic represen-
tations compared to DCENet employed in [12, 18]. Both
Zero-DCE and Zero-DCE++ produce false negatives, such
as missing bicycles and people in the first and third rows,
respectively. However, the scale-aware enhancement in our

FeatEnHancer leads to accurate detections.

2.6. Comparison with Domain Adaptation Methods

Recently some methods [15, 21, 24, 43] have exploited
the unsupervised domain adaption scheme to improve object
detection in challenging environments. These methods are
mainly designed to tackle object detection in harsh weather
conditions such as foggy weather. Furthermore, for training,
they require pre-training on large synthetic datasets (source
dataset) labelled with the same classes that match the classes
of the target dataset. Therefore, we refrain from including
these works [15, 21, 24, 43] when comparing performance
on dark object detection in Table I. Nevertheless, for direct
comparison with results reported in [24], we incorporate
our FeatEnHancer in the identical experimental settings*
(YOLOV3 [25] as a baseline detector) and use the same

4https://github.com/NIvykk/DENet
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Method RO SI BU WA FE PO TL TS VE TE SK PE RI CA TR TA BI mloU
Baseline [37] 90.0 614 742 328 344 457 498 312 688 146 804 271 126 621 00 763 144 45.7
RetinexNet [34] | 89.4 61.0 70.6 30.1 28.1 424 476 257 658 86 773 215 138 548 00 674 82 41.9
DRBN [38] 90.5 615 728 319 325 445 473 272 657 102 765 242 132 554 00 711 119 433
FIDE [40] 90.0 60.7 728 324 341 433 479 261 670 137 78.0 265 58 571 0.0 710 124 43.4
KIND [46] 90.0 61.0 732 319 328 435 427 277 655 133 774 228 8.1 551 00 745 115 43.0
EnGAN [17] 89.7 589 737 328 31.8 447 492 262 673 142 778 250 106 590 00 712 78 43.8
Zero-DCE [12] | 90.6 599 739 32,6 31.7 443 462 258 672 146 791 247 77 594 00 668 139 43.4
SSIENet [45] 89.6 593 725 299 317 454 439 245 667 106 783 228 02 526 0.0 711 5.4 41.4
Xue et al. [39] 932 726 784 438 465 481 511 388 686 149 791 219 22 616 52 852 36.1 49.8
FeatEnHancer | 940 751 78.6 449 416 539 660 499 712 151 827 453 102 725 00 895 43.0 54.9

Table II: Comparing FeatEnHancer with LLIE approaches and existing state-of-the-art nighttime segmentation method
on the ACDC dataset. For brevity, we represent classes {road, sidewalk, building, wall, fence, pole, traffic light, traffic
sign, vegetation, terrain, sky, person, rider, car, truck, train, bicycle} with {RO, SI, BU, WA, FE, PO, TL, TS, VE, TE, SK,
PE, RI, CA, TR, TA, BI}, respectively. Our FeatEnHancer yields remarkable improvements in the baseline, producing new

state-of-the-art results.

10 categories that match with Pascal VOC dataset [9]. We
present the results of this experiment in Table III. Note that
our FeatEnHancer surpasses the previous best method (DE-
YOLO [24] that leverages Laplacian Pyramid [1] to generate
multi-scale features) in this specific experimental setting and
reaches the mAP5q of 53.70.

Methods mAP;5,
Baseline [25] 43.02
MS-DAYOLO [15] | 44.25
DAYOLO [43] 44.62
DSNet [16] 45.31
MAET [6] 47.10
IA-YOLO [21] 49.53
DE-YOLO [24] 51.51
FeatEnHancer 53.70

Table III: Quantitative results of our FeatEnHancer and
existing UDA methods on the ExDark dataset. For direct
comparison, an identical framework of YOLOV3 as the base-
line is adopted. Only 10 classes that match with the Pascal
VOC dataset [9] are used.

2.7. Performance-Efficiency Tradeoff

Table IV compares the performance-efficiency tradeoff
between the proposed FeatEnHancer and LLIE methods and
task-specific previous state-of-the-art approaches. While
Xue [39] and Zero-DCE [12] contain fewer parameters, they
bring sub-optimal gains to the baseline method. On the
contrary, with a slightly more number of parameters, our
FeatEnHancer demonstrates generalizability and robustness
in 4 different downstream vision tasks under low-light con-
ditions. Nevertheless, it is worth mentioning that most of the
parameters come from the proposed scale-aware attentional
feature aggregation module in our FeatEnHancer. We be-
lieve that instead of traditional attention mechanism [32],
incorporating an optimized attentional scheme such as [33]

will further reduce the parameters in our FeatEnHancer. We
leave this for future works to explore.

Methods #Params | mAP5; | mloU
MBLLEN [10] 450K 80.0 -
KIND [46] M 80.5 43.0
EnlightenGAN [17] oM 80.0 43.8
Zero-DCE [12] 79K 80.6 434
Xue et. al [39] 14K - 49.8
MAET [6] 40M 81.6 -
FeatEnHancer 138K 86.3 54.9

Table IV: Comparing the number of parameters in
the FeatEnHancer against LLIE approaches and task-
specific state-of-the-art methods. #Params is the number
of parameters, K and M denote thousands and millions, re-
spectively. mAPs5q is computed on the ExDark dataset, and
mloU values are taken from the ACDC dataset. We take top
competitors of the ExDark and ACDC datasets for compari-
son. For ExDark, results from Featurized Query R-CNN are
adopted.
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Figure I'V: Visualizing enhanced hierarchical representation and backbone features from RetinaNet and Featurized
Query R-CNN. We visualize the output of the final enhanced representation achieved after aggregating multi-scale hierarchical
features. For backbone features, we employ gradcam [31] and illustrate learned features from the last Res4 block in the
ResNet-50 backbone network.
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Figure V: Visual comparison between our feature enhancement network and DCENet proposed in [12, 18]. For
comparison, we illustrate the learned mean of all eight curves from DCENet in Zero-DCE and Zero-DCE++. For our
FeatEnHancer, we visualize the learned aggregated hierarchical feature representation. All methods are incorporated with
Featurized Query R-CNN and trained on the ExDark dataset.
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