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Figure 1: Learned hierarchical representation and enhanced image from our FeatEnHancer. We train our FeatEnHancer
on a downstream object detection task and visualize these images from the validation set. These maps and enhanced images
show that despite producing less visually appealing images, our model enhances task-related features. Best viewed on the
screen.

Abstract

Extracting useful visual cues for the downstream tasks is
especially challenging under low-light vision. Prior works
create enhanced representations by either correlating visual
quality with machine perception or designing illumination-
degrading transformation methods that require pre-training
on synthetic datasets. We argue that optimizing enhanced im-
age representation pertaining to the loss of the downstream
task can result in more expressive representations. Therefore,
in this work, we propose a novel module, FeatEnHancer,
that hierarchically combines multiscale features using multi-
headed attention guided by task-related loss function to cre-
ate suitable representations. Furthermore, our intra-scale
enhancement improves the quality of features extracted at
each scale or level, as well as combines features from differ-
ent scales in a way that reflects their relative importance for
the task at hand. FeatEnHancer is a general-purpose plug-
and-play module and can be incorporated into any low-light
vision pipeline. We show with extensive experimentation that
the enhanced representation produced with FeatEnHancer
significantly and consistently improves results in several low-

light vision tasks, including dark object detection (+5.7 mAP
on ExDark), face detection (+1.5 mAP on DARK FACE),
nighttime semantic segmentation (+5.1 mIoU on ACDC),
and video object detection (+1.8 mAP on DarkVision), high-
lighting the effectiveness of enhancing hierarchical features
under low-light vision.

1. Introduction

Recent remarkable advancements in high-level vision
tasks have shown that given a high-quality image, current
vision backbone networks [20, 15, 12, 32, 31], object de-
tectors [42, 28, 43, 19, 2, 3, 49, 4, 71, 64, 65] and se-
mantic segmentation models [34, 48, 57, 7, 58] can effec-
tively learn desired features to perform vision tasks. Simi-
larly, modern low-light image enhancement (LLIE) meth-
ods [44, 67, 14, 21, 17, 25] are capable of transforming a
low-light image into a visual-friendly representation. How-
ever, a naive combination of the two brings sub-optimal
gains when it comes to high-level vision tasks under low-
light vision.



This work explores the underlying reasons for the low
performance of the combination of LLIE with high-level
vision methods and observes the following limitations: 1)
Although existing LLIE methods push the envelope of visual
perception for human eyes, they do not align with vision
backbone networks [20, 12, 15, 32, 31] due to lack of multi-
scale features. For instance, it is likely that the enhancement
method increases brightness in some regions. However, it
simultaneously corrupts the edges and texture information of
objects. 2) The pixel distribution among different low-light
images may have huge variance owing to the disparity in
less illuminated environments [17, 25, 68]. This increases
intra-class variance in some cases (see Fig. 3, where only
one bicycle is recognized by [17] instead of two bicycles
in the ground-truth). 3) Current LLIE approaches [14, 17,
25, 21, 44, 56, 67] employ enhancement loss functions to
optimize the enhancement networks. These loss functions
compel the network to attend to all pixels equally, lacking
the learning of informative details necessary for high-level
downstream vision tasks such as object pose and shape for
object detection. Furthermore, to train these enhancement
networks, most of them [44, 14, 67, 56] require a set of high-
quality images, which is hardly available in a real-world
setting.

Motivated by these observations and inspired by recent
developments in LLIE [17, 25] and vision-based backbone
networks [15, 32, 31], this paper aims to bridge the gap by
exploring an end-to-end trainable recipe that jointly opti-
mizes the enhancement and downstream task objectives in
a single network. To this end, we present FeatEnHancer, a
general-purpose feature enhancer that learns to enrich multi-
scale hierarchical features favourable for downstream vision
tasks in a low-light setting. An example of learned hierarchi-
cal representation and the enhanced image is illustrated in
Fig. 1.

In particular, our FeatEnHancer first downsamples a low-
light RGB input image to construct multi-scale hierarchical
representations. Subsequently, these representations are fed
to our Feature Enhancement Network (FEN), which is a deep
convolutional network, employed to enrich intra-scale se-
mantic representations. Note that the parameters of FEN can
be adjusted through task-related loss functions, which pushes
the FEN to only enhance the task-related features. This multi-
scale learning allows the network to enhance both global and
local information from higher and lower-resolution features,
respectively. Once the enhanced representations on differ-
ent scales are obtained, the remaining obstacle is to fuse
them effectively. To achieve, this, we select two different
strategies to capture both global and local information from
higher and lower-resolution features. First, to merge high-
resolution features, inspired by multi-head attention in [50],
we design a Scale-aware Attentional Feature Aggregation
(SAFA) method that jointly attends information from differ-

ent scales. Second, for lower-resolution features, the skip
connection [20] scheme is adopted to merge the enhanced
representation from SAFA to lower-resolution features. With
these jointly learned hierarchical features, our FeatEnHancer
provides semantically powerful representations which can
be exploited by advanced methods such as feature pyramid
networks [27] for object detection [43] and instance segmen-
tation [19], or UNet [45] for semantic segmentation [34].

The main contributions of this work can be summarized
as follows:

1. We propose FeatEnHancer, a novel module that en-
hances hierarchical features to boost downstream vi-
sion tasks under low-light vision. Our intra-scale fea-
ture enhancement and scale-aware attentional feature
aggregation schemes are aligned with vision backbone
networks and produce powerful semantic representa-
tions. FeatEnHancer is a general-purpose plug-and-play
module that can be trained end-to-end with any high-
level vision task.

2. To the best of our knowledge, this is the first work
that fully exploits multi-scale hierarchical features in
low-light scenarios and generalizes to several down-
stream vision tasks such as object detection, semantic
segmentation, and video object detection.

3. Extensive experiments on four different downstream
visions tasks covering both images and videos demon-
strate that our method brings consistent and significant
improvements over baselines, LLIE methods and task-
specific state-of-the-art approaches.

2. Related Work

2.1. Enhancing Low-Light Images

Deep learning-based LLIE methods focus on improv-
ing the visual quality of low-light images that satisfies hu-
man visual perception [23, 22]. Most LLIE approaches [14,
44, 56, 67] operate under a supervised learning paradigm,
requiring paired data during training. Unsupervised GAN-
based methods [21] eliminate the need for paired data dur-
ing the training. However, their performance relies on the
careful choice of unpaired data. Recently, zero-reference
methods [17, 25, 68] discard the need for both paired and
unpaired data to enhance low-light images by designing a
set of non-reference loss functions. Inspired by these recent
developments, this work aims to bridge low-light enhance-
ment and downstream vision tasks (such as object detec-
tion [10, 33, 62], semantic segmentation [60, 47], and video
object detection [63]) by enhancing multi-scale hierarchical
features without needing paired or unpaired data to boost
performance.



2.2. Enhancing Low-Light for Downstream Vision
Tasks

These approaches consider machine perception as the cri-
teria for success while enhancing images to improve down-
stream vision tasks. One obvious way to achieve this goal
is to apply the LLIE methods as an initial step [70, 17].
However, this leads to unsatisfactory results (see Table 2, 4,
and 5). Recently, another line of work has explored end-to-
end pipelines, optimizing both enhancement and individual
tasks during training, and our work follows the same spirit.
Face detection. Liang et al. [26] propose an effective
information extraction scheme from low-light images
by exploiting multi-exposure generation. Furthermore,
bi-directional domain adaptation [52, 51] and parallel
architecture that jointly performs enhancement and detec-
tion [37] are presented to advance the research. However,
these approaches are carefully designed to tackle face
detection [62, 53] only and deliver minor improvements
when applied to generic object detection [51]. Contrarily, our
FeatEnHancer is a general-purpose module. It significantly
improves several downstream vision tasks. Hence, we
refrain from comparing our method to architectures only
evaluated for face detection.
Dark object detection. Dark (low-light) object detec-
tion [10, 30] methods have emerged recently, thanks to the
real-world low illumination datasets [33, 39]. IA-YOLO [30]
introduces a convolutional neural network (CNN)-based
parameter predictor that learns the optimal configuration for
the filters employed in the differential image processing
module. Most related to our work is MAET [10], which
investigates the physical noise model and image signal
processing (ISP) pipeline under low illumination and
learns the model to predict degradation parameters and
object features. To avoid feature entanglement, they
impose orthogonal tangent regularity to penalize cosine
similarity between objects and degrading features. However,
owing to the weather-specific hyperparameters in [30] and
degradation parameters in [10], these works rely on large
synthetic datasets to achieve desired performance. Unlike
them, our FeatEnHancer is optimized from the task-related
loss functions and does not require any pre-training on
synthetic datasets mimicking low-light or harsh weather
conditions.
Other high-level vision tasks. Besides face and object de-
tection, recent research has explored high-level computer
vision tasks like semantic segmentation [6, 34]. Xue et
al. [60] devise a contrastive-learning strategy to improve
visual and machine perception simultaneously, achieving
impressive performance on nighttime semantic segmentation
of adverse conditions dataset with correspondences (ACDC)
dataset [47]. Furthermore, DarkVision [63] has emerged re-
cently to tackle video object detection under low-light vision.
In this work, thanks to [47, 63], we apply FeatEnHancer

to semantic segmentation and video object detection under
low-light vision to investigate its generalization capabilities.

2.3. Learning Multi-scale Hierarchical Features

Representing objects at varying scales is one of the
main difficulties in computer vision. Therefore, the work
in this domain goes back to the era of hand-engineered fea-
tures [36, 11, 38, 24]. Modern object detectors [43, 28, 2,
71, 49, 40, 65] exploit multi-scale features to tackle this chal-
lenge. Similarly, multi-scale representations [34] and pyra-
mid pooling schemes [69] have been proposed for effective
semantic segmentation. Moreover, current improvements in
vision-based backbone networks [15, 31, 32] demonstrate
that learning hierarchical features during feature extraction
directly uplifts the downstream vision tasks [19, 57, 2]. How-
ever, the multi-scale and hierarchical structures of CNN have
not been fully explored for low-light vision tasks.

Under harsh weather conditions, DENet [41] employs
Laplacian Pyramid [1] to decompose images into low and
high-frequency components for object detection. Despite
the encouraging results, the multi-scale feature learning in
DENet relies on the Laplacian pyramid, which is suscep-
tible to noise and may produce inconsistencies in regions
with high contrast or sharp edges. Alternatively, aligned
with the multi-scale learning in modern vision backbone
networks [27, 32, 31], our FeatEnHancer employs CNN to
generate multi-scale feature representations, which are fused
through the scale-aware attentional feature aggregation and
skip connections. Our approach is much more flexible and
aligns with downstream vision tasks, boosting state-of-the-
art results on multiple downstream vision tasks.

3. Proposed Approach
The key idea of this paper is to design a general-purpose

pluggable module that strengthens machine perception under
low-light vision to solve several downstream vision tasks
such as object detection, semantic segmentation, and video
object detection. The overall architecture of FeatEnHancer
is exhibited in Fig. 2. Our FeatEnHancer takes a low-light
image as input and adaptively boosts its semantic representa-
tion by enriching task-related hierarchical features. We now
discuss the key components of FeatEnHancer in detail.

3.1. Hierarchical Feature Enhancement

Inspired by the recent improvements in vision-based
backbone networks [15, 31, 32], we introduce the enhance-
ment of hierarchical features through jointly optimizing
feature enhancement and downstream tasks under low-light
vision. Unlike [15, 31, 32], our goal is to extract spatial
features from low-light images and generate meaningful
semantic representations. In order to enhance hierarchical
features, we first construct multi-scale representations from
the low-light input image. Later, we feed these multi-scale
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Figure 2: Network architecture of the proposed FeatEnHancer employed in a downstream vision task. Our FeatEnHancer
takes a low-light image and adaptively boosts its semantic representation by enriching task-related hierarchical features. Zoom
in for the best view.

representations to our feature enhancement network.

Constructing multi-scale representations. We take a low-
light RGB image I ∈ RH×W×C as input and employ
regular convolutional operator Conv(.) on I to generate
Iq ∈ RH

4 ×W
4 ×3 and Io ∈ RH

8 ×W
8 ×3 representing the quar-

ter and octa scale of an input image, respectively. To sum-
marize, it can be written as:

Iq = Conv(I) K = 7, S = 4,

Io = Conv(Iq) K = 3, S = 2,
(1)

where K and S denote kernel size and stride, and H , W ,
and C represent the height, width, and channels of an image.

Feature enhancement network. In order to enhance fea-
tures at each scale, we require an enhancement network that
learns to enhance spatial information important for down-
stream tasks. Inspired by low-light image enhancement net-
works [17, 25], we design a fully convolutional intra-scale
feature extraction network (FEN). However, unlike [17, 25],
our FEN introduces a single convolutional layer at the be-
ginning that generates a feature map F ∈ RH×W×C , where
C is transformed from 3 to 32 by keeping the resolution
(H ×W ) same as the input. Then a series of six convolu-
tional layers with symmetrical skip concatenation is applied,
where each convolutional layer, with K = 3 and S = 1,
is accompanied by the ReLU activation function. We apply
FEN on each scale I , Iq , and Io separately, and obtain multi-
scale feature representations, denoted as F , Fq, and Fo,
respectively. This multi-scale learning allows the network to
enhance both global and local information from higher and
lower-resolution features. Hence, we ignore down-sampling
and batch normalization to preserve semantic relations be-

tween neighbouring pixels which is similar to [17]. However,
we discard the last convolutional layer of DCENet [17] in
our FEN and propagate the final enhanced feature representa-
tions from each scale for the multi-scale feature fusion. Note
that the implementation details of FEN in FeatEnHancer
are independent of the proposed module, and even more,
advanced image enhancement networks such as [68] can be
applied to improve performance. Now, we discuss multi-
scale feature fusion in detail.

3.2. Multi-scale Feature Fusion

Since we already have multi-scale feature representations
(F , Fq , and Fo) from FEN, the remaining obstacle is to fuse
them effectively. Lower-scale features (Fo) contain fine de-
tails and edges. In contrast, higher-resolution features (Fq)
capture more abstract information, such as shapes and pat-
terns. Therefore, naive aggregation leads to inferior perfor-
mance (see Table 6a). Hence, we adopt two different strate-
gies to capture both global and local information from higher
and lower-resolution features. First, inspired by multi-head
attention in [50] that enables the network to jointly learn in-
formation from different channels, we design a scale-aware
attentional feature aggregation (SAFA) module that jointly
attends to features from different scales. Second, we adopt
a skip connection [20] (SC) scheme to integrate low-level
information from Fo and the enhanced representation from
SAFA to obtain the final enhanced hierarchical representa-
tion. Adopting SAFA for merging high-resolution features
and SC for lower-resolution features leads to a more robust
hierarchical representation (see Table 6b). Now, we discuss
SAFA in detail.
Scale-aware Attentional Feature Aggregation. Even
though high-resolution features assist in capturing fine de-



tails, such as recognizing small objects, applying an at-
tentional operation to them is computationally demanding.
Thus, in SAFA, we propose an efficient multi-scale aggre-
gation strategy where enhanced high-resolution hierarchical
features are projected to a smaller resolution prior to atten-
tional feature aggregation. As illustrated in Figure 2, SAFA
transforms F ∈ RH×W×C to Q ∈ RH

8 ×W
8 ×C with two

convolutional layers (K = 7, S = 4;K = 3, S = 2) and
Fq ∈ RH

4 ×W
4 ×C to K ∈ RH

8 ×W
8 ×C with a single convolu-

tional layer (K = 3, S = 2). Note that the weights of the
convolutional layer (K = 3, S = 2) are not shared because,
in addition to down-scaling the high-resolution features, it
serves as an embedding network before computing the at-
tentional weights. Later, Q and K are concatenated to form
the set of hierarchical features Fq+k, which are split into N
blocks along the channel dimension C:

Fn
q+k = Fq+k[:, :, (n− 1)

C

N
: n

C

N
], (2)

where n ∈ {1, 2, ..., N} and N is the total number of atten-
tional blocks. The Fn

q+k ∈ RH
8 ×W

8 × C
N is used to compute

attentional weights W in a single attention block as follows:

Wn
q+k = Fn

q · Fn
k , (3)

W̄
n
q+k =

exp(Wn
q+k)∑L

l=1 exp(Wn
q+k)

, (4)

where Wn
q+k is the attentional weights of Fn

q and Fn
k for n-th

block, and W̄
n
q+k is the normalized form of Wn

q+k. Derived
from the n-th block of normalized attention weights, we
apply weighted sum to compute the n-th block of enhanced
hierarchical representation F̄

n
h ∈ RH

8 ×W
8 × C

N as follows:

F̄
n
h =

L∑
l=1

W̄
n
q+k · Fn

q+k, (5)

now we concatenate all F̄n
h along the channel dimension

to obtain F̄h ∈ RH
8 ×W

8 ×C . Note that although F̄h is the
same size as Q and K, it contains far richer representations,
encompassing information from multi-scale high-resolution
features.

Subsequently, as explained earlier in Sec. 3.2, with the
help of skip connections (SC), we integrate Fo and F̄h to
obtain the final enhanced hierarchical representation cov-
ering both global and local features, as illustrated in Fig-
ure 1 and 2. Note that prior to the skip connection, we
upsample F̄h and Fo, where the upsampling operation
U(.) ∈ RH

8 ×W
8 ×C → RH×W×C is performed with sim-

ple bi-linear interpolation operation, which is much faster
than using transposed convolutions [13]. Unlike image en-
hancement in existing works [17, 25, 10], with a multi-scale
hierarchical feature enhancement strategy, our FeatEnHancer

learns a powerful semantic representation by capturing both
local and global features. This makes it a general-purpose
module to enhance hierarchical features, boosting machine
perception under low-light vision.

Dataset Task #Cls #Train #Val
ExDark [33] Dark object detection 12 4800 2563
DARK FACE [62] Face detection 1 5400 600
ACDC Nightime [47] Semantic segmentation 19 400 106
DarkVision [63] Video object detection 4 26 6

Table 1: Statistics of the datasets used to report results on
four different downstream vision tasks. #Cls is the number of
classes, whereas #Train and #Val denote number of training
and validation samples for each dataset, respectively.

.
4. Experiments

We conduct extensive experiments for evaluating the pro-
posed FeatEnHancer module to several downstream tasks
under the low-light vision, including generic object de-
tection [33, 39], face detection [62], semantic segmenta-
tion [47], and video object detection [63]. Table 1 summa-
rizes the crucial statistics of the employed datasets. This
section first compares the proposed method with powerful
baselines, existing LLIE approaches, and task-specific state-
of-the-art methods. Then, we ablate the important design
choices of our FeatEnHancer. We provide complete imple-
mentation details for each experiment in Appendix A.

4.1. Dark Object Detection

Settings. For dark object detection experiments on the real-
world data, we consider the exclusively dark (ExDark) [33]
dataset (see Table 1). We adopt RetinaNet [28] as a typical
detector and Featurized Query R-CNN [65] (FQ R-CNN)
as an advanced object detection framework to report re-
sults. In the case of both detectors, pre-trained models
on COCO [29] are fine-tuned on each dataset. For Reti-
naNet, images are resized to 640×640, and we train the
network using 1×schedule in mmdetection [5] (12 epochs
using SGD optimizer [46] with an initial learning rate of
0.001). For Featurized Query R-CNN, we employ multi-
scale training [4, 49, 65] (shorter side ranging from 400 to
800 with a longer side of 1333). The FQ R-CNN is trained
for 50000 iterations using ADAMW [35] optimizer (initial
learning rate of 0.0000025, weight decay of 0.0001, and
batch size of 8). Note that for each object detection frame-
work, we adopt the same settings while reproducing results
of our work, baseline, LLIE approaches, and task-specific
state-of-the-art methods.

We compare our FeatEnHancer to several state-of-the-
art LLIE methods, including KIND [67], RAUS [44],
EnGAN [21], MBLLEN [14], Zero-DCE [17], Zero-
DCE++ [17], and state-of-the-art dark object detection
method, MAET [10]. For LLIE methods, all images are



Methods RetinaNet FQ R-CNN

mAP50 mAP mAP50 mAP

Baseline 72.1 46.3 74.5 47.0
RAUS [44] 64.7 44.0 77.0 48.1
KIND [67] 70.7 45.1 80.5 51.5

Zero-DCE++ [25] 70.3 45.2 79.5 49.2
EnGAN [21] 70.4 44.9 80.0 51.9

MBLLEN [14] 70.6 45.1 80.0 51.0
Zero-DCE [17] 71.0 45.2 80.6 52.0

MAET [10] 71.8 45.7 81.6 52.4
FeatEnHancer 72.6 46.4 86.3 56.5

Table 2: Quantitative comparison on ExDark
dataset. Results obtained on the commonly used
evaluation metrics are highlighted. Our Feat-
EnHancer brings consistent improvements and
achieves new state-of-the-art results with FQ R-
CNN.

Methods RetinaNet FQ R-CNN

AP50 AP AP50 AP

Baseline 47.3 19.9 67.5 28.6
RAUS [44] 42.1 17.6 65.5 27.4
KIND [67] 47.2 19.8 65.0 27.5

Zero-DCE++ [25] 47.3 20.1 66.2 28.2
EnGAN [21] 45.1 19.3 67.4 28.4

MBLLEN [14] 47.1 19.8 67.3 27.1
Zero-DCE [17] 47.4 20.1 66.9 27.5

MAET [10] 44.3 18.7 66.1 27.1
FeatEnHancer 47.2 19.9 69.0 29.4

Table 3: Comparing FeatEnHancer on the
DARK FACE dataset. With RetinaNet, Feat-
EnHancer performs on par with other methods.
However, with FQ R-CNN, FeatEnHancer sur-
passes all of them.

Method mIoU
Baseline [7] 45.7

RetinexNet [54] 41.9
DRBN [59] 43.3
FIDE [61] 43.4
KIND [67] 43.0

EnGAN [21] 43.8
ZeroDCE [17] 43.4
SSIENet [66] 41.4
Xue et al. [60] 49.8
FeatEnHancer 54.9

Table 4: Quantita-
tive comparison on the
ACDC dataset. Huge
gains from our FeatEn-
Hancer lead to new state-
of-the-art results.

enhanced from their released checkpoints and propagated to
the detector. In case of MAET [10], we pre-train the detector
using their proposed degrading pipeline and then fine-tune it
on both datasets to establish a direct comparison.

Results on ExDark. Table 2 lists the results of LLIE works,
MAET, and the proposed method on both object detection
frameworks. It is evident that our FeatEnHancer brings con-
sistent and significant gains over prior methods. Note that,
while the performance of MAET and our method is compara-
ble on RetinaNet (≈ 72 AP50), the proposed FeatEnHancer
outperforms MAET by a significant margin on FQ R-CNN,
achieving the new state-of-the-art AP50 of 86.3. Further-
more, Figure 3 shows four detection examples from our
method and the two best competitors using FQ R-CNN as
a detector. These results illustrate that despite the inferior
visual quality, our FeatEnHancer enhances hierarchical fea-
tures that are favourable for dark object detection, producing
state-of-the-art results.

4.2. Face Detection on DARK FACE

Settings. The DARK FACE [53, 62] is a challenging face
detection dataset released for the UG2 competition. For ex-
periments on the DARK FACE (see Table 1), the images are
resized to a larger resolution of 1500× 1000 for all methods.
We adopt the same object detection frameworks of RetinaNet
and FQ R-CNN and follow identical experimental settings,
as explained in Sec. 4.1.
Results. The performance of FeatEnHancer, MAET, and
six LLIE methods, using RetinaNet and Featurized Query
R-CNN, are summarized in Table 3. Note that a few LLIE
methods [17, 25, 67] yield superior results than our approach
in the case of RetinaNet. We argue that due to tiny faces
with highly dark images in the DARK FACE dataset, Reti-
naNet fails to capture information even from the enhanced
hierarchical features. We discuss this behaviour with an ex-

Figure 3: Visual comparison of FeatEnHancer with the
two previous best competitors on the ExDark dataset.
Zoom in for the best view.

ample in Appendix B. On the other hand, LLIE approaches
directly provides well-lit images that bring slightly bigger
gains (+0.1 mAP50) in this case. However, note that with
the more strong detector, our FeatEnHancer surpasses all
the LLIE methods and MAET by a significant margin (+1.5
mAP50), achieving mAP50 of 69.0.

4.3. Nighttime Semantic Segmentation on ACDC

Settings. We utilize nighttime images from the ACDC
dataset [47] (see Table 1) to report results on semantic seg-
mentation in a low-light setting. DeepLabV3+ [7] is adopted
as the segmentation baseline from mmseg [8] for straight-
forward comparison with the concurrent work [60]. We
follow identical experimental settings as in [60]. Refer to
Appendix A for complete implementation details.
Results. We compare our method with several state-of-the-
art LLIE methods, including RetinexNet [54] KIND [67],



Figure 4: Qualitative comparison of FeatEnHancer with
previous best work [60] on the ACDC nighttime semantic
segmentation. FeatEnHancer provides more accurate seg-
mentations.

Method
Illumination (3.2) Illumination (0.2)

mAP mAP

Baseline [55] 32.8 10.4
RAUS [44] 7.42 5.19

EnGAN [21] 7.83 5.41
MBLLEN [14] 7.82 5.39

KIND [67] 7.43 5.25
Zero-DCE++ [25] 7.51 5.02

Zero-DCE [17] 7.83 5.43
FeatEnHancer 34.6 11.2

Table 5: Comparing FeatEnHancer with LLIE meth-
ods on the DarkVision dataset. FeatEnHancer is the only
method that boosts the performance of the powerful baseline
method on both illumination levels.

.

FIDE [61], DRBN [59], EnGAN [21], SSIENet [66], Ze-
roDCE [17], and current state-of-the-art nighttime semantic
segmentation method Xue et al. [60]. As shown in Table 4,
our FeatEnHancer brings remarkable improvements in the
baseline with a mIoU of 54.9, outperforming the previous
best result by 5.1 points. Moreover, we present a qualitative
comparison with the previous best competitor [60] in Fig-
ure 4. Evidently, our FeatEnHancer generates more accurate
segmentation for both bigger and smaller objects, such as
terrain and traffic signs in the last row. These results af-
firm the effectiveness of FeatEnHancer as a general-purpose
module achieving state-of-the-art results in both dark object

detection and nighttime semantic segmentation.

4.4. Video Object Detection on DarkVision

Settings. We extend our experiments from static images to
video domain to test the generalization capabilities of our
method. The video object detection under low-light vision is
evaluated on the recently emerged DarkVision dataset [63]
(see Table 1 for dataset details). Although the dataset is
not publicly available yet, we sincerely thank the authors
of [63] for providing prompt access. To evaluate our
FeatEnHancer under low light settings, we take the low-end
camera split on two different illumination levels, i.e., 0.2
and 3.2. For ablation studies, we adopt a 3.2% illumination
level split. We consider SELSA [55] as our baseline and
follow identical experimental settings with the ResNet-50
backbone network in the mmtracking [9]. To establish a
direct comparison, we enhance all video frames first through
LLIE methods and feed these frames to the baseline, as
done in Sec. 4.1. As a common practice in video object
detection [16, 18, 55], the mAP@IoU=0.5 is utilized as
an evaluation metric to report results. More details can be
found in Appendix A.

Results. Table 5 compares our FeatEnHancer with several
LLIE methods [44, 21, 14, 67, 17, 25] and the powerful
video object detection baseline [55]. Evidently, our Feat-
EnHancer provides considerable gains to the baseline with
34.6 mAP and 11.2 mAP under illumination levels of 3.2
and 0.2, respectively. Note that our FeatEnHancer is the
only method that boosts performance under both image and
video modalities. In contrast, as shown in Table 5, existing
LLIE methods not only fail to assist the baseline method but
also deteriorate the performance. This poor generalization
of LLIE approaches highlights that learning from domain-
specific paired data [14, 67, 44], unpaired data [21], and
curve estimation without data [17, 25] are not the optimal so-
lutions for generalized enhancement methods. Hence, more
research is required.

4.5. Ablation Studies

This section ablates important design choices in the
proposed FeatEnHancer when plugged into RetinaNet,
DeeplabV3+, and SELSA on ExDark (dark object detection),
ACDC (nighttime semantic segmentation), and DarkVision
with illumination level of 3.2% (video object detection), re-
spectively.
SAFA in FeatEnHancer. The important component of the
proposed FeatEnHancer is the scale-aware attentional feature
aggregation (SAFA) that aggregates high-resolution features.
To validate its effectiveness, we conduct multiple experi-
ments where SAFA is replaced with simple averaging or
skip connections (SC) [20] to fuse enhanced multi-scale fea-
tures F and Fq (see Sec. 3.2). The experiment results are



Method ExDark ACDC DarkVision
(mAP) (mIoU) (mAP)

simple averaging 69.5 50.3 32.9
skip connections [20] 70.3 51.7 33.1

SAFA 72.6 54.9 34.6

(a) Effectiveness of SAFA.

Method ExDark ACDC DarkVision
(mAP) (mIoU) (mAP)

SC , SC 69.7 51.7 32.8
SAFA , SAFA 70.2 52.6 33.4

SC, SAFA 70.9 52.9 33.8
SAFA, SC 72.6 54.9 34.6

(b) Various combinations of multi-scale fusion.

Method ExDark ACDC DarkVision
(mAP) (mIoU) (mAP)

maxpool 69.3 51.3 32.9
adavgpool [68] 69.9 50.7 32.9

interpolation [30] 70.7 51.5 33.1
Convolution 72.6 54.9 34.6

(c) Downsampling approaches.

Scale ExDark ACDC DarkVision
(mAP) (mIoU) (mAP)

(2, 4) 71.8 52.7 34.1
(4, 8) 72.6 54.9 34.6
(4, 16) 71.5 51.4 33.9
(8, 16) 68.7 45.6 31.9

(d) Scales for Iq and Io, respectively.

N
ExDark ACDC DarkVision
(mAP) (mIoU) (mAP)

2 72.1 53.9 34.2
4 72.4 54.3 34.5
8 72.6 54.9 34.6

12 72.4 54.3 34.1

(e) # attentional blocks in SAFA.

Table 6: Ablations for the proposed FeatEnHancer on three benchmarks. (a) We investigate the effectiveness of SAFA by
replacing it with different aggregation methods to fuse F and Fq. (b) We experiment with various combinations of SAFA
and skip connection (SC) to justify an optimal design choice. Here, (SC, SC) means employing only skip connections to
merge both Fq and Fo with F . (c) Besides convolution, we experiment with other downsampling techniques to generate lower
resolutions. Here, adavgpool denotes adaptive average pooling as done in [68]. (d) We vary scale sizes to generate lower-scale
representations. Here, (2, 4) means Iq ∈ RH

2 ×W
2 ×3 and Io ∈ RH

4 ×W
4 ×3. (e) We vary number of attentional blocks N in

SAFA of FeatEnHancer. Default settings are highlighted .

summarized in Table 6a. It is clear that SAFA outperforms
both averaging and SC strategies by +2.3 mAP on ExDark,
+3.2 mIoU on ACDC, and +1.5 mAP on DarkVision. These
significant boosts across all three benchmarks indicate that
scale-aware attention leads to optimal multi-scale feature
aggregation in the proposed FeatEnHancer.
Multi-scale feature fusion. We experiment with various
combinations of SAFA and SC to find an optimal design
choice to fuse Fq and Fo with F (see Sec. 3.2). As shown in
Table 6b, there is a clear increase in performance, achieving
(72.6 mAP on ExDark, 54.9 mIoU on ACDC, and 34.6 mAP
on DarkVision) when SAFA is applied to fuse F and Fq

first, and then Fo is merged with the output of SAFA using
skip connection. Hence, we use this approach as the default
setting.
Convolutional Downsampling. Table 6c summarizes re-
sults from different downsampling techniques applied on the
input image I to generate lower-resolutions Iq and Io (see
Sec 3.1). Our proposed convolutional downsampling yields
impressive gains of +1.9 mAP on ExDark, +3.4 mIoU, and
+1.5 mAP on DarkVision compared to max-pooling, adap-
tive average pooling [68], and bilinear interpolation [30].
These results demonstrate the effectiveness of convolutional
downsampling since it is better aligned with various vision
backbone networks [32, 15, 27].
Different Scale sizes. We analyse the effect of different
scale sizes to generate lower resolutions in Table 6d. Here,
for instance, (2, 4) means that the resolution of input image
I ∈ RH×W×3 is reduced by a factor of 2 and 4 to generate
Iq ∈ RH

2 ×W
2 ×3 and Io ∈ RH

4 ×W
4 ×3, respectively. Note that

all these scales are generated through regular convolutional

operator Conv(.), as explained in Eq. 1. Looking at results in
Table 6d, the top performance on all three tasks is achieved
with the scale size of (4, 8), thereby, preferred as a default
setting.
Number of Attention Blocks in SAFA. Table 6e studies
the effect of the number of attention blocks N in our SAFA.
The performance rises for all three tasks with the increase in
N. This demonstrates that more attentional blocks in SAFA
bring additional gains. The best performance with 72.6
mAP on ExDark, 54.9 mIoU on ACDC, and 34.6 mAP on
DarkVision is achieved when N reaches 8, and after that,
it tends to saturate. Hence, N = 8 is used as the default
setting.

5. Conclusion

This paper proposes FeatEnHancer, a novel general-
purpose feature enhancement module designed to enrich
hierarchical features favourable for downstream tasks un-
der low-light vision. Our intra-scale feature enhancement
and scale-aware attentional feature aggregation schemes are
aligned with vision backbone networks and produce pow-
erful semantic representations. Furthermore, our FeatEn-
Hancer neither requires pre-training on synthetic datasets nor
relies on enhancement loss functions. These architectural
innovations make FeatEnHancer a plug-and-play module.
Extensive experiments on four different downstream visions
tasks covering both images and videos demonstrate that our
method brings consistent and significant improvements over
baselines, LLIE methods, and task-specific state-of-the-art
approaches.
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galhães, Alberto Del Bimbo, Shin’ichi Satoh, Nicu Sebe,
Xavier Alameda-Pineda, Qin Jin, Vincent Oria, and Laura
Toni, editors, MM ’22: The 30th ACM International Confer-
ence on Multimedia, Lisboa, Portugal, October 10 - 14, 2022,
pages 2070–2078. ACM, 2022.

[38] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine
invariant interest point detectors. International journal of
computer vision, 60:63–86, 2004.

[39] Igor Morawski, Yu-An Chen, Yu-Sheng Lin, and Winston H.
Hsu. NOD: taking a closer look at detection under ex-
treme low-light conditions with night object detection dataset.
CoRR, abs/2110.10364, 2021.

[40] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detectors:
Detecting objects with recursive feature pyramid and switch-
able atrous convolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10213–10224, June 2021.

[41] Qingpao Qin, Kan Chang, Mengyuan Huang, and Guiqing
Li. Denet: Detection-driven enhancement network for object
detection under adverse weather conditions. In Proceedings
of the Asian Conference on Computer Vision (ACCV), pages
2813–2829, December 2022.

[42] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. CoRR, abs/1804.02767, 2018.

[43] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with region
proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.,
39(6):1137–1149, 2017.

[44] Liu Risheng, Ma Long, Zhang Jiaao, Fan Xin, and Luo
Zhongxuan. Retinex-inspired unrolling with cooperative prior
architecture search for low-light image enhancement. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2021.

[45] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Nassir Navab, Joachim Hornegger, William M. Wells, and
Alejandro F. Frangi, editors, Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, pages 234–
241, Cham, 2015. Springer International Publishing.

[46] Sebastian Ruder. An overview of gradient descent optimiza-
tion algorithms, 2016.

[47] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Acdc:
The adverse conditions dataset with correspondences for se-
mantic driving scene understanding. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 10765–10775, October 2021.

[48] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia
Schmid. Segmenter: Transformer for semantic segmentation.
In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 7262–7272, October 2021.

[49] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng
Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan,
Changhu Wang, and Ping Luo. Sparse R-CNN: end-to-end
object detection with learnable proposals. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2021,
virtual, June 19-25, 2021, pages 14454–14463. Computer
Vision Foundation / IEEE, 2021.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc., 2017.

[51] Wenjing Wang, Xinhao Wang, Wenhan Yang, and Jiaying Liu.
Unsupervised face detection in the dark. IEEE Transactions



on Pattern Analysis and Machine Intelligence, 45(1):1250–
1266, 2023.

[52] Wenjing Wang, Wenhan Yang, and Jiaying Liu. Hla-face:
Joint high-low adaptation for low light face detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 16195–16204, June
2021.

[53] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying
Liu. Deep retinex decomposition for low-light enhancement.
CoRR, abs/1808.04560, 2018.

[54] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu.
Deep retinex decomposition for low-light enhancement. arXiv
preprint arXiv:1808.04560, 2018.

[55] Haiping Wu, Yuntao Chen, Naiyan Wang, and Zhaoxiang
Zhang. Sequence level semantics aggregation for video object
detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019.

[56] Wenhui Wu, Jian Weng, Pingping Zhang, Xu Wang, Wen-
han Yang, and Jianmin Jiang. Uretinex-net: Retinex-based
deep unfolding network for low-light image enhancement.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5901–5910,
June 2022.

[57] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understanding.
In Proceedings of the European Conference on Computer
Vision (ECCV), September 2018.

[58] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M. Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transformers.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 12077–12090. Curran
Associates, Inc., 2021.

[59] Ke Xu, Xin Yang, Baocai Yin, and Rynson W.H. Lau.
Learning to restore low-light images via decomposition-and-
enhancement. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2020.

[60] Xinwei Xue, Jia He, Long Ma, Yi Wang, Xin Fan, and
Risheng Liu. Best of both worlds: See and understand clearly
in the dark. In Proceedings of the 30th ACM International
Conference on Multimedia, MM ’22, page 2154–2162, New
York, NY, USA, 2022. Association for Computing Machinery.

[61] Wenhan Yang, Shiqi Wang, Yuming Fang, Yue Wang, and
Jiaying Liu. From fidelity to perceptual quality: A semi-
supervised approach for low-light image enhancement. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2020.

[62] Wenhan Yang, Ye Yuan, Wenqi Ren, Jiaying Liu, Walter J.
Scheirer, Zhangyang Wang, Taiheng Zhang, Qiaoyong Zhong,
Di Xie, Shiliang Pu, Yuqiang Zheng, Yanyun Qu, Yuhong Xie,
Liang Chen, Zhonghao Li, Chen Hong, Hao Jiang, Siyuan
Yang, Yan Liu, Xiaochao Qu, Pengfei Wan, Shuai Zheng,
Minhui Zhong, Taiyi Su, Lingzhi He, Yandong Guo, Yao
Zhao, Zhenfeng Zhu, Jinxiu Liang, Jingwen Wang, Tianyi
Chen, Yuhui Quan, Yong Xu, Bo Liu, Xin Liu, Qi Sun, Tingyu

Lin, Xiaochuan Li, Feng Lu, Lin Gu, Shengdi Zhou, Cong
Cao, Shifeng Zhang, Cheng Chi, Chubing Zhuang, Zhen Lei,
Stan Z. Li, Shizheng Wang, Ruizhe Liu, Dong Yi, Zheming
Zuo, Jianning Chi, Huan Wang, Kai Wang, Yixiu Liu, Xingyu
Gao, Zhenyu Chen, Chang Guo, Yongzhou Li, Huicai Zhong,
Jing Huang, Heng Guo, Jianfei Yang, Wenjuan Liao, Jiangang
Yang, Liguo Zhou, Mingyue Feng, and Likun Qin. Advanc-
ing image understanding in poor visibility environments: A
collective benchmark study. IEEE Transactions on Image
Processing, 29:5737–5752, 2020.

[63] Bo Zhang, Yuchen Guo, Runzhao Yang, Zhihong Zhang, Jiayi
Xie, Jinli Suo, and Qionghai Dai. Darkvision: A benchmark
for low-light image/video perception, 2023.

[64] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel Ni, and Heung-Yeung Shum. DINO: DETR with
improved denoising anchor boxes for end-to-end object detec-
tion. In The Eleventh International Conference on Learning
Representations, 2023.

[65] Wenqiang Zhang, Tianheng Cheng, Xinggang Wang, Shaoyu
Chen, Qian Zhang, and Wenyu Liu. Featurized query r-cnn,
2022.

[66] Yu Zhang, Xiaoguang Di, Bin Zhang, and Chunhui Wang.
Self-supervised image enhancement network: Training with
low light images only. arXiv preprint arXiv:2002.11300,
2020.

[67] Yonghua Zhang, Jiawan Zhang, and Xiaojie Guo. Kindling
the darkness: A practical low-light image enhancer. CoRR,
abs/1905.04161, 2019.

[68] Zhaoyang Zhang, Yitong Jiang, Jun Jiang, Xiaogang Wang,
Ping Luo, and Jinwei Gu. Star: A structure-aware lightweight
transformer for real-time image enhancement. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 4106–4115, October 2021.

[69] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

[70] Ziqiang Zheng, Yang Wu, Xinran Han, and Jianbo Shi. Fork-
gan: Seeing into the rainy night. In Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Com-
puter Vision – ECCV 2020, pages 155–170, Cham, 2020.
Springer International Publishing.

[71] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable {detr}: Deformable transformers
for end-to-end object detection. In International Conference
on Learning Representations, 2021.


