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1. Network Architecture

Fig. 1 illustrates the detailed network architecture that
we employed for U-RED, including parallel feature en-
coders (a), residual-guided retrieval network (b), graph at-
tention based deformation network (c) and reconstruction
head (d). Note that the reconstruction head is only used for
joint training. The input point cloud is roughly calibrated
to the canonical view by using arbitrary category-level pose
estimators [2, 3, 7, 8]. Since the network itself has a cer-
tain resistance to rotational interference, we don’t need the
estimated rotation results to be extremely accurate. In this
paper, for fair comparisons, we follow ROCA [3]’s pose es-
timator.

The parallel feature encoders are adopted for extract-
ing point-wise and global features {Fp,Gp} from the tar-
get partial point cloud T p, {Ff ,Gf} for the corresponding
full shape T f (only in training) and {Fd,Gd} for sources
shapes Oc in the database, as introduced in Sec. 3.1 of our
main text. All encoders for T p, T f and Oc share the same
network architecture. The point-wise features are extracted
by the MLP directly, while the corresponding global fea-
tures are generated by applying max-pooling to the afore-
mentioned point-wise features.

Our residual-guided retrieval network is a 4-layers MLP
with batch normalization [4]. The input of the retrieval
network is the concatenation of partial features {Fp,Gp},
source shape features Gd and the normalized full shape in-
dicator Ĝf . In training, Ĝf is the normalized Gf . During
inference, Ĝf is replaced by Gs which is sampled on the sur-
face of the unit sphere Ω. Taking these features, the retrieval
network outputs the residual field R = {Ri ∈ R3, i =
1, ...,M} to accomplish our noise-robust one-to-many re-
trieval.

The deformation network utilizes an AGNN with cross-
attention and self-attention module as described in Sec. 3.3

*Authors with equal contributions.

of the main text. After AGNN, the updated part features
Pf are fed to an MLP to predict center displacement Cd and
axis-aligned scaling parameters {sw, sh, sl} to obtain the
bounding box parameters of each part.

The reconstruction head is a supplementary branch used
only in the training stage, which takes the concatenated fea-
tures {F∗,G∗} as input and reconstructs the input point
cloud. We stack three parallel reconstruction heads to re-
spectively process the target partial point cloud T p, the tar-
get full point cloud T f and the source shape Oc. The re-
construction heads are utilized to help the encoder extract
representative features. The used architecture is again an
MLP network with Batch Normalization layers.

2. Additional Loss Terms

The basic loss term Lb introduced in Sec. 3.4 of our main
manuscript includes a Chamfer Distance loss Lcd, a recon-
struction loss Lr, and an optional symmetry loss Lsym.

The Chamfer Distance loss Lcd [6] and the symmetry
loss Lsym are utilized mainly for supervising the defor-
mation process. Lcd is calculated by the predicted de-
formed shape Õc and the input target T p. All models in our
database have reflective symmetry [6]. The yz-plane of our
source shapes is aligned with the symmetry axis. Thereby,
given the predicted deformed shape Õc, we flip Õc with re-
spect to the yz-plane and obtain Õ′, thus we obtain Lsym as

Lsym = Lcd(Õc, Õ′) (1)

Note that Uy et al. [6] has demonstrated that Lsym, serv-
ing as the regularization, can enforce bilateral symmetry of
the output deformed shapes, leading to more geometrically
precise deformation.

We propose the reconstruction loss Lr for the reconstruc-
tion heads described in Sec 1. Given the input shape T ,
the corresponding reconstruction head predicts the recon-
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Figure 1. Network architecture of U-RED.

structed shape T ′. We calculated Lr according to

Lr = ∥T − T ′∥2, (2)

where we use the L2 Euclidean Distance between point sets
as loss function. Such Lr is utilized for all reconstruction
heads for T p, T f and Oc.

3. Partial Data Generation
We generate our partial point clouds input T p ∈ R1024×3

used in the training stage by simulating real-world partial
observations, including random cropping, noise addition
and random rotation. Given an available full CAD shape
from the synthetic dataset [5], we first uniformly sample
the point cloud T ∈ R2048×3, and then randomly crop 50%
of the full point cloud to generate T∇p. Next, we add zero-
mean Gaussian noise having a variance of 0.05 to the co-
ordinates of T∇p via T p = (1 + σ)T∇p. Finally, we ap-
ply a random rotation to T p, where the rotation angle along
each axis is sampled from N (0, 5.0). The full shape input
T f ∈ R1024×3is generated by uniformly down-sampling T .

4. Discussion on OTM module
Fig. 2 demonstrates the unique retrieval results of tar-

get objects by our one-to-many strategy. Since each partial
shape may correspond to multiple full shapes, which fur-
ther enables multiple possible retrievals, our one-to-many
strategy consistently outperforms Uy et al. [6].

5. Effects of Noise Level.
As shown in Tab. 1, our method can work robustly under

different noise levels. Note that we don’t add very heavy
noise in this experiment since too much noise will make the
target object incompatible with the provided ground truth.

max(R) / mean(R)
Noise Std Chair Table Cabinet Average

0.05 1.02 / 0.95 1.95 / 1.33 1.61 / 1.30 1.53 / 1.17
0.1 1.77 / 2.43 2.63 / 1.88 2.03 / 2.06 2.22 / 2.13

Table 1. Results of different retrieval metrics under different input
noise. We conduct experiments on PartNet and add different levels
of Gaussian noise.

Methods Chair Table Cabinet Average
Uy et al. [6] 0.76 0.70 0.72 0.73

Ours 0.76 0.72 0.84 0.75

Table 2. Results of full shape input. We conduct experiments on
PartNet.

Sample Times Chair Table Cabinet
1 1.07 1.53 1.85

100 0.95 1.34 1.30
1000 0.95 1.33 1.30

Table 3. Ablation of sample times on PartNet.

6. Different Retrieval Metrics.

As shown in Tab. 1, min mean(R) works slightly better
than min max(R) given the same residual field R.

7. Full Shape Results

For our method, we directly use the full shape feature
extractor in the OTM module to conduct this experiment.
As shown in Tab. 2, our method performs on par with Uy et
al. given full shape as input.
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Figure 2. Visualization of our one-to-many (OTM) retrieval technique on Scan2CAD [1] dataset. Our proposed residual-guided retrieval
learns a one-to-many relationship to solve the problem that one partial shape may correspond to multiple full shapes. On the contrast, Uy
et al. [6] takes one-to-one retrieval (OTO) which yields inferior performance facing with noisy and partial targets in real-world scenes.

8. Ablation of Sample Times
We sample 1000 times in the main paper to generate

1000 possible retrievals. We ablate the sample times in
Tab. 3.

9. Additional Qualitative Results
9.1. Additional Qualitative Comparison

We provide additional qualitative comparison in both
real-world (Fig. 4) and synthetic scenes (Fig. 3) with [6].
The results show that U-RED consistently outperforms Uy
et al. [6] in both scenarios.

9.2. Failure cases

In the last two rows of Fig. 7 and the last row of Fig. 8
in the main manuscript, we additionally illustrate 3 failure
cases. The main factor that influences the accuracy of re-
trieval and deformation lies in the quality of object detec-
tion and depth estimation. For heavily occluded objects,
the detection and depth estimation results are typically er-
roneous, leading to bad retrieval results and thus inaccurate
deformation.
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Figure 3. Visualization on PartNet [5]. Qualitative comparison
with Uy et al. [6] demonstrates that our U-RED performs more ro-
bustly, gains more accurate retrieval and more precise deformation
results when facing partially observed point clouds.
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Figure 4. Qualitative results on Scan2CAD [1] dataset. U-RED
consistently outperforms state-of-the-art Uy et al. [6].


