
Entity Component System Architecture for Scalable,
Modular, and Power-Efficient IoT-Brokers

Franc Pouhela∗, Dennis Krummacker∗ and Hans D. Schotten∗†

∗Intelligent Networks Research Group, German Research Center for Artificial Intelligence (DFKI GmbH), D-Kaiserslautern.
Email: {franc.pouhela | dennis.krummacker | hans_dieter.schotten}@dfki.de
†RPTU University of Kaiserslautern-Landau, D-67663 Kaiserslautern.

Email: {schotten}@rptu.de

Abstract—This paper proposes a modular and scalable approach
for implementing an Internet of Things (IoT) broker using the
Entity-Component-System (ECS) architecture. The broker is de-
signed to handle numerous sessions and topics without perfor-
mance degradation, utilizing a publish/subscribe messaging model
similar to Message Queue Telemetry Transport (MQTT). The ap-
proach simplifies the implementation of privacy, security, and trust
measures in data exchange and offers a notable improvement in
energy efficiency over a conventional open-source implementation.

Index Terms—Internet of Things, Scalability, Power-Efficiency,
Entity Component System

I . INTRODUCTION

Scalability is a major challenge for IoT-systems, not only
in terms of the number of interconnected devices but also in
terms of the associated costs related to performance and energy
efficiency. Although significant progress is made on hardware to
improve memory usage, cooling, etc., there is still much that can
be done at the software level to ensure that IoT-brokers operate
as efficiently as possible.

One approach to addressing this challenge is to carefully
consider the design of the software. By adopting a well-
structured, modular design that separates concerns and mini-
mizes dependencies, it is possible to achieve greater scalability
and performance. Another important consideration is the use
of optimized algorithms and data structures, which can help to
reduce computational overhead and improve response times.

ECS [1], [2] or Entity Component System, is a software
architecture design pattern mostly utilized in the development
of video games for the representation of in-game objects, which
is different from the common Object-Oriented Programming
(OOP) technique. Its main function is to separate data from
behaviors to promote code reuse and cache-friendliness and
enhance performance.

ECS provides a powerful and flexible way to manage data and
device sessions by breaking down complex parts into modular
components that can be easily assembled and reused. The
proposed ECS approach provides several benefits, including
flexibility, scalability, performance, and power efficiency. Ad-
ditionally, it provides a highly performant architecture that can
handle real-time analytics, which is critical for IoT systems.

In this paper, we showcase how we harnessed the versatility
of ECS to successfully implement a customized publish/sub-

scribe broker. Our approach yields substantial improvements
when compared to a well-established open-source reference
implementation. The paper begins by presenting some related
works in Section II. Section III, provides a thorough overview
of the ECS architecture and how we leveraged it in our study.
Section IV presents some benchmark analysis to evaluate the
effectiveness of our approach. Finally, Section V concludes the
paper with a discussion of potential future research directions.

II . RELATED WORK

One of the most popular approaches to scaling the commu-
nication between IoT devices is the use of Message-Oriented
Middleware (MOM) using a publish/subscribe [3] messaging
model for event-driven communication between IoT devices.
Examples of MOM solutions include protocols such as: MQTT
[4], Advanced Message Queuing Protocol (AMQP), and Exten-
sible Messaging and Presence Protocol (XMPP).

Stony Brook University conducted a study to investigate a
broker architecture that is both highly resilient and scalable [5].
The study proposed Nucleus, a container architecture that can
support scaling to a large number of IoT devices, offers high
resiliency against failures, and involves low overhead when it
comes to data transfer between devices and the broker.

A study was undertaken to explore the potential of leveraging
IoT brokers and the publish/subscribe messaging model in
enabling a Context-Management (CoMa) architecture for facili-
tating decoupled acquisition and distribution of information in
Next-Generation Mobile Networks. The study aimed to shed
light on the potential benefits and challenges associated with
adopting this approach, paving the way for advancements in the
field of Next-Generation Mobile Networks. [6].

In [7], the authors proposed a novel ECS-based approach
for managing the energy consumption of IoT devices in smart
buildings. Their system used a distributed ECS architecture to
dynamically allocate resources and optimize energy usage based
on real-time occupancy data.

Finally, another approach similar to ECS known as Entity-
Component-Attribute (ECA) was also proposed in [8] to keep
the changeable nature of large-scale IoT applications such as
smart cities maintainable. The research presents an automated
mapping to a structure compliant with the Linked Data Platform
W3C standard.

III . ECS ARCHITECTURE

As stated in section I, ECS or Entity Component System is
a software design pattern generally used for building complex
and scalable software systems, particularly in the field of game
development. It promotes code reuse by separating data and
behavior. Performance is benefited from the frequent use of
cache-friendly data storage techniques. It has gained popularity
in game development due to its ability to handle large and
complex data sets, its flexibility in handling different types of
entities and components, and its support for parallel processing.

Flecs [9], EnTT [10], and EntityX [11] are prominent open-
source C/C++ ECS libraries widely recognized and freely avail-
able. For our case study, we chose EnTT as our preferred ECS
library. EnTT is a header-only, lightweight library developed
using modern C++, offering excellent performance.

Figure 1. High-level architecture of ECS

A. Characteristics of ECS

Figure 1 illustrates the architecture of ECS, which can be
characterized as follows:

1) It has Entities, Components, and Systems: It has Entities.
An entity stands in for a generic object. Every single object is
represented as an entity. Typically, it only consists of a unique
identifier, a simple 32-bit or 64-bit integer. This id helps to
identify the owner of specific components.

Components model an entity’s behavior by storing necessary
information. For example, in IoT, each client needs a connection.
Components are simple structures with data fields and no
inherent logic.

Entities possess the capability to be composed of one or
more components. This feature is of paramount importance as
it allows for the generation of an infinite array of behaviors
through the addition or removal of specific components to and
from entities.

Entities possess the capability to change their components
at runtime, which is of particular significance in real-time
communication contexts, such as that of the IoT.

Behavior is implemented through systems that target spe-
cific entities with defined components. Separating systems is
advantageous because it allows focusing on relevant entities and
facilitates multi-threading.

2) Cache-Friendly: The ECS architecture is designed to be
cache-friendly, meaning that it can take advantage of the cache
hierarchy of modern computers to improve performance. This

is achieved by ensuring that frequently accessed data is stored
in a way that allows the cache to be utilized effectively.

3) Provides Composition: The concept of composition, as
applied in ECS, involves the aggregation of multiple compo-
nents to define the properties and behavior of an entity, as
opposed to utilizing inheritance from a parent object. The use
of composition allows for increased versatility in the creation
of entities, as new features can be added through the simple
addition of components, without the need for modifications to
a hierarchical structure. This approach also serves to mitigate
the potential for complex class structures, as entities only
encompass the components deemed necessary.

The code snippet in Listing 1 shows how an entity with
multiple components can be created using EnTT as well as how
to iterate over entities with a specific set of components.� �
1 s t r u c t Component1 {
2 f l o a t Data ;
3 } ;
4

5 s t r u c t Component2 {
6 i n t Data ;
7 } ;
8

9 E n t i t y I D e n t i t y 1 = r e g i s t r y . c r e a t e () ;
10 r e g i s t r y . emplace <Component1 >(e n t i t y) ;
11 r e g i s t r y . emplace <Component2 >(e n t i t y) ;
12

13 r e g i s t r y . view <Component1 > ([] (auto e n t i t y) {
14 auto& comp1 = r e g i s t r y . ge t <Component1 >(e n t i t y) ;
15 / / perform logic on component
16 }) ;
17

18 r e g i s t r y . view <Component1 , Component2 > ([] (auto e n t i t y) {
19 auto& comp2 = r e g i s t r y . ge t <Component2 >(e n t i t y) ;
20 }) ;� �

Listing 1. ECS code snippet

B. Summary of Advantages and Disadvantages of ECS

Understanding both the benefits and the limitations of an
approach is crucial for making informed decisions about its
integration. Following are some relevant advantages and Dis-
advantages of ECS:
+ ECS helps create shorter, and less complicated code and en-

ables a clean design that employs decoupling, modularization,
and reusability of components.

+ Has highly flexible and scalable behavior and fits well with
unit testing and mocking.

+ Good for dynamic, real-time systems and fits well with
parallel processing.

- Hard to implement: To implement a custom ECS framework
is quite tedious. It requires a good understanding of computer
internal operations. Open-source implementation can allevi-
ate this weakness.

- Lack of familiarity: ECS is not as widely recognized and
adopted as other software development paradigms because it
was mainly created for the gaming industry.

- Limited use cases: ECS may not be suitable for all types of
projects or applications and may not be the best fit for systems
that require a more traditional object-oriented design.

IV. IMPLEMENTATION EVALUATION

In this section, we present how the use of ECS as the
underlying architecture has impacted the implementation of
our custom IoT broker application. We also evaluate the per-
formance of our approach compared to a well-established open-
source implementation reference.

As part of our study, we undertook the development of a
publish/subscribe-based IoT broker application called: ’NetMQ-
Broker’. the application was implemented using C++17 and
was carefully architected using EnTT as ECS framework. To
handle I/O operations with utmost efficiency, we integrated
the standalone version of Asio [12], a highly performant C++
networking library.

Our study aimed to explore the capabilities and potential of
this implementation approach. Therefore, we conducted thor-
ough evaluations and measurements to assess its performance,
scalability, and reliability under different scenarios, providing
valuable insights into its suitability for real-world deployment
in various contexts within the IoT domain.

A. Architecture and Communication

IoT-brokers generally consist of four main layers. The first
layer, device connectivity, enables the connection of IoT devices
to the broker and facilitates communication between them. The
data processing layer filters, processes, and transforms data
received from IoT devices. Processed data is stored in the data
storage layer for later use by applications. Finally, the applica-
tion interface layer exposes interfaces for applications to interact
with the broker and access data. While our implementation does
not include all functionalities of each layer described above, our
study primarily focused on real-time communication between
devices with regard to scalability and energy efficiency.

Figure 2. publish/subscribe messaging model

Figure 2 describes the publish/subscribe messaging model
used in our implementation to enable data exchange between
multiple clients. This model is similar to the one used in MQTT
brokers. It ensures that the communication between the devices
is scalable and decoupled. A device only needs to know the
broker’s address and the topic of interest to subscribe to, while
the broker takes care of managing the communication between
the devices. This architecture makes it easy to add or remove

devices from the network, making it a suitable model for IoT
systems with large numbers of devices.

The sequence diagram in Figure 3 describes the data flow
between a publisher and a subscriber using the MQTT protocol.
A client connected as a publisher to the broker can publish a
message on a topic. The broker receives the data from the client
and stores it in its message queue because there is no subscriber
to forward it to. Another connected client then subscribes to
that topic to receive messages. The broker then sends the last
message published on that topic to the new subscriber. Going
forward, the broker will forward any new message published on
that topic to the subscriber automatically. The queuing of the
message is optional.

Figure 3. MQTT sequence diagram

B. Evaluating the Impact of using ECS

This paper does not aim to suggest that the ECS design pattern
is a panacea that solves all challenges faced in IoT management.
However, it endeavors to demonstrate that using ECS as the
underlying architecture to develop IoT broker has the potential
to significantly enhance the performance and reduce the overall
cost of IoT management.

1) Session Management: Effective session management is
crucial for the design and implementation of IoT-brokers, which
need to facilitate connectivity between a wide range of devices,
applications, infrastructures, and other entities. The ECS ap-
proach enables each client to be represented as an entity with a
dedicated session component.� �
1 s t r u c t Sess ionComponent {
2 / / ...
3 F l a g s F l a g s ;
4 So ck e t So ck e t ;
5 } ;
6

7 void OnConnect (So ck e t s o c k e t) {
8 E n t i t y I D c l i e n t = r e g i s t r y . c r e a t e () ;
9 r e g i s t r y . emplace <SessionComponent >(c l i e n t , s o c k e t) ;

10 }� �
Listing 2. Adding new Connection

Entities are highly versatile objects that can be modeled
dynamically, allowing for different types of sessions to be
created and managed, even at runtime. This level of flexibility

makes it possible to support multiple sessions for a single
client, without compromising the overall system performance.
By prioritizing session management and leveraging the power
of ECS, IoT-brokers can better handle the complex demands
of modern interconnected environments. All it takes to extend
the behavior of an entity is to determine which components are
needed and how a system should interact with them. This is
depicted in the code snippet in Listing 2.

2) Topic Management: A topic is a string used to identify
the subject of a message that is being published. The broker
is responsible for maintaining a registry of all topics and
subtopics. Managing topics presents challenges in maintaining
a scalable and organized system, such as maintaining a clear
and consistent naming convention, managing subscriptions, and
ensuring optimized broker performance.

To overcome these challenges, it is crucial to design a robust
messaging architecture with efficient topic management. MQTT
is currently the most popular protocol in the IoT industry. It uses
a hierarchical naming structure for topics. Topics are organized
into a tree-like structure, where each level of the hierarchy is
separated by a forward slash ("/") e.g., ’building1/sensor10’.� �
1 / / topic data
2 s t r u c t TopicComponent {
3 s t d : : s t r i n g Name ;
4 } ;
5

6 / / subtopic data
7 s t r u c t SubtopicComponent {
8 s t d : : s t r i n g FullName ;
9 E n t i t y I D P a r e n t ;

10 }
11

12 / / topic suscribers list
13 u s i n g S u b s c r i b e r s = s t d : : s e t < E n t i t y I D >;
14

15 / / Add new topic entity
16 E n t i t y I D t o p i c 1 = r e g i s t r y . c r e a t e () ;
17 r e g i s t r y . emplace < S u b s c r i b e r s >(t o p i c 1) ;
18 r e g i s t r y . emplace <TopicComponent >(t o p i c 1 , " top1 ") ;
19

20 / / Add a subtopic entity
21 E n t i t y I D s u b t o p 1 = r e g i s t r y . c r e a t e () ;
22 r e g i s t r y . emplace < S u b s c r i b e r s >(s u b t o p 1) ;
23 r e g i s t r y . emplace <TopicComponent >(sub top1 , " s u b t o p ") ;
24 r e g i s t r y . emplace <SubtopicComponent >(sub top1 , t o p i c 1) ;
25

26 / / Callback when a new message is read
27 void OnMessage (E n t i t y I D from , Message&& msg) {
28 / / get topic’ subscribers list
29 auto& subview = r e g i s t r y . ge t < S u b s c r i b e r s >(msg . Topic ()

) ;
30 / / forward message to subscribers
31 f o r (auto s u b s c r i b e r : subview) { Wr i t e (s u b s c r i b e r ,

msg) ; }
32 }� �

Listing 3. Adding new Topics

One major downside of this approach is the fact that every
message sent by the client or the broker must contain the full
topic string as part of the header. The topic string is then parsed
by the broker before the message is forwarded to subscribers.
A recent solution proposed to address this issue is to assign
an alias to a topic, which would be a 32-bit integer identifier,
that can be used while sending messages. However, the topic
alias can only be negotiated during connection establishment
and there are some rules to follow when requesting a topic

alias from the broker which adds up the requirement in terms of
implementation. Additionally, the topic alias is not used by all
clients, as only the clients who requested the alias can use it to
send and receive messages.

In contrast, our ECS approach represents topics and subtopics
as entities, each with a specific set of components. To know if
a topic is a subtopic, we can simply check if the entity has a

’SubtopicComponent’ as shown in the code snippet in Listing 3.
Each subtopic knows about its parent identifier and each topic
also has another component that stores a list of its subscribers.
Since topics are just entities with a 4-byte unique identifier, we
can just leverage the entity identifier as the topic alias as part
of the message header. This approach enables our brokers to
manage topics in a flexible and scalable manner by taking away
the need to parse the topic name from messages because the size
of topic names can be quite large.

The sequence diagram in figure 4 is a depiction of how
topic identifiers are provided to clients as they request it from
the broker during connection establishment or through a topic
request. The Publisher initiates the communication by sending a
connection request (CONREQ) to the Broker, specifying the
topic "topic1" it wants to publish to. The Broker responds
with a connection acknowledgment (CONACK), providing a
topic identifier of 5. Then, the Subscriber does the same but
without a topic specified in the (CONREQ) packet. Next, the
Subscriber requests to subscribe to "topic1" by sending a topic
request (TOPREQ), and the Broker responds with a topic
acknowledgment (TOPACK) and assigns the topic identifier 5 to
the subscription. Finally, the Publisher sends a publish request
(PUBREQ) to the Broker, indicating the topic identifier 5, and
the Broker forwards the publish request to the Subscriber.

This process ensures that the topic name will not be needed
when publishing messages, but only the topic identifier which
is always 4 bytes.

Figure 4. Topic management and message forwarding

3) Bandwidth Usage: The utilization of topic identifiers,
instead of strings, is a highly effective approach that can
significantly reduce the amount of metadata transmitted in
messages. This approach also eliminates the need for parsing
to extract the topic name for each transaction, thereby reducing
processing time. By assigning each topic a unique number, each

message contains a fixed header, providing a more structured
and streamlined data transmission process.

This approach is particularly useful in high-frequency data
exchange scenarios such as Vehicle-to-everything (V2X) [13],
[14] communication, where thousands of devices, such as cars
and traffic lights, are connected, and deep topic structures for
layers and geolocation are needed. By using topic identifiers
instead of strings, bandwidth usage can be drastically reduced.

For instance, a complex topic string such as
’Europe/Germany/Kaiserslautern/City-Center/Bismarck-
Street/Traffic-Light2’ requires 72 bytes, while a topic identifier
such as "2324" as an integer requires only 4 bytes. Around 68
bytes of extra bandwidth is used to send a message.

Considering 10,000 devices exchanging messages at a rate of
10Hz, the total extra bandwidth usage for a topic string of that
length would be approximately 6 MB/s, equivalent to around 16
terabytes per month per device. This calculation does not even
take into account message forwarding, which means the broker
would still need to publish the messages to all subscribers. This
can lead to an exponential increase in bandwidth usage.

4) Security and Trust: Security and trust will always be
crucial concerns when it comes to networking. One of the extra
benefits besides the performance and the modularity of our
ECS approach is the fact that its inherent composition nature
simplifies the implementation of security and trust measures
within the broker. For example, as shown in Listing 4 we can
add an optional ’AccessComponent’ to topics, to ensure that
only clients with the appropriate signature can publish and/or
subscribe to them. This could help to detect potential threats
from untrustworthy clients.� �
1 / / topic access data
2 s t r u c t AccessComponent {
3 s t d : : s t r i n g Key ;
4 N e t F l a g s Leve l ;
5 }
6

7 / / client trust score
8 s t r u c t Trus tComponent {
9 u i n t 3 2 _ t Score ;

10 }
11

12 / / Callback to subcribe to topic
13 void S u b s c r i b e (E n t i t y I D c l i e n t , s t d : : s t r i n g& topicName) {
14 E n t i t y I D t o p i c = F indTop ic (topicName) ;
15

16 / / retrieve topic access data
17 auto& a c c e s s = r e g i s t r y . ge t <AccessComponent >(t o p i c) ;
18

19 / / retrieve client signanture
20 auto& s i g = r e g i s t r y . ge t < C l i e n t S i g n a t u r e >(c l i e n t) ;
21

22 / / check if client has rights
23 i f (C a n S u b s c r i b e (s i g , a c c e s s)) {
24 / / subscribe client to topic
25 }
26 e l s e {
27 / / update client score
28 r e g i s t r y . ge t <TrustComponent >(t o p i c) . Score ++;
29 }
30 }� �

Listing 4. Topic access safety

We have defined three distinct access levels for topics. At
Access Level 0, all clients are granted unrestricted access,
allowing them to publish and subscribe to the topic without any

limitations. Moving up to Access Level 1, clients are required
to provide a key for authentication when attempting to publish
or subscribe. This key is then compared by the broker with
the topic’s password to ensure proper authorization. Lastly,
Access Level 2 introduces an additional layer of security. Clients
must provide a password to the broker, which is subsequently
forwarded to the topic’s owner. The owner then verifies the
password to authenticate the client before granting access to
publish or subscribe to the topic. These access levels enable
varying degrees of control and security in managing topic-based
interactions within the system.

Furthermore, we could assign a trust score component to
clients that would maintain a score reflecting their behavior
throughout their session lifespan. If, for instance, a client
attempts to send a message using a topic identifier to which
it is not authorized, the broker will increment the score based on
a defined policy and, if necessary, terminate the client session.

C. Benchmark Results

To provide context for the benchmark results, we conducted
three measurement rounds, each with an increasing number of
connected clients. In all rounds, each client subscribed and
published a 1K payload every second on a common topic,
allowing all clients to send and receive messages to and from
one another.

The measurements were performed using an 11th Gen Intel
Core i7-11800H @ 2.30GHz processor, and the Intel Power
Gadget [15] which is a software tool provided by Intel that
monitors real-time power usage, temperature, frequency, and
utilization of Intel processors was used to measure the CPU’s
power consumption. The throughput measurements were made
using the system’s built-in Resource Monitor on Windows 11.

The second broker (Eclipse Mosquitto) used for reference
to our implementation (NetMQ) is an open-source (EPL/EDL
licensed) message broker that implements the MQTT protocol
versions 5.0, 3.1.1, and 3.1. It is implemented in C using a
modular software design, with various components responsible
for different functionalities. Mosquitto is lightweight and is
suitable for use on all devices from low-power single-board
computers to full servers. It also provides a C library for
implementing MQTT clients.

The charts depicted in the figures 5, 6, 7 reveal insightful
comparisons between the two IoT brokers. When examining
the write speed, NetMQ consistently outperforms Mosquitto
across all client numbers, exhibiting a significant superiority
of approximately 112%. We find it crucial to point out the
fact that the low write speed exhibited by Mosquitto is due to
load balancing (message dropping). We didn’t implement any
message-dropping mechanism in NetMQ, in order to measure
the cost of not having it compared to Mosquitto.

For read speed, both brokers demonstrate comparable perfor-
mance, with slight variations observed between different client
numbers. Moving on to power consumption, Mosquitto tends
to consume more power than NetMQ, albeit the difference is
not substantial, with a marginal variance of approximately 35%.
The notable aspect of NetMQ outperforming Mosquitto in terms

of data sent while consuming less power can be attributed to
several factors. Firstly, the underlying architecture and design
choices. NetMQ uses ECS which as presented earlier has a lot
to add when scaling is an important factor, enabling it to handle
a higher volume of data transmission with improved efficiency.
Secondly, NetMQ uses an optimized communication protocol
to minimize redundant data transfers. By reducing unnecessary
data duplication or optimizing packet sizes, NetMQ can achieve
higher data throughput while utilizing fewer system resources.
Furthermore, it’s important to consider that power consumption
is influenced by various factors beyond data transmission, such
as the processing overhead of the broker itself.

Figure 5. Comparison of write speed in byte/s

Figure 6. Comparison of read speed in byte/s

Figure 7. Comparison of power consumption in watt

V. CONCLUSION AND FUTURE WORK

In conclusion, the ECS architecture has the potential to
greatly improve the design and implementation of IoT-brokers.
As we have seen, it can improve performance, bandwidth usage,
power efficiency, topic management, security, and trust measure
implementation by providing a flexible and scalable framework
for managing data.

Future work should focus on conducting additional bench-
marks to compare the performance and efficiency of our ECS-
based implementation against other existing architectures. This
can include tests for data processing and transmission, scala-
bility, and security measures. The results of these benchmarks
will provide valuable insights into the real-world capabilities
of ECS in IoT-broker implementation and will help determine
the feasibility and practicality of adopting ECS as a standard
architecture for IoT-brokers.

ACKNOWLEDGMENT

The authors acknowledge the financial support by the German
Federal Ministry for Education and Research (BMBF) within
the project »Open6GHub« {16KISK003K}.

REFERENCES

[1] P. Torgerson, “Entity-component-systems,” in Proceedings of the 2015
World Congress on Computer Science and Information Engineering, vol. 2,
2015, pp. 508–512.

[2] D. Masiukiewicz, D. Masiukiewicz, and J. Smołka, “Research of
an entity-component-system architectural pattern designed with using
of data-oriented design technique,” Journal of Computer Sciences
Institute, vol. 13, pp. 349–353, Dec. 2019. [Online]. Available:
https://ph.pollub.pl/index.php/jcsi/article/view/1331

[3] S. C. L. Hernandes, M. E. Pellenz, and A. Calsavara, “A study on publish-
subscribe middlewares for selective notification delivery in smart cities,”
in 2019 XLV Latin American Computing Conference (CLEI), 2019, pp.
1–10.

[4] J. Roldán-Gómez, J. Carrillo-Mondéjar, J. M. Castelo Gómez, and S. Ruiz-
Villafranca, “Security analysis of the mqtt-sn protocol for the internet of
things,” Applied Sciences, vol. 12, no. 21, p. 10991, 2022.

[5] S. Sen and A. Balasubramanian, “A highly resilient and scalable broker
architecture for iot applications,” in 2018 10th International Conference
on Communication Systems & Networks (COMSNETS), 2018, pp. 336–
341.

[6] F. Pouhela, D. Krummacker, and H. D. Schotten, “Towards 6G Networks,”
in A Context Management Architecture for Decoupled Acquisition and
Distribution of Information in Next-Generation Mobile Networks, ser. ITG,
vol. 157, VDE. IEEE, 5 2023.

[7] P. García, R. Alcarria, D. Sánchez-de Rivera, and T. Robles, “Improving
energy efficiency in smart buildings with an entity-component-system
approach,” Sensors, vol. 19, no. 20, p. 4553, 2019.

[8] T. Spieldenner, R. Schubotz, and M. Guldner, “Eca2ld: Generating linked
data from entity-component-attribute runtimes,” in 2018 Global Internet
of Things Summit (GIoTS), 2018, pp. 1–4.

[9] “https//github.com,” https://github.com/SanderMertens/flecs Flecs.
[10] “https//github.com,” https://github.com/skypjack/entt EnTT.
[11] “https//github.com,” https://github.com/alecthomas/entityx EntityX.
[12] “Asio c++ library,” https://think-async.com/Asio/ Asio.
[13] S. Gyawali, S. Xu, Y. Qian, and R. Q. Hu, “Challenges and solutions for

cellular based v2x communications,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 1, pp. 222–255, 2021.

[14] K. Abboud, H. A. Omar, and W. Zhuang, “Interworking of dsrc and
cellular network technologies for v2x communications: A survey,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9457–9470,
2016.

[15] B. Prieto, J. J. Escobar, J. C. Gómez-López, A. F. Díaz, and T. Lampert,
“Energy efficiency of personal computers: A comparative analysis,” Sus-
tainability, vol. 14, no. 19, p. 12829, 2022.

