
Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
Contents lists available at ScienceDirect

Journal of King Saud University – Computer and
Information Sciences

journal homepage: www.sciencedirect .com
FNReq-Net: A hybrid computational framework for functional
and non-functional requirements classification
https://doi.org/10.1016/j.jksuci.2023.101665
1319-1578/� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors.
E-mail addresses: summra.saleem@dfki.de (S. Saleem), muhammad_nabeel.

asim@dfki.de (M.N. Asim).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Summra Saleem a,b,⇑, Muhammad Nabeel Asim b,⇑, Ludger Van Elst b, Andreas Dengel a,b

aDepartment of Computer Science, RPTU Kaiserslautern-Landau, Kaiserslautern 67663, Germany
bGerman Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 5 May 2023
Revised 18 July 2023
Accepted 19 July 2023
Available online 29 July 2023

Keywords:
Software development
Functional & non-functional requirements
Feature selection
Feature pruning
Attention mechanism
Hybrid predictor
Requirements classification is a key component of software development life cycle. It enhances our
understanding about project requirements, which in turn enables us to effectively identify and mitigate
risks that could lead to project failure. Existing requirements classification predictors do not utilize fea-
ture selection methods competence in their predictive pipelines and lack in performance. To empower
the process of automatic requirements classification, contributions of this paper are manifold. Firstly,
it explores the potential of 7 filter-based feature selection techniques and 11 traditional machine learning
classifiers. Secondly, for the first time it investigates combined potential of traditional feature selection
and 9 diverse types of deep learning predictors. Thirdly, it presents a hybrid computational predictor
namely FNReq-Net that reaps combine benefits of traditional feature selection and a novel deep learning
predictor based on attention mechanism. Over two public benchmark datasets, large-scale experimental
results reveal feature selection not only improves predictive performance of traditional machine learning
predictors, but it also improves performance of deep learning predictors. The proposed FNReq-Net pre-
dictor outperforms state-of-the-art functional and non-functional requirements classification predictors
by 4% and 1% in terms of F1-score over Promise and Promise-exp datasets, respectively.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

An extended version of waterfall model known as v-model com-
prises of 2 different modules, namely development and testing
(Petersen et al., 2009; Balaji and Murugaiyan, 2012). To make sure
proper development of a software, v-model facilitates develop-
ment and testing of software at different stages in a parallel fash-
ion. Among all software development stages (Felderer and
Travassos, 2020), requirements analysis is an indispensable stage,
as it defines fundamental details of software from customer’s per-
spective (Vogelsang and Borg, 2019). A pitfall at requirements
analysis stage can propagate in all later development stages. In
the last 4 decades, software development and requirement
engineering (RE) related major research has been devoted for
understanding how to identify, analyze and evaluate functional
and non-functional requirements (Maruping and Matook, 2020;
Hidellaarachchi et al., 2021). Primarily, requirements fall into 2
main categories: functional and non-functional. Functional
requirements define specific features and functionalities that a
software system must have. This class contains requirements
related to user authentication, data entry, report generation, pay-
ment processing and search functionality. Non-functional require-
ments focus on the qualities and characteristics of a software
system, such as performance, scalability, usability and security.
This class contains requirements related to fast response times,
ability to handle increased user load, intuitive user interface and
robust security measures (Becker et al., 2019; Horkoff, 2019).
Specifically, functional requirements focus on behavior, while
non-functional requirements address qualities and characteristics
beyond core functionality.

Requirements classification into functional and non-functional
classes is essential to understand customers’ expectations and to
follow exact requirements. However, manual classification of
requirements requires an expert person who has a profound
understanding of functional and non-functional qualities of soft-
ware at unit and system levels. Furthermore, requirements vary

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2023.101665&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2023.101665
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:summra.saleem@dfki.de
mailto:muhammad_nabeel.asim@dfki.de
mailto:muhammad_nabeel.asim@dfki.de
https://doi.org/10.1016/j.jksuci.2023.101665
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com


Table 1
A comprehensive summary of existing research studies for requirements classification.

Authors Dataset Feature encoding
technique

Predictor

Luo et al. (2022) Promise, NFR-review, NFR-so BERT Prompt learning using BERT
Li et al. (2022) Promise, Concordia Node embedding Graph attention network
Kaur and Kaur (2022) Promise, Open source project Glove Self-attention based bi-directional RNN
Ivanov et al. (2022) Pure Fasttext, Elmo, BERT SVM, BERT
Khayashi et al. (2022) Pure Glove, keras word

embeddings
CNN, LSTM, BiLSTM, GRU, BiGRU

Ajagbe and Zhao (2022) Promise, Pure, App review dataset, Google
play store reviews

BERT based
embeddings

Fine-tuned BERT

Kici et al. (2021a) Doors, Promise, Pure BERT embeddings BERT, DistillBERT, Roberta, Al-BERT, XLNet
Althanoon and Younis (2021) Promise TFIDF MNB, LR
Rahimi et al. (2021) Promise Random word

embeddings
Ensemble learning using CNN, LSTM, BiLSTM, GRU

Kici et al. (2021b) Doors, Promise - DistillBERT
Fávero and Casanova (2021) Open source project BERT based

embeddings
Fine-tuned BERT

Tiun et al. (2020) Promise Word2vec, FastText CNN
Dias Canedo and Cordeiro

Mendes (2020)
Promise-exp BoW, TFIDF LR, SVM, KNN, MNB

Rahimi et al. (2020) Self-collected TFIDF Ensemble of SVM, SVC, LR, NB, DT
Hey et al. (2020) Promise BERT based

embeddings
Fine-tuned BERT

Rahman et al. (2019) Promise Word2vec RNN, LSTM, GRU
Baker et al. (2019) Promise Random word

embeddings
ANN, CNN

Haque et al. (2019) Promise BoW, TFIDF NB, SVM, DT, KNN
Tóth and Vidács (2019) Promise, Stack overflow dataset TFIDF BernoulliNB, DT ET, ETs, KNN, Label propagation, Label

spread, LR, MLP, MNB, SVM

S. Saleem, M.N. Asim, L.V. Elst et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
from software to software and raise the chance of error by incor-
rectly categorizing functional requirements into non-functional
requirements and vice versa (Knauss et al., 2011). Apart from clas-
sification error, manual classification of requirements is an expen-
sive and time-consuming task.

With an aim to automate the process of requirements classifica-
tion, several rule-based predictors (Vlas and Robinson, 2011; Vlas
and Robinson, 2012; Singh et al., 2016) have been proposed but
these predictors require additional rules based on specifications
of particular software (Vlas and Robinson, 2012; Jarzebowicz and
Weichbroth, 2021). Following the success of machine learning
approaches in diverse types of application areas including com-
puter vision (CV) (Haghighat and Sharma, 2023), natural language
processing (NLP) (Khurana et al., 2023; Saleem et al., 2022) and
speech analysis, (Chaiani et al., 2022) researchers have utilized
the power of machine learning methods for the development of
generalized requirements classification predictors (Hey et al.,
2020; Althanoon and Younis, 2021; Dias Canedo and Cordeiro
Mendes, 2020; Kaur and Kaur, 2022). In the marathon of develop-
ing more robust and precise requirements classification predictors,
according to the best of our knowledge in last 5 years, 19 predic-
tors have been developed (Luo et al., 2022; Li et al., 2022; Kaur
and Kaur, 2022; Ivanov et al., 2022; Khayashi et al., 2022; Ajagbe
and Zhao, 2022; Kici et al., 2021a; Althanoon and Younis, 2021;
Rahimi et al., 2021; Kici et al., 2021b; Fávero and Casanova,
2021; Tiun et al., 2020; Dias Canedo and Cordeiro Mendes, 2020;
Rahimi et al., 2020; Hey et al., 2020; Rahman et al., 2019; Baker
et al., 2019; Haque et al., 2019; Tóth and Vidács, 2019).

Table 1 provides a comprehensive overview of existing predic-
tors in terms of representation learning and classification algo-
rithms. while developing traditional machine learning based
predictors researchers’ focus was to improve classification perfor-
mance by ensembling multiple predictors. Although, it is widely
accepted that feature selection enhances the performance of
machine learning classifiers. However, in requirement classifica-
tion their potential remains unexplored. In natural language pro-
2

cessing for text document classification (Parlak and Uysal, 2023;
Jalal et al., 2022), sentiment analysis (Sharma and Jain, 2023;
Kumar et al., 2022) and information retrieval (Abbasi et al.,
2022), researchers have performed large-scale studies to bench-
mark the performance of traditional feature selection methods
and machine learning classifiers. Similarly, in bio-informatics for
genomics, proteomics and omics analysis tasks (Zanella et al.,
2022; Lualdi and Fasano, 2019; Leclercq et al., 2019) researchers
have explored the potential of feature selection strategies. Primar-
ily, the aim of these studies has been to unlock the potential of fea-
ture selection algorithms for the development of more
comprehensive real-world applications. In requirement classifica-
tion predictive pipelines, incorporation of feature selection meth-
ods may enhance predictors performance.

On the other hand in existing deep learning based requirement
classification predictors primary focus of researchers was to utilize
the potential of CNN and RNN architectures. Usually, requirement
classification datasets are small and traditional deep learning pre-
dictors may not produce performance similar to their performance
on other text classification tasks where a large training data is
available. Rather than focusing on CNN and RNN architectures that
require large training data, lightweight predictors based on atten-
tion mechanisms may be more useful here. Primarily, attention
architecture will help predictor in focusing on more discriminative
features and may improve the performance of predictor. The prime
focus of this research is to validate diverse types of hypotheses and
develop a more robust and precise predictor for functional and
non-functional requirements classification. Mainly, research of
paper in hand revolves around 4 different hypotheses.

� Hypothesis 1: Do traditional feature selection methods improve
machine learning classifier’s performance?
Validation: To analyze this hypothesis we explored the poten-
tial of 11 traditional machine learning classifiers along with 7
most widely used filter-based feature selection methods
namely; Bi-Normal Separation (BNS) (Forman et al., 2003), Nor-



S. Saleem, M.N. Asim, L.V. Elst et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
malized Difference Measure (NDM) (Rehman et al., 2017), Min–
Max Ratio (MMR) (Rehman et al., 2018), Balanced Accuracy
Measure (ACC2) (Forman et al., 2003), Poison Ratio (POISON)
(Gao and Wang, 2009), Chi-Squared (CHISQ) (Resnik, 1999)
and Gini-Index (GINI) (Park et al., 2010).

� Hypothesis 2: Which optimal combination of feature selection
algorithm and classifier produces better performance?.
Validation: We perform large-scale performance analysis over
two public benchmark datasets and analyze the performance
of feature selection and machine learning classifiers.

� Hypothesis 3: Dose external feature engineering improve pre-
dictive performance of deep learning classifiers?.
Validation: We perform large-scale experimentation over 2
public benchmark datasets by using 9 deep learning based pre-
dictors with all input features and by selecting the most infor-
mative features.

� Hypothesis 4: Dose combined potential of traditional feature
selection and attention architecture enhance requirement clas-
sification performance by focusing on most informative fea-
tures?.
Validation: We design a novel deep learning classifier by utiliz-
ing traditional feature selection method and attention-based
architecture.

The remaining sections of manuscript are organized into 8 dif-
ferent sections where Section 2 summarizes existing research
studies for requirement classification. Section 3 demonstrates
details of proposed framework along with benchmark datasets
and evaluation measures. Sections 4 and 5 provide comprehensive
details about experiment setup and results, respectively. Sections 6
and 7 highlight research findings and limitations of proposed
framework. Lastly, Section 8 presents the overall analysis and
future directions.
2. Related work

This section briefly discusses diverse types of machine and deep
learning based predictors that have been proposed for requirement
classification. According to best of our knowledge, in last 4 years 4
machine learning predictors are developed for requirements classi-
fication (Althanoon and Younis, 2021; Dias Canedo and Cordeiro
Mendes, 2020; Haque et al., 2019; Tóth and Vidács, 2019). These
predictors made use of traditional machine learning classifiers
(Multinomial Naive Bayes (MNB), Logistic Regression (LR), Support
Vector Machine (SVM), Stochastic Gradient Descent (SGD), Ber-
nouli Naive Bayes (BNB), Gaussian Naive Bayes (GNB), Decision
Tree (DT) and K-Nearesrt Neighbor (KNN)) and TFIDF (term
frequency-inverse document frequency) based feature representa-
tion approach. Apart from standalone classifiers based predictors,
Rahimi et al. (Rahimi et al., 2020) developed a meta-predictor that
reaped the benefits of 5 different machine learning classifiers (LR,
SVC, SVM, DT and NB) and TFIDF based representation approach.
While developing these predictors, prime focus of researchers
was to explore the potential of different machine learning classi-
fiers. It is widely accepted that traditional machine learning classi-
fiers lack feature engineering and requires an external algorithm
for removing irrelevant and redundant features. In a nutshell, these
predictors lack feature selection strategy in their predictive
pipelines.

Following the success of deep learning approaches in diverse
types of NLP tasks, 4 different deep learning predictors have been
proposed (Tiun et al., 2020; Rahimi et al., 2021; Khayashi et al.,
2022; Kaur and Kaur, 2022). In two different predictors (Tiun
et al., 2020; Kaur and Kaur, 2022) objective of researchers was to
explore the potential of word embedding methods (word2vec, fast-
3

text and glove) and deep learning architectures including convolu-
tional neural network (CNN) and long-short term memory (LSTM).
Objective of 2 predictors (Rahimi et al., 2021; Khayashi et al., 2022)
was to reap combined benefits of different neural architectures and
develop a meta-predictor. These meta-predictors are designed in
multi-branching fashion, where each branch predicts class of
requirements based on the unique architecture and finally all
branches’ probabilities are utilized to predict final class. Primarily,
CNN and recurrent neural network (RNN) based deep learning pre-
dictors perform better with large data and usually requirements
data are small. In diverse types of NLP tasks, researchers have
proved that in deep learning predictors, utilization of attention
architectures significantly improves their predictive performance.
However, in existing requirements classification predictors, prime
focus of researchers was to develop meta predictors and potential
of attention architectures remains unexplored.

Researchers have explored the potential of transformer based
language models (BERT, AL-BERT, Roberta, DistilBERT and XLNet)
to generate comprehensive feature representations of require-
ments (Fávero and Casanova, 2021; Ajagbe and Zhao, 2022; Hey
et al., 2020; Luo et al., 2022; Kici et al., 2021a). Apart from tradi-
tional transformer based language models, Li et al. (2022) predictor
reaped the benefits of graph strategy and bert based language
model for requirements classification. An in-depth performance
analysis of pre-trained and fine-tuned models demonstrated that
generalized feature representation models remained fail to effec-
tively encode domain-specific terms of software engineering.
3. Materials and methods

The prime focus of this paper is to explore the potential of tra-
ditional feature selection approaches for the development of
robust and precise machine and deep learning based end-to-end
predictive pipelines for functional and non-functional require-
ments classification. The following subsections briefly summarize
machine and deep learning based predictive pipelines.
3.1. Machine learning predictors

Fig. 1 graphically illustrates details of machine learning frame-
work. The framework consists of 4 different modules namely; pre-
processing, feature selection, feature representation and
classification. Pre-processing module normalizes corpus text and
removes punctuations and extra spaces. Furthermore, it performs
feature pruning, where it takes all samples of corpus and removes
words that occur in the corpus samples greater than selected upper
threshold and words which occur less than selected lower thresh-
old. Here, upper and lower thresholds are hyper-parameters that
need to be set according to nature and complexity of task. Nor-
mally, upper threshold is set 85% percent and lower threshold is
set at 25%. Specifically, it is considered that words that occur in
more than 85% samples of the corpus are not discriminative and
should be removed and similarly the words that occur in less than
25% samples of the corpus could be discriminative but they are rare
words and may confuse classifiers so they should be removed.

Feature selection module removes irrelevant and redundant
features (Tutsoy et al., 2020). Machine learning classifiers learn dis-
criminative patterns among different classes and based on discrim-
inative patterns they categorize unseen samples into pre-defined
classes. When machine learning classifiers are fed with samples
having irrelevant and redundant features, their performance dete-
riorates. On the other hand, even a simple classifier performs better
when it is fed with the most informative and discriminative
features.



Fig. 1. Graphical illustration of traditional feature selection and machine learning classifiers based predictive pipeline for requirement classification. First of all data is split
into train and test sets and per-processing is performed. After that in train set, requirement samples and their associated class labels are utilized to perform feature selection
and further requirement samples with selected features are used to compute TFIDF representation that is used to train machine learning classifiers and trained classifier is
saved and we named it as predictive model. Furthermore, train set based selected features are only retained in test set and test set samples TFIDF representation is computed
and further passed to predictive model that provides class labels associated with the required samples.

S. Saleem, M.N. Asim, L.V. Elst et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
With an aim to boost predictive performance of classifiers by
feeding them with the most informative features, researchers have
proposed diverse types of feature selection algorithms (Wang et al.,
2017). Mainly, existing feature selection algorithms are catego-
rized into 3 different classes including; filter (Jović et al., 2015),
wrapper (El Aboudi and Benhlima, 2016) and embedded
(Maldonado and López, 2018). Different types of feature selection
methods that fall into wrapper and embedded categories use clas-
sifiers to iteratively elect a feature set. These methods are compu-
tationally expensive and can be utilized for tasks where corpus
contains a small set of features and cannot be applied for classifi-
cation tasks where corpus contains numerous features. In contrast,
filter-based feature selection methods do not require any classifier
for the selection of informative features and utilize metric compu-
tation for the selection of most informative features.

Requirement classification task contains thousands of features,
so it is computationally not suitable to apply wrapper or embedded
based feature selection methods. We enriched feature selection
module with 7 different filter-based feature selection methods:
ACC2 (Forman et al., 2003), BNS (Forman et al., 2003), CHISQ
(Resnik, 1999), GINI (Park et al., 2010), MMR (Rehman et al.,
2018), NDM (Rehman et al., 2017), POISON (Gao and Wang,
2009)). Comprehensive details of these methods can be found in
cited articles. Feature representation module takes selected fea-
tures based requirement samples and makes use of TFIDF feature
representation method to transform textual samples into statisti-
cal vectors. The classification module takes TFIDF based statistical
4

representation and class labels for training machine learning clas-
sifiers and final trained classifiers are fed with only statistical vec-
tors and they predict class labels associated with statistical vectors.
The classification module is enriched with 11 different traditional
machine learning classifiers: AdaBoost (Margineantu and
Dietterich, 1997), Decision Tree (Quinlan, 1996), Extra Tree
(Geurts et al., 2006), Gaussian NB (Leung et al., 2007), Gradient
Boosting (Friedman, 2021), KNeighbour (Aha, 1997), Logistic
Regression (LaValley, 2008), Naive Bayes (Leung et al., 2007), Ran-
dom Forest (Breiman, 2001), Support Vector Machine (Hearst et al.,
1998), Extreme Gradient Boosting (Chen et al., 2015). Comprehen-
sive details of these methods can be found in cited articles.
3.2. Adapted deep learning predictors

It is widely accepted that traditional machine learning classi-
fiers performance relies on comprehensive feature selection
(Shafiq et al., 2020) while deep learning predictors have inherent
potential for automatically selecting informative features (Tang
et al., 2019; Khamparia et al., 2021). However, recently it has been
discovered that performance of deep learning predictors can be
further improved by feeding them with most informative features
selected through traditional feature selection strategies (Asim
et al., 2019; Asim et al., 2021). A prime objective of this paper is
to validate a unique hypothesis whether deep learning predictors
are more competent in discriminating functional and non-
functional requirements when they are fed with most informative



Fig. 3. Graphical illustration of traditional feature selection and deep learning predictors based predictive pipeline for requirements classification.

Fig. 2. Graphical illustration of deep learning-based predictors for requirements classification.

S. Saleem, M.N. Asim, L.V. Elst et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
features as compared to conventional way in which they are fed
with all input features. It can be seen in Table 1, only a few CNN,
RNN and both CNN and RNN based hybrid predictors are designed
for requirement classification. On the other hand, for textual docu-
ment classification (Minaee et al., 2021) and sentiment analysis
tasks (Onan, 2021) several deep learning predictors are proposed
(Yogatama et al., 2017; Kalchbrenner et al., 2014; Chen, 2015).
The paper in hand adapts 9 different deep learning predictors from
textual document classification and sentiment analysis tasks,
where aim is to analyze their performance for the task of require-
ment classification under two different experimental settings.
Firstly by feeding models with requirement samples having all
input features and secondly by feeding requirement samples hav-
ing the most discriminative features. Figs. 2 and 3 illustrate generic
requirements classification workflow of deep learning predictors in
experimental settings 1 and 2, respectively.

Furthermore, comprehensive detail about adapted predictors
and motivation behind their designed architecture is available in
their original papers. As in this paper, their detailed explanation
is beyond the scope so we have summarized details of predictors
in Table 2. Interested readers can read further details about predic-
tors in the manuscripts cited in Table 2. Further, to fully utilize the
potential of these predictors, we performed experimentation by
tweaking their number of layers and hyperparameters. The final
architectural details of adopted predictors in terms of number of
CNN, LSTM, pooling and dense layers are summarized in Table 2.
Further, hyperparameters detail is provided in experimental setup
section.
3.3. Proposed predictor

With an aim to more precisely distinguish requirements
between functional and non-functional classes, we propose a
5

hybrid predictor which reaps the benefits of traditional feature
selection approach and deep learning-based attention mechanism
for feature engineering. The complete working paradigm of the
proposed predictor is graphically shown in Fig. 4.

After pre-processing input sentences, proposed predictor first
generates a vocabulary of unique terms and features ranking mod-
ule of proposed predictor ranks unique terms based on their dis-
criminative power between both classes. After feature ranking, it
selects the top k-ranked features from both classes and in each
requirement sample generates their bi-grams, tri-grams and
tetra-grams. Generated n-grams are passed to embedding layer,
which randomly generates statistical vectors of n-grams. The pro-
posed predictor generates dense comprehensive representation of
features by taking average of n-gram based feature representation.
The comprehensive feature representations are fed to self-
attention layer that assigns higher weights to more informative
features. The workflow of self-attention layer consists of multiple
steps. First, attention layer applies linear operation on input sen-
tence matrix xinp and breaks it into three sub-matrices: query
q�Ry�z, key k�Ry�z and value v�Ry�z, which is mathematically
expressed in Eq. 1.

½q; k;v � ¼ div ide½xinp �w� ð1Þ

Here, w�Rz�3z represents transformed matrix and divide refers to
split function. Afterward, query and key matrices are multiplied
to find similarity and output is known as attention filter. At first,
weights of attention filters are randomly initialized, during iterative
training these weights are updated to meaningful insight called
attention score. Attention score is scaled by dividing with dimen-
sion of key metrics

ffiffiffiffiffi

zk
p

and further normalized between range of
0 to 1 using softmax function. Finally, attention filter is multiplied
by value metrics and fed to linear layer to compute attention score
which is mathematically shown in Eq. 2.



Table 2
A comprehensive summary of adapted deep learning predictors.

Author CNN Layers LSTM Layers No. of Channels Pooling Layers Dense layers

Kim (2014) 4 - 2 1-max pooling 2
Kalchbrenner et al. (2014) 2 - 2 k-max pooling 1
Yin and Schütze (2016) 4 - 2 1 max pooling 1
Zhang et al. (2016a) 6 - 3 - 1
Yogatama et al. (2017) - 1 - - 1
Palangi et al. (2016) - 1 - - 1
Chen et al. (2017) 5 1 - 1 max pooling 1
Zhou et al. (2015) 5 1 - 1 max pooling 1
Wang et al. (2016) 3 1 - 1 max pooling 2

Fig. 4. Graphical illustration of proposed predictor workflow for requirements classification.

S. Saleem, M.N. Asim, L.V. Elst et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
Attention½q; k; v� ¼ softmax
ðq � kTÞ

ffiffiffiffiffi

zk
p v ð2Þ

Highly informative features are fed to dropout layer (Baldi and
Sadowski, 2013) to avoid model overfitting. Finally, softmax classi-
fier discriminates dense vectors into functional and non-functional
classes.
3.4. Benchmark datasets

To evaluate the effectiveness of a variety of machine learning
and deep leaning based methodologies for requirement classifica-
tion, we have utilized two publicly available benchmark datasets;
Promise (Sayyad Shirabad and Menzies, 2005) and Promise-exp
(Lima et al., 2019). The majority of existing predictors are evalu-
ated on these datasets (Khayashi et al., 2022; Tóth and Vidács,
2019). A comprehensive detail of these datasets is provided in
existing papers, here we only summarize their statistics. The Pro-
mise dataset comprises 625 samples, whereas Promise-exp data
consists of 970 samples of requirements. Table 3 provides a detail
summary of Promise and Promise-exp datasets.
1 https://keras.io/.
2 https://scikit-learn.org/.
3 https://numpy.org/.
4 https://docs.python.org/3/library/math.html.
5 https://scipy.org/.
6 https://pandas.pydata.org/.
7 https://www.tensorflow.org/.
3.5. Evaluation measures

In order to assess the effectiveness of the proposed predictor for
binary classification of requirements, a thorough comparative
analysis of 19 existing predictors is conducted, which utilize differ-
ent assessment metrics over two benchmark detests. The assess-
ment metrics, which are widely used to examine the
effectiveness of majority predictors, include precision, recall and
F1-score. These matrices utilize true positive (tp), true negative
(tn), false positive (f p) and false negative (f n) values to compute
6

the predictor’s overall performance. Mathematical formulation of
precision, recall and F1-score is provided in Eqs. (3)–(5),
respectively.

Precision ¼ tp
tp þ f p

ð3Þ

Recall ¼ tp
tp þ f n

ð4Þ

F1� Score ¼ tp

tp þ ðf pþf nÞ
2

ð5Þ
4. Experimental setup

We implemented adapted and proposed predictors on top of 7
APIs namely; keras 1, scikit-learn 2, numpy 3, math 4, scipy 5, pandas
6 and TensorFlow 7. We have computed performance of machine
learning classifiers using their default hyperparameters (MacKay,
1993). Furthermore, for proposed and adapted deep learning predic-
tors the search space of different hyperparameters along with
selected optimal values are provided in Table 4. Moreover, we have
utilized Adam optimizer and softmax cross entropy loss for proposed
and adapted deep learning predictors. Pre-trained Fasttext embed-

https://keras.io/
https://scikit-learn.org/
https://numpy.org/
https://docs.python.org/3/library/math.html
https://scipy.org/
https://pandas.pydata.org/
https://www.tensorflow.org/


Table 3
Statistical summary of benchmark datasets.

Dataset Class No. of Samples Total Vocabulary Unique Vocabulary Sample Max_length Sample Min_length Sample Average
length

Promise Functional 255 1026 570 93 6 19
Non-Functional 371 1750 1294 76 1 20

Promise-exp Functional 444 1435 797 92 4 16
Non-Functional 526 2241 1603 86 1 19

Table 4
Search space and selected values of hyperparameters for proposed and adapted deep learning predictors.

Hyperparameters Search space Selected

kernal Size 2,3,4,5,6,7 2,3,4
No. of kernels 8,16,32,64,100,128 8,16,100
Top_k_max_pooling 1,2,3,4,5,6,7,8,9,10 1,8
Hidden cells 3,4,5,6,7,8,9,10, 16, 32, 64, 5,9,64
Dropout_hidden_cell 0.1,0.01,0.001 0.1
Batch size 8,16,32,64 16
Learning rate 0.1,0.01,0.001,0.005,0.008,0.0001 0.008
Weight decay rate 0.1,0.5,1 1
Dropout_hidden_layer 0.01,0.001,0.001,0.0005,0.00001 0.0005
Random Embedding dimension 100 100
Adadelta_decay_rate 0.9,0.95,1 0.95
Adadelta_epsilon 1�e�5, 1�e�6,1 � e�7,1 � e�8,1 � e�9 1 � e�8

S. Saleem, M.N. Asim, L.V. Elst et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
dings (Khasanah, 2021) are used for feature representation apart

from 2nd layer of Yin et al. (2017) predictor and 2nd and 3rd layers
of Zhang et al. (2016b) predictor which uses random embeddings.

5. Results

First, this section highlights the impact of 7 filter-based feature
selection approaches on predictive performance of 11 machine
learning classifiers. Further, it summarizes performance of 9
adapted and proposed deep learning predictors by using all input
features and feature selection method based selected more infor-
mative features. It also presents a fair performance comparison
of proposed predictor with best performing predictors from
adapted machine and deep learning predictors over two public
benchmark datasets using 6 different evaluation measures. Fur-
ther, it provides an in-depth performance analysis of proposed
and state-of-the-art requirements classification predictors over
two benchmark datasets.

5.1. Hypotheses 1 and 2: Performance analysis of feature selection
methods and machine learning classifiers

With an aim to validate Hypotheses 1 and 2, an in-depth perfor-
mance comparison of 7 filter-based feature selection algorithms
(ACC2 (Forman et al., 2003), BNS (Forman et al., 2003), CHISQ
(Resnik, 1999), GINI (Park et al., 2010), MMR (Rehman et al.,
2018), NDM (Rehman et al., 2017), POISON (Gao and Wang,
2009)) along with 11 machine learning classifiers (AdaBoost
(Margineantu and Dietterich, 1997), Decision Tree (Quinlan,
1996), Extra Tree (Geurts et al., 2006), Gaussian NB (Leung et al.,
2007), Gradient Boosting (Friedman, 2021), KNeighbour (Aha,
1997), Logistic Regression (LaValley, 2008), Naive Bayes (Leung
et al., 2007), Random Forest (Breiman, 2001), Support Vector
Machine (Hearst et al., 1998), Extreme Gradient Boosting (Chen
et al., 2015)) at 24 different pre-defined benchmark test points of
top-ranked features (100, 150, 200, 250, 300, 350, 400, 450, 500,
7

600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150,
1200, 1250, 1300) over two benchmark datasets Promise and
Promise-exp is provided in supplementary file Tables 1 and 2. A
bird’s-eye view of supplementary Tables 1 and 2 reveals that over
both benchmark datasets, among 11 machine learning classifiers 3
classifiers namely; SVM, NB and LR produce highest performance
values by using informative features selected through 5 different
feature selection methods: MMR (Rehman et al., 2018), ACC2
(Forman et al., 2003), CHISQ (Resnik, 1999), POISON (Gao and
Wang, 2009) and GINI (Park et al., 2010). On the other hand, 2 fea-
ture selection methods BNS (Forman et al., 2003) and NDM
(Rehman et al., 2017) remain least performer in boosting the per-
formance of machine learning classifiers. Similarly, 3 classifiers
KNN, XGB and DT produce least performance while 4 classifiers
(AdaBoost, ET, GNB and GB) performance remain in line between
the predictive performance of top-performing (SVM, NB and LR)
and least performing (KNN, XGB and DT) classifiers.

Table 5 illustrates performance values of 3 best performing
machine learning classifiers, along with 5 top-performing feature
selection methods at 7 predefined test points. Overall, it can be
seen from Table 5, all 3 classifiers produce better performance
when they are fed with discriminative features as compared to
their baseline performance when they are fed with all input fea-
tures. Furthermore, as compared to baseline with selected features,
there is a slight performance gain. This primarily because require-
ments samples contain short sentences and we observe feature
selection is more comprehensive when samples contain a large
body of content. However, although samples contain short content,
still there is slight performance gain.

To obtain appropriate performance of classifier, selection of top-
ranked features is important. It can be seen in Table 5 over Promise
dataset, all feature selection algorithms along with 3 classifiers
produce better performance at top 500 and 750 features. Similarly,
in Promise-exp dataset, SVM and NB produce better performance
with top 750 features and LR produces better performance with



Table 5
Performance comparison of 5 feature selection algorithms at 7 benchmark test points using 3 machine learning classifiers over Promise and Promise-exp datasets.

Benchmark Test Points Promise Dataset Benchmark Test points Promise_Expanded Dataset

classifier FS_algo 100 200 500 750 1000 1200 1300 all 100 200 500 750 1000 1200 1300 all

Logistic Regression ACC2 0.773 0.842 0.858 0.858 0.845 0.845 0.845 0.741 0.814 0.845 0.856 0.858 0.809 0.809
CHISQ 0.766 0.840 0.861 0.860 0.845 0.845 0.845 0.739 0.819 0.844 0.856 0.858 0.809 0.809
GINI 0.773 0.842 0.858 0.858 0.845 0.845 0.845 0.741 0.814 0.845 0.856 0.858 0.809 0.809
MMR 0.773 0.842 0.858 0.858 0.845 0.845 0.845 0.741 0.814 0.845 0.856 0.858 0.809 0.809
POISON 0.773 0.842 0.858 0.858 0.845 0.845 0.845 0.741 0.814 0.845 0.856 0.858 0.809 0.809
Baseline 0.811 0.823

Naive_Bayes ACC2 0.759 0.815 0.855 0.869 0.817 0.817 0.817 0.741 0.802 0.841 0.869 0.869 0.804 0.804
CHISQ 0.751 0.817 0.855 0.875 0.817 0.817 0.817 0.742 0.804 0.841 0.870 0.870 0.804 0.804
GINI 0.759 0.815 0.855 0.869 0.817 0.817 0.817 0.741 0.802 0.841 0.869 0.869 0.804 0.804
MMR 0.759 0.815 0.855 0.869 0.817 0.817 0.817 0.741 0.802 0.841 0.869 0.869 0.804 0.804
POISON 0.759 0.815 0.855 0.869 0.817 0.817 0.817 0.741 0.802 0.841 0.869 0.869 0.804 0.804
Baseline 0.826 0.835

Support Vector
Machine

ACC2 0.766 0.845 0.864 0.872 0.827 0.827 0.827 0.726 0.801 0.838 0.878 0.875 0.816 0.816
CHISQ 0.759 0.836 0.864 0.873 0.827 0.827 0.827 0.725 0.806 0.837 0.878 0.876 0.816 0.816
GINI 0.766 0.845 0.864 0.872 0.827 0.827 0.827 0.726 0.801 0.838 0.878 0.875 0.816 0.816
MMR 0.766 0.845 0.864 0.872 0.827 0.827 0.827 0.726 0.801 0.838 0.878 0.875 0.816 0.816
POISON 0.766 0.845 0.864 0.872 0.827 0.827 0.827 0.726 0.801 0.838 0.878 0.875 0.816 0.816
Baseline 0.819 0.803

S. Saleem, M.N. Asim, L.V. Elst et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
top 1000 features. When we select only a few number of features
in this particular scenario, some samples which do not contain
selected features become empty and predictive pipeline randomly
puts an unknown word in those samples and classifier makes ran-
dom guess, this deteriorates the performance of predictive pipe-
line. Conversely, when we select a large set of top-ranked
features, it may still contain some irrelevant and redundant fea-
tures that also affect performance of predictive pipeline.

Furthermore, overall different feature selection methods along
with different classifers produce distinct performance values at dif-
ferent test points. However, overall feature selection methods pro-
duce almost similar performance values. This is primarily because
requirements samples contain short snippets of text and when we
select less number of top ranked features most of the samples
become empty. Contrarily, when we select large number of fea-
tures than most of the methods contain same number of top-
ranked features and they produce almost similar performance
values.

5.2. Hypotheses 3 and 4: Performance analysis of adapted and
proposed deep learning predictors

After investigating performance of machine learning classifiers
with 7 different feature engineering approaches, we have chosen
the best-performing feature selection approach (MMR) (Rehman
et al., 2018) to validate Hypotheses 3 and 4 by analyzing the
impact of selected features on predictive performance of proposed
and adapted deep learning predictors. Detailed performance fig-
ures of proposed and adapted deep learning predictors over 10
pre-defined benchmark test points of top-ranked features (100,
200, 300, 400, 500, 600, 700, 800, 900, 1000) in terms of F1-score
is provided in the supplementary file in Tables 4, 5 and 6. A closer
look at supplementary Tables 4, 5 and 6 reveals that, similar to
machine learning based classifiers, here once again deep learning
predictors produce different performance values at different test
points. Fig. 5 graphically illustrates performance of proposed and
adapted deep learning predictors by feeding complete features
and top-ranked features selected through MMR approach
(Rehman et al., 2018) at best benchmark test points over Promise
and Promise-exp datasets, respectively. Here, the word baseline
refers to predictors with complete features.

Considering working paradigm among adapted deep learning
predictors 4 ((Kim, 2014; Kalchbrenner et al., 2014; Yin et al.,
2017; Zhang et al., 2016b)) belongs CNN-based architecture, 2
8

((Yogatama et al., 2017; Palangi et al., 2016)) have RNN-based
architecture and 3 predictors ((Chen et al., 2017; Zhou et al.,
2015; Wang et al., 2016)) have hybrid architecture. Fig. 5 (A)
depicts F1-scores of adapted and proposed deep learning predic-
tors using all input features and selected features of Promise data-
set. Among all predictors, RNN-based (Palangi et al., 2016;
Yogatama et al., 2017) baseline predictors manage to achieve the
highest F1-score of 0.691 and 0.599, respectively. Among all
adapted predictors, group of CNN-based baseline predictors
remains worse performing by attaining minimal F1-Score. Primarly
CNN based architectures extracted discriminative features and
remains fail in extracting semantic information about words and
produced poor performance in comparison to RNN based architec-
tures which managed to capture context of requirements samples.
However, it is evident from Fig. 5 that utilizing only discriminative
features elected through MMR approach (Rehman et al., 2018)
remarkably rises performance of all adapted deep learning predic-
tors. Performance of 5 deep learning predictors ((Kalchbrenner
et al., 2014; Yin et al., 2017; Zhang et al., 2016b; Wang et al.,
2016; Chen et al., 2017)) effectively improves with an increase of
approximately 10% in F1-score by using 500, 200, 800, 700 and
800 features, respectively. Particularly, (Zhang et al., 2016b)
CNN-based predictor observes a performance boost of around
18% by utilizing top-ranked discriminate features in comparison
to baseline predictor. Proposed predictor, which utilizes self-
attention (Vaswani et al., 2017) based deep learning predictor,
drastically improves F1-Score from 0.936 to 0.945 by utilizing dis-
criminative features identified by filter-based feature selection
algorithm (MMR) (Rehman et al., 2018) instead of using complete
features. Along with deep learning predictors,iInduction of feature
selection method reveals that when predictors have comprehen-
sive discriminative features than even if they do not capture
semantical information still they can produce better performance.

It can be inferred from Fig. 5 (B) over Promise-exp dataset base-
line of adapted deep learning predictors exhibit a discouraging per-
formance with F1-Score of approximately 50% over Promise-exp
dataset. Kalchbrenner et al. (2014) CNN-based predictor is the
worst performer with F1-score of 0.42%. Conversely, instead of
complete features, feeding deep learning predictors with the most
relevant features results in a considerable rise in efficiency overall
deep learning predictors. F1-score of 6 deep learning predictors
including; (Kalchbrenner et al., 2014; Yogatama et al., 2017; Kim,
2014; Zhang et al., 2016b; Wang et al., 2016; Zhou et al., 2015) pre-
dictors rise roughly 10% by selecting top-ranked features. The



Fig. 5. Performance comparison of best feature set of MMR algorithm with baseline using 9 adapted deep learning predictors over benchmark datasets.

S. Saleem, M.N. Asim, L.V. Elst et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
remarkable performance increase in adapted deep learning predic-
tors over benchmark datasets by feeding features selected through
Max–Min ratio (MMR) (Rehman et al., 2018), highlights the poten-
tial of selected discriminative features for more accurate predic-
tions. The proposed predictor surpasses the performance of the
best performing deep learning predictor by performance gain of
30% and 32% with complete and selected features, respectively.
Performance of the proposed predictor improves with a margin
of 1% by utilizing selected features as compared to baseline predic-
tor relying on complete features.

In a nutshell, proposed and adapted deep learning predictors
significantly produce better performance when they are fed with
features selected through filter-based feature selection algorithm
(MMR) (Rehman et al., 2018) over both datasets. Apart from pre-
dictive performance, incorporation of feature selection method in
the predictive pipeline also reduces the computational complexity
of deep learning predictors. MMR approach (Rehman et al., 2018)
eliminates noisy and irrelevant features in the underlay corpus
and retains only the most informative features that facilitate pre-
dictors in accurately classifying requirements into functional and
non-functional classes. Furthermore, performance over both data-
sets reveals that, a more powerful classification predictor can be
designed by focusing on discriminative features. Specifically, pro-
posed predictor produces state-of-the-art performance values on
both benchmark datasets as it reaps the benefits of traditional fea-
9

ture selection method and in the predictor attention layer
(Vaswani et al., 2017) also focuses on more discriminative features.
5.3. Performance comparison of proposed predictor with top-
performing adapted machine learning and deep learning predictors

A large-scale experimental analysis of adapted machine learn-
ing predictive pipelines reveals that among all machine learning
classifiers, SVM classifier along with MMR feature selection
method (Rehman et al., 2018) manages to produce highest perfor-
mance over two benchmark datasets. On the other hand, from
adapted deep learning predictors optimal combination of MMR
feature selection method (Rehman et al., 2018) and best perform-
ing predictor varies according to dataset such as (Palangi et al.,
2016 and Kim, 2014) predictors produce better performance over
Promise and Promise-exp datasets, respectively. This section illus-
trates performance comparison of proposed and top-performing
adapted machine and deep learning predictors (Palangi et al.,
2016; Kim, 2014) using 6 different evaluation measures including
accuracy, precision, recall, F1-score, sensitivity and specificity.

It is evident from Fig. 6 that among adapted machine and deep
learning predictors, MMR feature selection method (Rehman et al.,
2018) and SVM classifier based predictive pipeline surpasses per-
formance of (Palangi et al., 2016 and Kim, 2014) predictors with
significant margin of around 15% and 20% across all evaluation



Fig. 6. Performance comparison of proposed and top-performing adapted machine and deep learning predictors over benchmark datasets.

Table 6
Performance comparison of proposed and existing predictors over Promise dataset under independent test set.

Author Predictor F1-Score Precision Recall

(Tiun et al., 2020) BoW + LR 89.26 88.72 90.82
BoW + NB 91.8 62.76 91.05
BoW + SVM 61.17 91.4 84.57
TFIDF + LR 92.41 91.99 92.96
TFIDF + NB 91.13 93.48 89.78
TFIDF + SVM 38.42 31.2 50
Doc2Vec + LR 82.66 82.25 84
Doc2Vec + NB 82.55 82.11 83.58
Doc2Vec + SVM 73.47 83.46 72.12
Lexical Features + SVM 92 92 92
Word2Vec + CNN 92.16 92.68 91.87
FastText 92.8 92.8 92.8

- Proposed 96.8 96.8 96.8

S. Saleem, M.N. Asim, L.V. Elst et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
measures over both promise and promise-exp datasets under 10-
fold cross-validation experimental setting. It is widely accepted
that deep learning predictors perform better on large datasets
and machine learning predictors even produce better performance
on small datasets. Both requirements classification datasets have
fewer samples that hinder predictive performance of deep learning
predictors. On the other hand, proposed predictor when fed with
discriminative feature set outperforms SVM classifier with a mar-
gin of about 5% across both datasets in terms of all evaluation
matrices. Furthermore, proposed predictor outperforms deep
learning predictors (Palangi et al., 2016; Kim, 2014) with perfor-
mance gain of approximately 20% and 25% percent over promise
and promise-exp datasets, respectively.

Although, proposed predictor is also deep leaning based but
unlike adapted deep learning predictors, it does not make use of
any CNN (O’Shea and Nash, 2015) or RNN architecture and utilizes
self-attention mechanism (Vaswani et al., 2017) that empowers
focus on more informative features. Thus, proposed predictor exhi-
bits dominating performance over both machine learning and deep
learning predictors using both benchmark datasets of require-
ments classification.

5.4. Performance comparison of proposed and existing requirements
classification predictors

This section compares performance of proposed and existing
requirements classification predictors over two benchmark data-
sets (Promise and Promise-exp) in terms of 3 different evaluation
10
measures namely precision, recall and F1-score. Over, Promise-
exp dataset existing predictors are evaluated under 10-fold cross-
validation setting while on Promise dataset existing predictors
are evaluated in two different experimental settings: 10-fold
cross-validation and independent test set with 80–20 ratio. To per-
form a fair performance comparison, we compare the performance
of proposed predictor with existing predictors using 10-fold exper-
imental setting on Promise-exp dataset and both 10-fold cross-
validation as well as independent test set based experimental set-
tings on Promise dataset.

5.4.1. Proposed and existing predictors performance comparison over
Promise dataset under independent test set experimental setting

Table 6 compares performance of proposed and existing predic-
tors over Promise independent test set. Among existing machine
learning requirements classification predictive pipelines (Tiun
et al., 2020), NB classifier with bag of words (BoW) based feature
representation approach produces better performance as com-
pared to other two classifiers namely SVM and LR. In comparison
to BoW based approach, TFIDF feature representation approach
(Ramos et al., 2003) boosts the performance of LR classifier. Pri-
marily, this is because BoW based approach transforms require-
ments into statistical feature space by computing term
frequencies of words, while TFIDF approach (Ramos et al., 2003)
makes use of both term frequencies and document frequencies of
words and assigns more comprehensive scores to informative fea-
tures. Unlike LR, NB classifier produces almost similar performance
with both BoW and TFIDF approaches. Unexpectedly, performance



Table 7
Performance comparison of proposed and existing predictors over Promise 10-fold cross-validation.

Author Predictor F1-Score Precision Recall

(Kurtanović and Maalej, 2017) Lexical features + SVM 92.5 92.5 92.5
(Abad et al., 2017) Processed data 94 94 95
(Hey et al., 2020) NoRBERT (large, ep.=10, OS)

91.5 92 91.5
(Li et al., 2022) DBGAT 94 94 94

- Proposed 94.6 94.6 94.5

Table 8
Performance comparison of proposed and baseline predictors for binary classification of requirements over Promise-exp 10-fold cross-validation.

Author Predictor F1-Score Precision Recall

(Dias Canedo and Cordeiro Mendes, 2020) KNN 82 82 82
SVM 91 91 91

- Proposed 92 92 92

S. Saleem, M.N. Asim, L.V. Elst et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
of svm classifier decreases with TFIDF representation (Ramos et al.,
2003) as compared to its performance with simple BoW based rep-
resentation approach (Zhang et al., 2010).

Contrarily, Doc2Vec approach that makes use of embedding
generation method along with NB and LR classifiers remains fail
to outperform these classifiers with BoW (Zhang et al., 2010) and
TFIDF (Ramos et al., 2003) based feature representation
approaches. However, along with this feature representation
approach, SVM classifier produces better performance as compared
to its performance with BoW (Zhang et al., 2010) and TFIDF (Ramos
et al., 2003) based feature representation methods.

Word2vec and FastText embedding generation methods based
statistical representation along with CNN (O’Shea and Nash,
2015) and linear classifiers produce almost similar performance
by achieving 92.16% and 92.8% F1-scores. SVM classifier along with
lexical features where authors first tagged requirements text with
adjectives nouns, verbs and adverbs produces 92% F1-score. Over-
all, it can be concluded in existing approaches feature representa-
tion methods showed important role in the predictive performance
of machine and deep learning classifiers. Among all feature repre-
sentation approaches, FastText approach produced highest perfor-
mance as it generates statistical representation by considering
subwords based distribution of content and is more competent in
extracting semantics of text.

On the other hand, proposed approach that makes use of
selected more discriminative features and attention-based mecha-
nism outperforms all existing approaches and produces highest
performance by achieving F1-score 96.8%. Overall, based on exper-
imental results it can be concluded, in requirements classification
predictive pipelines feature representation part is more important
to achieve better performance. However, predictive performance of
proposed approach reveals that as compared to feature representa-
tion part, if predictive pipeline is enriched with feature selection
and attention architecture, even along with random embeddings
predictive pipeline can produce decent performance. We believe
along with pretrained word embeddings predictive performance
of proposed predictor can further be improved.
5.4.2. Proposed and existing predictors performance comparison over
Promise dataset under 10-fold cross-validation experimental setting

Table 7 illustrates performance comparison of proposed and
existing predictors over Promise dataset under 10-fold cross-
validation. Among existing predictors, Bert language model (Hey
et al., 2020) produces least performance by achieving 91.5% F1-
score. Although, language models have produced state-of-the-art
performance for diverse types of natural language processing
11
applications including textual document classification (Liao et al.,
2023), sentiment analysis (Alaparthi and Mishra, 2021), hate
speech detection (Mozafari et al., 2019) and question answering
systems (Qu et al., 2019). Mainly, language models working para-
digm can be summarized into 3 main steps, unsupervised training
on large generic textual data and fine-tuning on domain-specific
text. Finally, supervised training and evaluation of model. Specifi-
cally, in requirements classification tasks, domain-specific data is
very less and it cannot be properly utilized to fine-tune language
models which is why BERT based predictor remain fail to produce
better performance. Kurtanović and Maalej (2017) SVM based pre-
dictor produces performance even better than Bert language
model. This is primarily because authors (Kurtanović and Maalej,
2017) enriched predictor with lexical features, such as by first tag-
ging textual data with nouns, adjectives and adverbs. The induc-
tion of lexical features enhances the performance of svm
classifier. Abad et al. (2017) and Li et al. (2022) predictors produce
94% F1-score that is better than both svm and Bert based language
models. However, Abad et al. (2017) predictor is not generic as it
categorizes requirements into functional and non-functional
classes based on predefined rules only. Predefined rules are accu-
rately categorizing requirements into predefined classes but prob-
ably these rules may not categorize requirements in real-time
deployment. Overall, among existing approaches, (Li et al., 2022)
predictor is more accurate as it makes use of a graph-based embed-
ding generation strategy along with Bert language model.
5.4.3. Proposed and existing predictors performance comparison over
Promise-exp dataset under 10-fold cross-validation experimental
setting

Table 8 highlights performance comparison of proposed and
existing predictors for discriminating functional and non-
functional requirements over Promise-exp dataset using 10-fold
cross-validation experimental setting. Dias Canedo and Cordeiro
Mendes (2020)) approach investigates performance of BoW based
feature representation with traditional machine learning classifiers
namely; KNN and SVM. SVM outperforms KNN with performance
gain of 9% across all 3 measures precision, recall and F1-Score. Pro-
posed predictor based on feature selection method and attention
mechanism once again outperforms (Dias Canedo and Cordeiro
Mendes, 2020) KNN predictor by 10% and SVM predictor by 1%
across all 3 evaluation measures. Here it can be seen from Table 8,
all predictors have same precision and recall scores, which illus-
trates that both existing and proposed predictors are robust as they
are neither biased towards type I or type II errors.



S. Saleem, M.N. Asim, L.V. Elst et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
6. Discussion

� Hypothesis 1: Do traditional feature selection methods improve
machine learning classifier’s performance?
In traditional machine learning based predictive pipelines fea-
ture selection becomes essential when number of features
becomes larger than number of samples. However, in current
problem number of features are not greater than number of
samples and theoretically it is not necessary to perform feature
selection. Experimental results reveal that over-requirement
classification datasets feature selection has improved the per-
formance of predictors. This means even when number of fea-
tures is less than number of samples still feature selection can
slightly improve classification performance. On the other hand,
in a particular task in which number of features is greater than
number of samples, feature selection boosts more performance
as compared to the performance it has boosted in current task.

� Which optimal combination of feature selection algorithm and
classifier produces better performance?.
Min–Max Ratio (MMR) feature selection method along with
SVM and LR produces better performance based on different
benchmark test points classifier. Primarily, MMR feature selec-
tion method assigns higher scores to more discriminative words
and lower scores to less discriminative as well as frequent and
rare words.

� Dose combined potential of traditional feature selection and
attention architecture enhance classifier performance by focus-
ing on most informative features?.
Our prime objective was to analyze, performance behavior of
deep learning predictors when they are fed with all input fea-
tures and with only the most discriminative features. We
noticed that when deep learning predictors were fed with input
samples having all features they produce comparably less per-
formance as compared to their performance when they were
fed with samples having the most discriminative features.
Specifically, in the first scenario, we feed deep learning models
with samples having all features in them. In the second scenar-
io, we utilize a traditional feature selection method to remove
irrelevant and redundant features from input samples (Tutsoy
et al., 2020). Experimental results reveal that external feature
engineering improves their predictive performance and reduces
their computational complexity.

� Dose standalone attention mechanism based classifier produce
performance better than CNN and RNN architecture based clas-
sifiers?.
Deep learning predictors require large training data and in
requirement classification task training data is small. That is
why traditional deep learning predictors produce less perfor-
mance. According to nature of the requirements data, we
designed a lightweight deep learning predictor that only makes
use of the attention mechanism and does not use any CNN or
RNN layers.

7. Limitations of study

Mainly requirement classification falls into two different cate-
gories namely binary and multi-class. In binary classification,
requirements are categorized into functional and non-functional
classes while in multi-class classification, requirements are catego-
rized into functional or nonfunctional subclasses. In binary classi-
fication, there exist comprehensive discriminative features
between functional and nonfunctional classes and based on dis-
criminative feature requirements can be accurately categorized.
12
However, in case of multi-class classification, there exist less dis-
criminative patterns among different non-functional classes.
Therefore, to precisely categorize requirements into different types
of non-functional classes machine learning algorithms require both
discriminative as well as contextual information. The proposed
predictor focuses on discriminative features so it can be utilized
for binary class classification and it may not perform better for
multi-class classification. However, for multi-class classification,
its predictive performance can be improved by incorporating addi-
tional branches that focus on the extraction of contextual
information.

Prime focus of this study was to analyze the impact of tradi-
tional feature selection algorithms on the predictive performance
of classifiers. However, apart from suitable subset of features, per-
formance of traditional machine learning classifiers also relies on
the optimal combination of their hyperparameters values. In this
study, experimentation is performed with classifiers’ default
hyperparameters. Along with selected informative subsets of fea-
tures, selection of classifiers’ optimal hyperparameters values
may further improve classifiers’ predictive performance. Addition-
ally, in this study, small size datasets are used and there is need for
development of large benchmark datasets for the development of
more powerful and generic predictors.
8. Conclusion

Accurate discrimination of requirements into functional and
non-functional classes is a fundamental step of requirement engi-
neering. In existing predictors, focus of researchers has been on
exploring better feature representation approaches for the devel-
opment of better predictive pipelines competent in precisely cate-
gorizing requirements into functional and non-functional classes.
In existing approaches, potential of feature selection approaches
remains unexplored. The paper in hand explores combined poten-
tial of 7 filter-based feature selection algorithms and 11 machine
learning classifiers for requirements classification over two bench-
mark datasets. It also presents a unique study, to simultaneously
reap the benefits of traditional feature selection and diverse types
of deep learning predictors. Experimental results reveal that tradi-
tional feature selection approaches boost the perdictive perfor-
mance of both machine and deep learning predictors. Moreover,
this paper presents a novel predictor that utilizes power of tradi-
tional feature selection techniques with self-attention based linear
classifier. The proposed predictor outperforms state-of-the-art
requirements classification approaches with a significant margin
of 4% and 1% over Promise and Promise-exp datasets in terms of
F1-Score. We believe proposed predictor performance can be fur-
ther improved by incorporating pretrained word embeddings.

To further improve the predictive performance of requirements
classification, a compiling direction of work presented in this paper
will be to explore the potential of different word embedding meth-
ods (Word2Vec, FastText, Node2Vec, GLoVE, LINE, etc.). In current
study deep learning predictors make use of randomly initialized
embeddings. However, requirements classification datasets are
small in size and utilization of pre-trained word embeddings
may enhance the performance of deep learning predictors. Primar-
ily word embeddings learn distributions of words in unsupervised
fashion and utilization of pre-trained vectors of words at embed-
ding layers of deep learning classifiers facilitate them to produce
better performance even on small size datasets. Another possible
direction is to find optimal hyperparameters of traditional machine
learning classifiers by utilizing any genetic algorithm.



S. Saleem, M.N. Asim, L.V. Elst et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jksuci.2023.101665.

References

Abad, Z.S.H., Karras, O., Ghazi, P., Glinz, M., Ruhe, G., Schneider, K., 2017. What
works better? a study of classifying requirements. 2017 IEEE 25th International
Requirements Engineering Conference (RE). IEEE, pp. 496–501.

Abbasi, M.S., Al-Sahaf, H., Mansoori, M., Welch, I., 2022. Behavior-based
ransomware classification: A particle swarm optimization wrapper-based
approach for feature selection. Appl. Soft Comput. 121, 108744.

Aha, D., 1997. Special ai review issue on lazy learning. Artif. Intell. Rev. 11.
Ajagbe, M., Zhao, L., 2022. Retraining a bert model for transfer learning in

requirements engineering: A preliminary study. 2022 IEEE 30th International
Requirements Engineering Conference (RE). IEEE, pp. 309–315.

Alaparthi, S., Mishra, M., 2021. Bert: A sentiment analysis odyssey. J. Market. Anal. 9
(2), 118–126.

Althanoon, A.A.A., Younis, Y.S., 2021. Supporting classification of software
requirements system using intelligent technologies algorithms.

Asim, M.N., Khan, M.U.G., Malik, M.I., Razzaque, K., Dengel, A., Ahmed, S., 2019. Two
stream deep network for document image classification. 2019 International
Conference on Document Analysis and Recognition (ICDAR). IEEE, pp. 1410–
1416. https://doi.org/10.1109/ICDAR.2019.00227.

Asim, M.N., Ghani, M.U., Ibrahim, M.A., Mahmood, W., Dengel, A., Ahmed, S., 2021.
Benchmarking performance of machine and deep learning-based
methodologies for urdu text document classification. Neural Comput. Appl.
33, 5437–5469.

Baker, C., Deng, L., Chakraborty, S., Dehlinger, J., 2019. Automatic multi-class non-
functional software requirements classification using neural networks. 2019
IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC).
IEEE, pp. 610–615.

Balaji, S., Murugaiyan, M.S., 2012. Waterfall vs. v-model vs. agile: A comparative
study on sdlc. Int. J. Informat. Technol. Bus. Manage. 2 (1), 26–30.

Baldi, P., Sadowski, P.J., 2013. Understanding dropout. Adv. Neural Informat.
Process. Syst. 26.

Becker, P., Tebes, G., Peppino, D., Olsina Santos, L.A., 2019. Applying an improving
strategy that embeds functional and non-functional requirements concepts. J.
Comput. Sci. Technol. 19.

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32.
Chaiani, M., Selouani, S.A., Boudraa, M., Yakoub, M.S., 2022. Voice disorder

classification using speech enhancement and deep learning models.
Biocybernet. Biomed. Eng. 42 (2), 463–480.

Chen, Y., 2015. Convolutional neural network for sentence classification. University
of Waterloo. Master’s thesis.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R.,
Cano, I., Zhou, T., et al., 2015. Xgboost: extreme gradient boosting. R package
version 0.4-2 1 (4), 1–4.

Chen, G., Ye, D., Xing, Z., Chen, J., Cambria, E., 2017. Ensemble application of
convolutional and recurrent neural networks for multi-label text
categorization. 2017 International Joint Conference on Neural Networks
(IJCNN). IEEE, pp. 2377–2383.

Dias Canedo, E., Cordeiro Mendes, B., 2020. Software requirements classification
using machine learning algorithms. Entropy 22 (9), 1057.

El Aboudi, N., Benhlima, L., 2016. Review on wrapper feature selection
approaches. In: 2016 International Conference on Engineering & MIS
(ICEMIS). IEEE, pp. 1–5.

Fávero, E.M.D.B., Casanova, D., 2021. Bert_se: A pre-trained language representation
model for software engineering, arXiv preprint arXiv:2112.00699.

Felderer, M., Travassos, G.H., 2020. Contemporary Empirical Methods in Software
Engineering. Springer.

Forman, G. et al., 2003. An extensive empirical study of feature selection metrics for
text classification. J. Mach. Learn. Res. 3 (Mar), 1289–1305.

Friedman, J., 2021. Greedy boosting approximation: a gradient boosting machine.
Annals Stat.

Gao, Y., Wang, H.-L., 2009. A feature selection algorithm based on poisson estimates.
In: 2009 Sixth International Conference on Fuzzy Systems and Knowledge
Discovery, vol. 1, IEEE, pp. 13–18.

Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Mach. Learn.
63, 3–42.

Haghighat, A., Sharma, A., 2023. A computer vision-based deep learning model to
detect wrong-way driving using pan–tilt–zoom traffic cameras. Comput.-Aided
Civil Infrastruct. Eng. 38 (1), 119–132.
13
Haque, M.A., Rahman, M.A., Siddik, M.S., 2019. Non-functional requirements
classification with feature extraction and machine learning: An empirical
study. In: 2019 1st International Conference on Advances in Science,
Engineering and Robotics Technology (ICASERT). IEEE, pp. 1–5.

Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B., 1998. Support vector
machines. IEEE Intell. Syst. Appl. 13 (4), 18–28.

Hey, T., Keim, J., Koziolek, A., Tichy, W.F., 2020. Norbert: Transfer learning for
requirements classification. 2020 IEEE 28th International Requirements
Engineering Conference (RE). IEEE, pp. 169–179.

Hidellaarachchi, D., Grundy, J., Hoda, R., Madampe, K., 2021. The effects of human
aspects on the requirements engineering process: A systematic literature
review. IEEE Trans. Software Eng.

Horkoff, J., 2019. Non-functional requirements for machine learning: Challenges
and new directions. 2019 IEEE 27th International Requirements Engineering
Conference (RE). IEEE, pp. 386–391.

Ivanov, V., Sadovykh, A., Naumchev, A.Bagnato, A., Yakovlev, K., 2022. Extracting
software requirements from unstructured documents. In: Recent Trends in
Analysis of Images, Social Networks and Texts: 10th International Conference,
AIST 2021, Tbilisi, Georgia, December 16–18, 2021, Revised Selected Papers,
Springer, pp. 17–29.

Jalal, N., Mehmood, A., Choi, G.S., Ashraf, I., 2022. A novel improved random forest
for text classification using feature ranking and optimal number of trees. J. King
Saud Univ.-Comput. Informat. Sci. 34 (6), 2733–2742.

Jarzebowicz, A., Weichbroth, P., 2021. A systematic literature review on
implementing non-functional requirements in agile software development:
Issues and facilitating practices. In: Lean and Agile Software Development: 5th
International Conference, LASD 2021, Virtual Event, January 23, 2021,
Proceedings 5, Springer, pp. 91–110.

Jović, A., Brkić, K., Bogunović, N., 2015. A review of feature selection methods with
applications. 2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO). Ieee,
pp. 1200–1205.

Kalchbrenner, N., Grefenstette, E., Blunsom, P., 2014. A convolutional neural
network for modelling sentences. In: Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
Association for Computational Linguistics, Baltimore, Maryland, pp. 655–665.
https://doi.org/10.3115/v1/P14-1062. https://aclanthology.org/P14-1062.

Kaur, K., Kaur, P., 2022. Sabdm: A self-attention based bidirectional-rnn deep model
for requirements classification. J. Softw.: Evol. Process, e2430.

Khamparia, A., Singh, P.K., Rani, P., Samanta, D., Khanna, A., Bhushan, B., 2021. An
internet of health things-driven deep learning framework for detection and
classification of skin cancer using transfer learning. Trans. Emerg. Telecommun.
Technol. 32 (7), e3963.

Khasanah, I.N., 2021. Sentiment classification using fasttext embedding and deep
learning model. Proc. Comput. Sci. 189, 343–350.

Khayashi, F., Jamasb, B., Akbari, R., Shamsinejadbabaki, P., 2022. Deep learning
methods for software requirement classification: A performance study on the
pure dataset. arXiv preprint arXiv:2211.05286.

Khurana, D., Koli, A., Khatter, K., Singh, S., 2023. Natural language processing: State
of the art, current trends and challenges. Multimedia Tools Appl. 82 (3), 3713–
3744.

Kici, D., Bozanta, A., Cevik, M., Parikh, D., Bas�ar, A., 2021a. Text classification on
software requirements specifications using transformer models. In: Proceedings
of the 31st Annual International Conference on Computer Science and Software
Engineering, pp. 163–172.

Kici, D., Malik, G., Cevik, M., Parikh, D., Basar, A., 2021b. A bert-based transfer
learning approach to text classification on software requirements
specifications. In: Canadian Conference on AI.

Kim, Y., 2014. Convolutional neural networks for sentence classification. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Association for Computational Linguistics,
Doha, Qatar, pp. 1746–1751. https://doi.org/10.3115/v1/D14-1181. https://
aclanthology.org/D14-1181.

Knauss, E., Houmb, S., Schneider, K., Islam, S., Jürjens, J., 2011. Supporting
requirements engineers in recognising security issues. In: Requirements
Engineering: Foundation for Software Quality: 17th International Working
Conference, REFSQ 2011, Essen, Germany, March 28–30, 2011. Proceedings 17,
Springer, pp. 4–18.

Kumar, A., Jaiswal, A., Garg, S., Verma, S., Kumar, S., 2022. Sentiment analysis using
cuckoo search for optimized feature selection on kaggle tweets. In: Research
Anthology on Implementing Sentiment Analysis Across Multiple Disciplines, IGI
Global, pp. 1203–1218.

Kurtanović, Z., Maalej, W., 2017. Automatically classifying functional and non-
functional requirements using supervised machine learning. 2017 IEEE 25th
International Requirements Engineering Conference (RE). Ieee, pp. 490–495.

LaValley, M.P., 2008. Logistic regression. Circulation 117 (18), 2395–2399.
Leclercq, M., Vittrant, B., Martin-Magniette, M.L., Scott Boyer, M.P., Perin, O.,

Bergeron, A., Fradet, Y., Droit, A., 2019. Large-scale automatic feature selection
for biomarker discovery in high-dimensional omics data. Front. Genet. 10, 452.

Leung, K.M. et al., 2007. Naive bayesian classifier. Polytechnic Univ. Depart. Comput.
Sci./Finance Risk Eng. 2007, 123–156.

Liao, W., Liu, Z., Dai, H., Wu, Z., Zhang, Y., Huang, X., Chen, Y., Jiang, X., Zhu, D., Liu, T.
et al., 2023. Mask-guided bert for few shot text classification, arXiv preprint
arXiv:2302.10447.

Li, G., Zheng, C., Li, M., Wang, H., 2022. Automatic requirements classification based
on graph attention network. IEEE Access 10, 30080–30090.

https://doi.org/10.1016/j.jksuci.2023.101665
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0005
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0005
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0005
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0010
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0010
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0010
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0015
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0020
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0020
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0020
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0025
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0025
https://doi.org/10.1109/ICDAR.2019.00227
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0040
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0040
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0040
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0040
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0045
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0045
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0045
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0045
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0050
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0050
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0055
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0055
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0060
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0060
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0060
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0065
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0070
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0070
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0070
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0075
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0075
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0080
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0080
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0080
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0085
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0085
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0085
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0085
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0090
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0090
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0095
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0095
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0095
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0105
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0105
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0110
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0110
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0125
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0125
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0130
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0130
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0130
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0135
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0135
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0135
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0135
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0140
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0140
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0145
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0145
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0145
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0150
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0150
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0150
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0155
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0155
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0155
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0165
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0165
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0165
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0175
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0175
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0175
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0175
https://doi.org/10.3115/v1/P14-1062
https://aclanthology.org/P14-1062
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0185
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0185
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0190
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0190
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0190
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0190
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0195
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0195
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0205
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0205
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0205
https://doi.org/10.3115/v1/D14-1181
https://aclanthology.org/D14-1181
https://aclanthology.org/D14-1181
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0235
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0235
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0235
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0240
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0245
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0245
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0245
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0260
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0260


S. Saleem, M.N. Asim, L.V. Elst et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101665
Lima, M., Valle, V., Costa, E., Lira, F., Gadelha, B., 2019. Software engineering
repositories: Expanding the promise database. In: Proceedings of the XXXIII
Brazilian Symposium on Software Engineering, pp. 427–436.

Lualdi, M., Fasano, M., 2019. Statistical analysis of proteomics data: a review on
feature selection. J. Proteomics 198, 18–26.

Luo, X., Xue, Y., Xing, Z., Sun, J., 2022. Prcbert: Prompt learning for requirement
classification using bert-based pretrained language models. In: 37th IEEE/ACM
International Conference on Automated Software Engineering, pp. 1–13.

MacKay, D.J., 1993. Hyperparameters: optimize, or integrate out? Maximum
Entropy Bayesian Methods: Santa Barbara, California, USA 1996, 43–59.

Maldonado, S., López, J., 2018. Dealing with high-dimensional class-imbalanced
datasets: Embedded feature selection for svm classification. Appl. Soft Comput.
67, 94–105.

Margineantu, D.D., Dietterich, T.G., 1997. Pruning adaptive boosting. ICML, vol. 97.
Citeseer, pp. 211–218.

Maruping, L.M., Matook, S., 2020. The evolution of software development
orchestration: current state and an agenda for future research. Eur. J.
Informat. Syst. 29 (5), 443–457.

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., Gao, J., 2021.
Deep learning–based text classification: a comprehensive review. ACM Comput.
Surv. (CSUR) 54 (3), 1–40.

Mozafari, M., Farahbakhsh, R., Crespi, N., 2019. A bert-based transfer learning
approach for hate speech detection in online social media. In: Complex
Networks and Their Applications VIII: Volume 1 Proceedings of the Eighth
International Conference on Complex Networks and Their Applications
COMPLEX NETWORKS 2019 8, Springer, pp. 928–940.

Onan, A., 2021. Sentiment analysis on massive open online course evaluations: a
text mining and deep learning approach. Comput. Appl. Eng. Educ. 29 (3), 572–
589.

O’Shea, K., Nash, R., 2015. An introduction to convolutional neural networks, arXiv
preprint arXiv:1511.08458.

Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., Ward, R., 2016. Deep
sentence embedding using long short-term memory networks: Analysis and
application to information retrieval. IEEE/ACM Trans. Audio Speech Lang.
Process. 24 (4), 694–707.

Park, H., Kwon, S., Kwon, H.-C., 2010. Complete gini-index text (git) feature-
selection algorithm for text classification. In: The 2nd International Conference
on Software Engineering and Data Mining. IEEE, pp. 366–371.

Parlak, B., Uysal, A.K., 2023. A novel filter feature selection method for text
classification: Extensive feature selector. J. Informat. Sci. 49 (1), 59–78.

Petersen, K., Wohlin, C., Baca, D., 2009. The waterfall model in large-scale
development. In: Product-Focused Software Process Improvement: 10th
International Conference, PROFES 2009, Oulu, Finland, June 15–17, 2009.
Proceedings 10, Springer, pp. 386–400.

Qu, C., Yang, L., Qiu, M., Croft, W.B., Zhang, Y., Iyyer, M., 2019. Bert with history
answer embedding for conversational question answering. In: Proceedings of
the 42nd international ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 1133–1136.

Quinlan, J.R., 1996. Learning decision tree classifiers. ACM Comput. Surv. (CSUR) 28
(1), 71–72.

Rahimi, N., Eassa, F., Elrefaei, L., 2020. An ensemble machine learning technique for
functional requirement classification. Symmetry 12 (10), 1601.

Rahimi, N., Eassa, F., Elrefaei, L., 2021. One-and two-phase software requirement
classification using ensemble deep learning. Entropy 23 (10), 1264.

Rahman, M.A., Haque, M.A., Tawhid, M.N.A., Siddik, M.S., 2019. Classifying non-
functional requirements using rnn variants for quality software development.
In: Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine
Learning Techniques for Software Quality Evaluation, pp. 25–30.

Ramos, J. et al., 2003. Using tf-idf to determine word relevance in document queries.
In: Proceedings of the First Instructional Conference on Machine Learning, vol.
242, Citeseer, pp. 29–48.

Rehman, A., Javed, K., Babri, H.A., 2017. Feature selection based on a normalized
difference measure for text classification. Informat. Process. Manage. 53 (2),
473–489.

Rehman, A., Javed, K., Babri, H.A., Asim, M.N., 2018. Selection of the most relevant
terms based on a max-min ratio metric for text classification. Expert Syst. Appl.
114, 78–96.

Resnik, P., 1999. Semantic similarity in a taxonomy: An information-based measure
and its application to problems of ambiguity in natural language. J. Artificial
Intell. Res. 11, 95–130.
14
Saleem, S., Ghani Khan, M.U., Saba, T., Abunadi, I., Rehman, A., Bahaj, S.A., 2022.
Efficient facial recognition authentication using edge and density variant sketch
generator. Comput. Mater. Continua 70 (1).

Sayyad Shirabad, J., Menzies, T., 2005. Promise software engineering repository.
Shafiq, M., Tian, Z., Bashir, A.K., Jolfaei, A., Yu, X., 2020. Data mining and machine

learning methods for sustainable smart cities traffic classification: A survey.
Sustain. Cities Soc. 60, 102177.

Sharma, S., Jain, A., 2023. Hybrid ensemble learning with feature selection for
sentiment classification in social media. In: Research Anthology on Applying
Social Networking Strategies to Classrooms and Libraries, IGI Global, pp. 1183–
1203.

Singh, P., Singh, D., Sharma, A., 2016. Rule-based system for automated
classification of non-functional requirements from requirement specifications.
In: 2016 International Conference on Advances in Computing, Communications
and Informatics (ICACCI). IEEE, pp. 620–626.

Tang, S., Yuan, S., Zhu, Y., 2019. Deep learning-based intelligent fault diagnosis
methods toward rotating machinery. Ieee Access 8, 9335–9346.

Tiun, S., Mokhtar, U., Bakar, S., Saad, S., 2020. Classification of functional and non-
functional requirement in software requirement using word2vec and fast text.
Journal of Physics: Conference Series, vol. 1529. IOP Publishing, p. 042077.

Tóth, L., Vidács, L., 2019. Comparative study of the performance of various classifiers
in labeling non-functional requirements. Informat. Technol. Control 48 (3),
432–445.

Tutsoy, O., Polat, A., Çolak, S�., Balikci, K., 2020. Development of a multi-dimensional
parametric model with non-pharmacological policies for predicting the covid-
19 pandemic casualties. Ieee Access 8, 225272–225283.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I., 2017. Attention is all you need. Adv. Neural Informat. Process.
Syst. 30.

Vlas, R., Robinson, W.N., 2011. A rule-based natural language technique for
requirements discovery and classification in open-source software
development projects. In: 2011 44th Hawaii International Conference on
System Sciences. IEEE, pp. 1–10.

Vlas, R.E., Robinson, W.N., 2012. Two rule-based natural language strategies for
requirements discovery and classification in open source software development
projects. J. Manage. Informat. Syst. 28 (4), 11–38.

Vogelsang, A., Borg, M., 2019. Requirements engineering for machine learning:
Perspectives from data scientists. 2019 IEEE 27th International Requirements
Engineering Conference Workshops (REW). IEEE, pp. 245–251.

Wang, X., Jiang, W., Luo, Z., 2016. Combination of convolutional and recurrent
neural network for sentiment analysis of short texts. In: Proceedings of COLING
2016, the 26th International Conference on Computational Linguistics:
Technical Papers, pp. 2428–2437.

Wang, S., Tang, J., Liu, H., 2017. Feature selection..
Yin, W., Schütze, H., 2016. Multichannel variable-size convolution for sentence

classification, arXiv preprint arXiv:1603.04513.
Yin, W., Kann, K., Yu, M., Schütze, H., 2017. Comparative study of cnn and rnn for

natural language processing, arXiv preprint arXiv:1702.01923.
Yogatama, D., Dyer, C., Ling, W., Blunsom, P., 2017. Generative and discriminative

text classification with recurrent neural networks, arXiv preprint
arXiv:1703.01898.

Zanella, L., Facco, P., Bezzo, F., Cimetta, E., 2022. Feature selection and molecular
classification of cancer phenotypes: A comparative study. Int. J. Mol. Sci. 23 (16),
9087.

Zhang, Y., Jin, R., Zhou, Z.-H., 2010. Understanding bag-of-words model: a statistical
framework. Int. J. Machine Learn. Cybernet. 1, 43–52.

Zhang, Y., Roller, S., Wallace, B., 2016. Mgnc-cnn: A simple approach to exploiting
multiple word embeddings for sentence classification, arXiv preprint
arXiv:1603.00968.

Zhang, Y., Roller, S., Wallace, B.C., 2016. MGNC-CNN: A simple approach to
exploiting multiple word embeddings for sentence classification. In:
Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Association for Computational Linguistics, San Diego, California, pp. 1522–1527.
https://doi.org/10.18653/v1/N16-1178. https://aclanthology.org/N16-1178.

Zhou, C., Sun, C., Liu, Z., Lau, F., 2015. A c-lstm neural network for text classification,
arXiv preprint arXiv:1511.08630.

http://refhub.elsevier.com/S1319-1578(23)00219-7/h0270
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0270
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0280
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0280
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0285
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0285
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0285
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0290
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0290
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0295
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0295
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0295
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0300
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0300
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0300
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0310
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0310
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0310
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0320
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0320
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0320
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0320
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0325
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0325
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0325
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0330
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0330
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0345
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0345
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0350
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0350
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0355
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0355
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0370
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0370
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0370
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0375
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0375
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0375
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0380
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0380
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0380
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0385
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0385
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0385
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0395
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0395
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0395
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0405
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0405
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0405
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0405
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0410
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0410
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0415
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0415
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0415
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0420
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0420
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0420
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0425
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0425
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0425
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0425
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0430
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0430
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0430
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0430
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0435
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0435
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0435
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0435
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0440
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0440
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0440
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0445
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0445
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0445
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0475
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0475
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0475
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0480
http://refhub.elsevier.com/S1319-1578(23)00219-7/h0480
https://doi.org/10.18653/v1/N16-1178
https://aclanthology.org/N16-1178

	FNReq-Net: A hybrid computational framework for functional �and non-functional requirements classification
	1 Introduction
	2 Related work
	3 Materials and methods
	3.1 Machine learning predictors
	3.2 Adapted deep learning predictors
	3.3 Proposed predictor
	3.4 Benchmark datasets
	3.5 Evaluation measures

	4 Experimental setup
	5 Results
	5.1 Hypotheses 1 and 2: Performance analysis of feature selection methods and machine learning classifiers
	5.2 Hypotheses 3 and 4: Performance analysis of adapted and proposed deep learning predictors
	5.3 Performance comparison of proposed predictor with top-performing adapted machine learning and deep learning predictors
	5.4 Performance comparison of proposed and existing requirements classification predictors
	5.4.1 Proposed and existing predictors performance comparison over Promise dataset under independent test set experimental setting
	5.4.2 Proposed and existing predictors performance comparison over Promise dataset under 10-fold cross-validation experimental setting
	5.4.3 Proposed and existing predictors performance comparison over Promise-exp dataset under 10-fold cross-validation experimental setting


	6 Discussion
	7 Limitations of study
	8 Conclusion
	Declaration of Competing Interest
	Appendix A Supplementary material
	References


