
International Journal on Document Analysis and Recognition (IJDAR) (2023) 26:187–209
https://doi.org/10.1007/s10032-023-00429-8

SPEC IAL ISSUE PAPER

Analyzing the potential of active learning for document image
classification

Saifullah Saifullah1,2 · Stefan Agne1,3 · Andreas Dengel1,2 · Sheraz Ahmed1,3

Received: 14 November 2022 / Accepted: 23 March 2023 / Published online: 25 April 2023
© The Author(s) 2023, corrected publication 2023

Abstract
Deep learning has been extensively researched in the field of document analysis and has shown excellent performance across
a wide range of document-related tasks. As a result, a great deal of emphasis is now being placed on its practical deployment
and integration into modern industrial document processing pipelines. It is well known, however, that deep learning models
are data-hungry and often require huge volumes of annotated data in order to achieve competitive performances. And since
data annotation is a costly and labor-intensive process, it remains one of the major hurdles to their practical deployment. This
study investigates the possibility of using active learning to reduce the costs of data annotation in the context of document
image classification, which is one of the core components of modern document processing pipelines. The results of this study
demonstrate that by utilizing active learning (AL), deep document classificationmodels can achieve competitive performances
to the models trained on fully annotated datasets and, in some cases, even surpass them by annotating only 15–40% of the total
training dataset. Furthermore, this study demonstrates that modern AL strategies significantly outperform random querying,
and in many cases achieve comparable performance to the models trained on fully annotated datasets even in the presence of
practical deployment issues such as data imbalance, and annotation noise, and thus, offer tremendous benefits in real-world
deployment of deep document classification models. The code to reproduce our experiments is publicly available at https://
github.com/saifullah3396/doc_al.

Keywords Document image classification · Document analysis · Active learning · Deep active learning

1 Introduction

Document analysis is a field of research that deals with
automating the process of reading, analyzing, and under-
standing business documents. Modern businesses rely heav-
ily on business documents to communicate details of their
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internal and external transactions, which is critical to their
efficiency and productivity. As large volumes of documents
are produced on a daily basis, there is an urgent need today
to automate the processing of these documents to facilitate
tasks such as search, retrieval, and information extraction.
However, automated processing of documents can be partic-
ularly challenging for a number of reasons, including high
levels of data complexity [1], large inter-class similarity and
intra-class variance [2], and corruption of scanned document
data with various types of distortions [3].

To address the aforementioned challenges, deep learning
has been extensively explored in the field and has proven
to be exceptionally effective in a wide range of document
analysis tasks such as document image classification [4, 5],
layout analysis [5], OCR [6], etc. However, deep learning
presents some unique challenges of its own. One major dis-
advantage of deep learning-based approaches is that their
performance is heavily dependent on the availability of
large amounts of annotated training data. While most real-
world tasks have a vast amount of data available that could
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Fig. 1 Two samples of different classes with high similarity (top left)
and two samples of the same class with high variance (top right) are
shown

be annotated, which is also true for document processing
tasks, data annotation is generally a labor-intensive task and
can become extremely costly for certain tasks that require
domain experts’ knowledge to annotate. Furthermore, mod-
ern document processing pipelines are often continuously
under development to accommodate new and evolving tasks
and data requirements. Consequently, data annotation often
becomes a routine process within these pipelines, resulting
in an increased labor cost.

Active learning (AL) is a relatively new and emerging
research topic that directly addresses the above mentioned
challenges of data annotation costs [7]. The goal of active
learning is to maximize the performance of deep learning
models while minimizing the costs associated with anno-
tation. Generally, AL involves training a machine learning
model on a small labeled dataset and then using it to extract
the most informative samples from an unlabeled pool of
data samples. The newly extracted samples are then sent
to the Oracle for labeling and incorporated back into the
labeled dataset. Lastly, the model is retrained on the updated
labeled dataset and the process is repeated. Active learning
has recentlymade remarkable advancements [8], particularly
in the fields of image classification [9–11] and seman-
tic segmentation [12], where it has shown to significantly
reduce annotation costs without adversely affecting model
performance. However, despite the fact that AL can pro-
vide substantial benefits in terms of reducing annotation
costs associated with document analysis tasks, only limited
literature has been published in this direction. This paper
investigates AL for reducing data annotation costs specifi-
cally in the context of document image classification, which
is one of the core elements of modern document processing
pipelines.

The task of document image classification poses a sig-
nificant challenge due to the high intra-class variance and
inter-class similarity [2, 13]. An example of this is shown in
Fig. 1. Not only does this make it difficult for deep learning
models to distinguish between different document classes,
but also for humans to annotate them, which in turn increases
the possibility of high annotation noise in document classi-
fication datasets. Therefore, this paper explores not only the

effectiveness of existing AL approaches for reducing annota-
tion costs while maintaining high performance, but also their
effectiveness in countering labeling noise in document image
classification. Data imbalance is another prevalent issue in
real-world document datasets, and therefore, this paper addi-
tionally investigates the performance of AL under different
scenarios of data bias and imbalance. In summary, this paper
offers two main contributions:

1. This work shows for the first time that active learning
can be used to significantly reduce data annotation costs
while achieving competitive performance on document
image classification benchmarks.

2. This work investigates the potential of different AL
strategies in countering annotation noise and data imbal-
ance and presents a thorough comparative analysis of
their effectiveness in such scenarios.

2 Related work

2.1 Active learning

Active learning has seen tremendous research growth in the
past few years, with a wide range of approaches proposed
in this area [8]. Current active learning methods primarily
fall into two categories: membership query-synthesis [14,
15] and pool-based approaches [11, 12, 16]. Query-synthesis
active learning methods not only look for informative sam-
ples in the unlabeled dataset but also generate their own
informative samples using generative models. In contrast,
the pool-based methods rely mainly on different sampling
techniques in order to query the most informative samples
from an unlabeled dataset. This work focuses primarily on
investigating pool-based active learning strategies for classi-
fying document images, and therefore, previous work in this
area is reviewed in greater depth.

Several approaches to pool-based active learning have
beenproposed in the past,which cangenerally be divided into
three main categories: uncertainty-based approaches [16,
17], representation-based approaches [11], and enhanced
hybrid approaches [12, 18]. Uncertainty-based approaches
aim to identify and select those samples from the unlabeled
dataset on which the trained model exhibits the greatest
degree of uncertainty. These approaches have been pro-
posed in both Bayesian and non-Bayesian frameworks.
In non-Bayesian realm, various uncertainty measures are
directly employed, such as entropy [19], distance from deci-
sion boundaries [17], and expected risk minimization. By
contrast, Bayesian approaches estimate uncertainty using
Gaussian processes. A study by Gal et al. [20] showed
that neural networks with Dropout [21] applied before each
weight layer approximate a probabilistic deep Gaussian pro-
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cess, and usedDropout to estimate uncertainty in predictions.
In a slightly different direction, some works have also pro-
posed model ensembles to compute uncertainty [22].

Representation-based approaches focus primarily on
querying samples that increase the diversity of the batch
being queried. One popular representation-based method is
KMeans Sampling [8], which generates the sample clusters
from the unlabeled dataset using KMeans Clustering and
then selects samples in proportion to their squared distances
from the nearest centroid. CoreSets [11] is another popu-
lar representational-based approach that relies on reducing
the distance between the queried samples and the labeled
samples in feature space and has shown promising results in
large-scale image classification applications.

Several enhanced or hybrid approaches have also been
proposed in recent years. CEAL [18] is a hybrid active
learning approach that may be used in conjunction with
any existing active learning query method. CEAL first uses
the underlying AL strategy to extract the samples from the
unlabeled dataset and then extracts additional samples by
assigning pseudo-labels to those samples that are confidently
predicted by the model. Enhanced adversarial approaches
such as DeepFool Active Learning (DFAL) [23] and Adver-
sarial Basic Interactive Method (AdvBIM) [24] have also
recently become popular, which seek adversarial examples
in unlabeled datasets to increase the diversity of the samples
being queried. Sinha et al. [12] proposed a hybrid adversar-
ial approach that combines variational auto-encoders with
an adversarial discriminator to increase batch diversity. Sim-
ilarly, Shui et al. [25] recently proposed the Wasserstein
Adversarial Active Learning (WAAL) approach which trains
an independent discriminator model to search for diverse
unlabeled samples. Loss Prediction Loss (LPL) [26] is
another recent hybrid approach that trains a separate net-
work in parallel with the target model to predict the loss of
inputs with respect to the target model and then queries the
samples that result in the highest predicted loss. In a different
direction, Ash et al. [27] proposed the Batch Active Learn-
ing by Diverse Gradient Embeddings (BADGE) approach
that finds a tradeoff between uncertainty and diversity by
computing gradient embeddings for unlabeled samples and
clustering them with the KMeans++ algorithm. Ash et al.
[28] also recently proposed Batch Active Learning via Infor-
mation MaTrices (BAIT) as an improvement over BADGE,
which uses gradient embeddings in combination with Fisher
information to determine the optimal tradeoff between uncer-
tainty and diversity.

2.2 Document image classification

The topic of document image classification has been exten-
sively researched in the past. Early work in this area
concentrated primarily on exploiting the structural similarity

in documents [29], feature matching [30], or applying clas-
sical approaches such as K-nearest neighbors [31] or hidden
Markov models [32] to distinguish between classes of docu-
ments.

Recent advances in deep learning have led to the develop-
ment of numerous image-based and multi-modal approaches
for the classification of document images [4, 5, 13]. A major
contribution to this field was made by Kang et al. [33], who
demonstrated that even a shallow neural network with just
four layers could achieve dramatic performance improve-
ments over traditional approaches. In the following years, the
works of Harley et al. [2] and Afzal et al. [13] explored the
potential of convolutional neural networks (CNNs) in com-
bination with transfer learning and demonstrated exceptional
performance improvements on popular benchmark datasets.
Several CNN-based approaches have been proposed since
then that have explored different directions such as trans-
fer learning [13], parallel training [4], multi-view stacking
[34], and inherent interpretability [35] in the context of doc-
ument image classification. In recent studies, self-supervised
pretraining has also been investigated for document clas-
sification both in the image domain [36, 37] and in the
multi-modal domain [1, 5, 38] in order to leverage large-scale
document datasets for training without incurring additional
annotation costs. In such approaches, however, data annota-
tion is still required in order to fine-tune the models on the
downstream tasks.

3 Methods

This section describes our active learning setup and the dif-
ferent query strategies that were investigated in this study.

3.1 Active learning setup

Let DL = {(x1, y1), (x2, y2), . . . , (xn, yn)} denote the
labeled training dataset in a standard supervised learning
setting,where xi denotes a data sample and yi denotes the cor-
responding class label, and letDU = {x1, x2, . . . , xm} denote
a larger pool of unlabeled samples such that n << m, then
the goal of active learning (AL) is to iteratively select bmost
informative samples from the unlabeled dataset (xU ∼ DU)

using a query function f , such that when they are annotated
and aggregated back the labeled datasetDL, the overall clas-
sification performance of the machine learning model M
trained on the updated labeled dataset DL is maximized.

In this study, the standard batch active learning (BAL)
approach was used, which has previously been shown to be
effective in training convolutional neural networks (CNNs)
for image classification tasks [11]. In a standard supervised
setting of BAL, each AL cycle (see Fig. 2) begins with train-
ing the deep learning model (M) on the labeled dataset DL.
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Fig. 2 An overview of the active learning cycle. The model M is first trained on the labeled dataset DL which is then utilized to query samples
from the unlabeled dataset DU. Samples are labeled by the oracle and aggregated back into the labeled set, and the process is repeated

The trained model M is then utilized in combination with
a predefined query function f of choice to query a batch
of samples of size b from the unlabeled dataset DU. Newly
selected samples are then sent to the Oracle for annotation
and aggregated back into the labeled dataset DL for the next
round of training. This cycle is repeated until either the total
annotation budget B has been exhausted or a predefined ter-
mination condition has beenmet. In thiswork, a fixed number
of active learning roundswas used as a termination condition.

The query function f is the most important component
of AL, which describes the criteria by which samples are
selected from the unlabeled datasetDU. In order tomaximize
the machine learning model’s performance with minimal
annotation costs, it is necessary to select the most infor-
mative samples from DU during each AL round. A variety
of query functions f have been proposed in the past, each
defining the informativeness of a sample according to a dif-
ferent criterion. In this study, several existing pool-based
query approaches were explored, including uncertainty-
based approaches, representation-based approaches, and
enhanced hybrid approaches.

3.1.1 Uncertainty-based approaches

Several uncertainty-based query functions have been investi-
gated in this paper from both the Bayesian andNon-Bayesian
realms. Non-Bayesian sampling techniques include Mar-
gin Sampling [8], Least Confidence Sampling [8], and
Entropy Sampling [19]. In the Bayesian setting, the tech-
niques Bayesian Active Learning Disagreement (BALD)
[16], Margin Sampling, Least Confidence Sampling, and
Entropy Sampling were explored in combination withMonte
Carlo Dropout [20].

3.1.2 Representation-based approaches

In this domain, two approaches, namely CoreSets [11] and
KMeans Sampling [8], were investigated. The CoreSets
approach was implemented utilizing the KCenterGreedy

Fig. 3 The distribution of classes in the Tobacco3482 training set

algorithm, as originally proposed. However, due to the high
dimensionality of the output embeddings of themodel, it was
not computationally feasible to apply the KCenterGreedy
algorithm directly to the output of the model. To address
this issue, principal component analysis (PCA) was used to
reduce the dimensionality of the output embedding of the
model before applying the querying algorithm.

3.1.3 Enhanced/Hybrid approaches

A number of enhanced adversarial [23, 24] and hybrid [12,
18] approaches were investigated in this work, including
Cost-Effective Active Learning (CEAL) [18], the Adversar-
ial Basic Interactive Method (AdvBIM) [24], WAAL [25],
LPL [26], BADGE [27], and BAIT [28]. CEAL [18] was
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used in combination with the Entropy uncertainty measure
approach in this work.

4 Experiments and results

This section describes and presents the results of the experi-
ments conducted in this paper.

4.1 Datasets

To evaluate the effectiveness and feasibility of different
AL techniques, two publicly available document bench-
mark datasets were utilized, namely RVL-CDIP [2] and
Tobacco3482, both of which have been extensively utilized
for benchmarking document image classification in the past
[2, 4, 13]. RVL-CDIP [2] is a large-scale dataset containing
400K labeled document images from 16 document classes,
divided into training, testing, and validation sets of 320K,
40K, and 40K, respectively. Tobacco3482, in contrast, is a
smaller dataset consisting of only 3482 images divided into
10different document categories. It is important to note, how-
ever, that unlikeRVL-CDIP, Tobacco3482 has an imbalanced
class distribution as shown in Fig. 3. This makes it useful
for investigating the performance of AL algorithms in the
presence of class imbalance. In this work, the Tobacco3482
dataset was divided into training, test, and validation sets of
2504, 700, and 278 in size, respectively.

4.2 Implementation details

In order to simulate a realistic AL scenario, a small percent-
age of the original training set of the respective datasets was
randomly sampled to create the initial labeled dataset DL.
This percentage was set at 10% for RVL-CDIP and at 5%
for the Tobacco3482 dataset. The remaining samples in the
training set were used to create the unlabeled pool DU from
which the samples were extracted for annotation by the Ora-
cle. In each AL cycle, the batch size for querying was set
to 2.5% of the full training set, which is equivalent to 8000
for RVL-CDIP, and 63 for Tobacco3482 dataset and the AL
cycle was repeated for each experiment until a total of 40%
of the original dataset was annotated.

All the experiments were conducted using the standard
ResNet-50 model [39] pretrained on the ImageNet-22k
dataset [40], which has previously been demonstrated to per-
form exceptionally well on the aforementioned document
datasets [13]. As has been done in previous works [4, 13], the
input images for the model were down-scaled to a resolution
of 224 × 224, converted to RGB color space, and normal-
ized with the ImageNet mean of (0.485, 0.456, 0.406) and
standard deviation of (0.229, 0.224, 0.225). Training was
conducted using the standard Stochastic Gradient Descent

(SGD) optimizer with an initial learning rate of 0.01,
which was gradually reduced over the training cycle using
the Cosine Decay Learning Rate Scheduler. In each AL
cycle, 40 training epochs were used, a number previously
determined to be sufficient for this task [4, 13]. For the RVL-
CDIP dataset, a batch size of 256 was used, while for the
Tobacco3482 dataset, a batch size of 64 was employed.

For the Tobacco3482 dataset, additionally, two differ-
ent training settings, namely, Tobacco3482ImageNet and
Tobacco3482RV L−CDI P were investigated. In
Tobacco3482ImageNet setting, the models pretrained on
ImageNet-22kwereused.Whereas inTobacco3482RV L−CDI P

setting, themodels pretrained on the RVL-CDIP dataset were
utilized in order to assess the effectiveness of active learn-
ing in combination with document-specific pretraining. It is
important to note that for pretraining the models on the RVL-
CDIP dataset, we also used the ImageNet-22k pretrained
weights for model initialization. In addition, results for all
the experiments onTobacco3482 datasetwere presentedwith
mean and standard deviation over 5 runs.

Some techniques were excluded from investigation for
the larger dataset RVL-CDIP due to prohibitive computa-
tional requirements. With KMeans Sampling [8], the high
CPU computational costs were faced, whereas, for BADGE
[27], and BAIT [28], the memory requirements scaled pro-
portionally with the size of the dataset, which rendered
it impossible to apply these techniques to the RVL-CDIP
dataset. Moreover, WAAL uses a two-stage training strategy
for implementing discriminative learning and trains the net-
works on both the labeled and unlabeled datasets in parallel.
This results in huge training costs when the unlabeled pool
DU is large as compared to other active learning strategies.
As a result, to apply WAAL on RVL-CDIP dataset, only a
batch percentage of 5.0% was investigated so that the total
computational costs of the active learning process could be
reduced.

4.3 Performance evaluation

This section presents the performance results of different
active learning algorithms on the two document datasets. For
each AL method, Table 1 presents both the average accuracy
achieved on 40% of original training datasets and the area
under the budget curve (AUBC) which is useful in compar-
ing the overall performance of an AL method under varying
budgets. Figure4 illustrates the budget–accuracy curves for
eachAL strategy, under different dataset settings, which indi-
cate the accuracy achieved by the model after each AL round
until a total of 40% of the training dataset was annotated.

For comparison of the active learning performance with
standard supervised training on fully annotated dataset, the
accuracy achieved by themodel with 100% annotated dataset
is also presented in the table as mentioned by ResNet-
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(a) RVL-CDIP (b) Tobacco3482ImageNet (c) Tobacco3482RVL-CDIP

Fig. 4 Accuracy–budget curves for the different active learning strategies on RVL-CDIP and Tobacco3482 datasets

50Supervised . The ResNet-50Supervised performance reported
byAfzal et al. [13] forTobacco3482 settings differs fromours
in that they only used 100 randomly selected samples per
class (a total of 1000 samples) for training, while we utilized
the entire training dataset. The performance difference on
both the Tobacco3482ImageNet and Tobacco3482RV L−CDI P

settings is evident as a result of this difference in approach.
In addition to standard supervised learning approaches,

we also compared the results of our experiments with self-
supervised learning approaches. Siddiqui et al. [36] recently
examined two state-of-the-art self-supervised approaches in
the context of document classification, namely BarlowTwins
[41] and SimCLR [42]. The research demonstrated how
self-supervised pretraining can assist in reducing annotation
costs on both large and small datasets. As they also used
the ResNet-50 model for their analysis, our results can be
directly compared with theirs. The results presented in this
paper are based on an experiment in which Siddiqui et al.
[36] first pretrained a ResNet-50 model on the RVL-CDIP
dataset using the SimCLR and BarlowTwins self-supervised
approaches and then fine-tuned the model on the RVL-CDIP
and Tobacco3482 datasets with only 50% of the training data
annotated. Model performance accuracies resulting from
these experiments are shown in Table 1 denoted by ResNet-
50BarlowTwins and ResNet-50SimCLR .

4.3.1 Results on RVL-CDIP

As can be seen from Table 1, many of the AL tech-
niques investigated in this work showed significantly better
performance than the Random Sampling baseline. Further-
more, they were able to achieve a performance comparable
to the model trained on fully annotated dataset (ResNet-
50Supervised ) by using only 40% of the labeled training
dataset. The enhanced LPL approach showed a significantly
better performance compared to others both in terms of accu-
racy and AUBC which is also clearly visible in Fig. 4a.
Uncertainty-based techniques such as Entropy and Margin
also showedcompetitive performancedespite their simplicity

compared to enhanced approaches. One interesting observa-
tion is that while CEAL (Entropy) showed similar accuracy
to Entropy, its AUBC was much higher in comparison. From
Fig. 4a, it can be seen that CEAL (Entropy) results in an
overall consistently higher accuracy over varying budgets as
compared to Entropy. Some techniques such as BALD and
AdvBIM performed even worse than the Random Sampling
baseline in this case. KCenterGreedy also appeared to per-
form similarly to top uncertainty-based methods in terms of
accuracy; however, its AUBC remained significantly lower.
WAAL despite being a state-of-the-art (SotA) enhanced
hybrid approach also performed poorly compared to other
simpler approaches. These performance differences can also
be observed in Fig. 4a, where the accuracy–budget curves of
AdvBIMandBALD show a very similar behavior to the Ran-
domSampling baseline,whereas the accuracy–budget curves
ofKCenterGreedy andWAALstayed consistently lower than
their competitors.

4.3.2 Results on Tobacco3482ImageNet

A slightly different trend was seen in this setting, where
Entropy showed the highestmean accuracy of 82.54%,which
is ≈2.7% higher than the Random Sampling baseline. Other
techniques that performed comparatively well were Mar-
gin (Dropout) and BADGE. One noticeable observation in
this scenario is that many of the techniques showed really
high variance due to the small dataset size and large class
imbalance. The variation could also explains why theMargin
(Dropout) approach had the highest overall AUBC, regard-
less of its lower accuracy compared to Entropy. BALD,
KMeans, and BAIT performed even worse than the Ran-
dom Sampling baseline in this scenario which is surprising
as BAIT has been shown to perform much better than other
approaches in natural image classification domain [28]. One
interesting observation from Fig. 4b is that BAIT performed
better than other approaches in the first few rounds (up to
15% labeled dataset); however, its performance degraded
suddenly afterward. The SotA enhanced approaches LPL and
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WAAL also performed poorly compared to other approaches
in this scenario. A possible explanation is that these tech-
niques are greatly sensitive to data imbalance. For example,
for LPL, data imbalance may result in bias in loss prediction,
resulting in poor performance as a consequence. Interest-
ingly, these observations are similar to those reported by [8].
Overall, it can be noted that AL strategies did not perform
as well in this scenario as they did on RVL-CDIP. However,
these results are not surprising, since AL methods have pre-
viously been shown to suffer from biased sampling in case
of data imbalance [8, 43].

4.3.3 Results on Tobacco3482RVL−CDIP

It is evident from Table 1 that the document-specific pre-
training resulted in a significant improvement in the perfor-
mance of AL algorithms. It is interesting to note that even
the Random Sampling baseline outperformed the ResNet-
50Supervised model trained on the full dataset, proving that
active learning can be an effective training process even with
just Random querying in some scenarios. Uncertainty-based
techniques performed overall better than other approaches
(except AdvBIM) in this setting; however, the differences
between their performance was minor. Figure4c also illus-
trates an interesting observation that the majority of AL
strategies under this scenario outperformed the ResNet-
50Supervised model even with just 10–15% of the training
data annotated. Another noteworthy observation fromFig. 4c
is that AdvBIM started out the worst in initial rounds but per-
formed significantly better than other approaches achieving
a mean accuracy of 92.80% at 40% labeled training dataset.
Similar to the Tobacco3482ImageNet case, many enhanced
approaches including BADGE, BAIT, LPL and WAAL per-
formed poorly in this scenario, sometimes performing even
worse than the Random Sampling baseline.

4.3.4 Comparison with self-supervised approaches

From Table 1, it can be observed that the AL approaches
consistently outperformed the self-supervised approaches
ResNet-50BarlowTwins and ResNet-50SimCLR despite over-
all 10% fewer annotated samples. In addition, it can be seen
from Fig. 4a that the self-supervised performance on RVL-
CDIP is outperformed by a number of AL strategies with
only 25–30% of the training data labeled. It should also be
noted that while AL strategies showed only modest improve-
ments over the self-supervised approaches on the RVL-CDIP
dataset, they demonstrated much more significant improve-
ments on Tobacco3482. It can be seen from Fig. 4c that,
when using standard RVL-CDIP pretraining, fine-tuning on
the Tobacco3482 dataset, even with 5% annotated data,
was more effective than fine-tuning from self-supervised
pretraining with 50% annotated data. This suggests that

task-specific (classification) pretraining on a larger dataset
(RVL-CDIP) can provide significant performance boosts on
smaller datasets in comparison with self-supervised pretrain-
ing. This does, however, mean that the larger pretraining
dataset must be fully annotated itself, which may not always
be possible, in which case, self-supervised pretraining may
be amore viable option.While the above is true, it can also be
noticed fromFig 4b that evenwithout RVL-CDIP pretraining
for the Tobacco3482 dataset, AL strategies with only 40%
of the training dataset were able to achieve performances
comparable to those achieved by the self-supervised pretrain-
ing approaches. This indicates that active learning can be as
effective in reducing annotation costs as self-supervised pre-
training even if there is no document-specific training.

4.4 Query time analysis

The time it takes to perform a querying operation is an
imperative consideration when selecting an active learning
strategy. Since Random Sampling is also an effective AL
method, ideally the querying methods should be as time-
efficient as that. Table 2 provides the mean querying time
(Avg. tquery) spent by each AL strategy and the total train-
ing time (Rel. ttrain) taken by each strategy per AL round
relative to the Random Sampling baseline. As can be seen
from the table, non-Bayesian uncertainty-based approaches
were the fastest in terms of both Avg. tquery and Rel. ttrain.
The Bayesian uncertainty-based methods, on the other hand,
were significantly slowerwhich is expected since thesemeth-
ods use multiple forward passes with Dropout to compute
uncertainty. CEAL (Entropy) also showed competitive com-
putational times since it used Entropy as the underlying
querying method. However, its training time was compar-
atively much higher as it adds additional training samples
to the labeled dataset DL per round. In order to overcome
the large memory requirements of the KCenterGreedy algo-
rithm for large datasets, batch processing was used in our
work. As a consequence, its querying time increased pro-
portionally with the size of the dataset. This is evident from
Table 2, where its querying time is similar to uncertainty-
based techniques on the small Tobacco3482 dataset but
increases considerably on RVL-CDIP. Although BADGE
was found to perform as well as non-Bayesian uncertainty-
based approaches, BAIT showed nearly ten times more
computation time than BADGE. LPL despite training addi-
tional models showed competitive training and querying
time. The training time for WAAL, on the other hand, scaled
considerably with the size of the dataset, taking about 18×
more time for training the model on the RVL-CDIP dataset
compared to Random Sampling baseline. This is the reason
why WAAL was only investigated with a batch percentage
of 5.0% on RVL-CDIP dataset.
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Table 2 For each AL strategy, the average time spent on querying samples from the unlabeled pool DU and the total training time relative to the
Random Sampling baseline are shown

Strategy ( f ) RVL-CDIP Tobacco3482

Avg. tquery (s) Rel. ttrain Avg. tquery (s) Rel. ttrain

Random Sampling 0.0 1.0 0.0 1.0

Unc. non-Bayesian Entropy [19] 539 1.03 6 0.98

Least Conf. [8] 532 1.01 6 1.00

Margin [8] 430 1.02 6 0.92

Unc. Bayesian Entropy (Dropout) [16] 5592 1.39 61 1.27

Least Conf. (Dropout) [16] 5535 1.36 63 1.31

Margin (Dropout) [16] 5553 1.36 65 1.39

BALD (Dropout) [16] 5527 1.35 61 1.25

Repr. KMeans [8] * * 9 1.06

KCenterGreedy [11] 1713 1.81 8 1.11

Enh./Hybrid AdvBIM [24] 4302 1.28 41 1.14

CEAL (Entropy) [18] 740 1.82 11 0.90

BADGE [27] * * 15 1.08

BAIT [28] * * 145 1.92

LPL [26] 614 1.23 6 2.22

WAAL [25] 362 17.99 9 3.26

∗Computationally unfeasible for large datasets

(a) RVL-CDIP (b) Tobacco3482ImageNet (c) Tobacco3482RVL-CDIP

Fig. 5 Accuracy–budget curves for the different active learning strategies on RVL-CDIP and Tobacco3482 datasets under varying query batch sizes

4.5 Effect of varying batch size

One critical hyperparameter for active learning training sce-
narios is the batch size. Previous studies have shown that
smaller batches result in better AL performance since fewer
redundant samples are queried [12]. We examined this effect
for the document domain using batch percentages of %b =
1.25%, %b = 2.5%, and %b = 5.0% on a subset of tech-
niques as presented in Table 3. Figure 5 also illustrates the
accuracy–budget curves for four different techniques under
varying batch sizes. Only four techniques are shown here
for visual clarity. Although there were minor differences in
accuracy and AUBC across different batch sizes, no major
differences were observed that could be directly correlated
with increasing or decreasing batch sizes for RVL-CDIP.
For Tobacco3482 settings, someminor differences were seen

for the AUBC across difference batches which can also be
observed in Fig. 5. For example, the effect of different batch
sizes on CEAL (Entropy) and AdvBIM approaches is clearly
visible with b = 5.0% resulting in worse performance in
comparison. On the other hand, increasing the batch size also
resulted in decreased variance across different runs for the
Tobacco3482ImageNet case as is evident from the mean stan-
dard deviations across different batch sizes. To confirm our
findings, we also conducted a single-factor ANOVA test [44]
to compare the AUBCs of all methods across the three batch
size groups. For RVL-CDIP, no statistically significant dif-
ference was found. (Alpha was greater than 0.05.) However,
a significant difference was found (alpha was greater than
0.05) for the Tobacco3482 settings in which it was observed
that the AUBC of the AL strategies was generally lower for
b = 5.0% than for other batch sizes. This is also evident
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from the mean AUBC values across different batch sizes in
Table 3.

4.6 Bias in initial labeled dataset

4.6.1 Experimental setup

This section describes a set of experiments that examined
the effects of bias in the initial labeled dataset DL0 on the
overall performance of the AL query strategies. It is often
the case that data bias occurs in real-world deployment sce-
narios when there is a relative shortage of labeled data for
one class in comparison with another. Due to this bias, the
model trained in the first round may not accurately represent
the underlying distribution of data. We simulate the bias by
excluding samples from the initial labeled datasets of m ran-
domly selected classes. This experiment was carried out for
two cases, m = 2 and m = 4, and the results are presented
in Table 4. The accuracy–budget curves for this scenario are
illustrated in Fig. 6.

4.6.2 Results on RVL-CDIP

In the case of the RVL-CDIP dataset with 16 classes, the
effect of bias was negligible since most techniques exhibited
a similar performance trend as in the case of no bias reported
previously in Table 1. As can be seen in Fig. 6a, d, the mod-
els initially performed poorly in comparison due to a lack of
data for some classes; however, their performance quickly
improved in subsequent cycles. Overall, no significant per-
formance dropwas observedwhenm was increased from 2 to
4 as well with LPL, CEAL (Entropy), and uncertainty-based
approaches again comparatively performing the best in this
scenario.

4.6.3 Results on Tobacco3482ImageNet

In Tobacco3482ImageNet setting, AL strategies seemed espe-
cially effective in countering the data bias compared to
Random Sampling baseline on both m = 2 and m = 4
cases as they understandably targeted the missing classes
in the subsequent AL cycles. Margin and its Dropout vari-
ant showed the highest accuracy in this scenario closely
followed by KCenterGreedy and Least Confidence. Surpris-
ingly, many strategies showed a higher accuracy withm = 4
compared to m = 2. This may have been due to the removal
of high frequency classes in the initial dataset allowing the
model to be less susceptible to overall class imbalance. The
classes that were randomly selected for removal for m = 2
and m = 4 cases for this dataset were {Memo, Letter} and
{Memo, Letter, Form,ADVE}. As can be noticed fromFig. 3,
for the m = 4 case, Email was the only high frequency
class left after the sample removal from the initial labeled
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dataset. Another interesting observation can be made from
Fig. 6e where it is visible that KMeans Sampling, BAIT, and
BADGE both performed better than other techniques in the
few initial AL cycles; however, their performance degraded
after approximately 20% data was annotated. This behavior
was also previously seen on the Tobacco3482ImageNet set-
ting described in Sect. 4.3. A possible explanation for this
behavior is that BAIT and BADGE are highly vulnerable to
class imbalance in the data. WAAL and LPL showed a trend
similar to the case of no bias discussed in Sect. 4.3 perform-
ing even worse than the Random Sampling baseline in some
cases.

4.6.4 Results on Tobacco3482RVL−CDIP

For the Tobacco3482RV L−CDI P scenario, the difference
in accuracy among different AL strategies including Ran-
dom Sampling baseline at 40% annotated data was quite
negligible and all of them surpassed the performance of
the ResNet-50Supervised model with just 15%-20% data
annotated. Uncertainty-based approaches, however, scored
comparatively higher at 40% annotated data. From Fig. 6c, f,
it can also be observed that the enhanced approachesBADGE
and BAIT and the diversity-based techniques such as KCen-
terGreedy and KMeans were able to handle the bias much
better than others achieving a higher performance in first
few cycles in comparison with others. On the other hand,
enhanced approaches AdvBIM and LPL seemed especially
vulnerable to the bias, taking a number of iterations to reach
the same level of performance as other methods.

4.6.5 Removing highest and lowest frequency classes

In this section, we present the results of another experiment
in which, rather than removing the classes at random, we
removed the top 4 highest frequency classes and the top 4
lowest frequency classes to determine its overall effect on the
different AL strategies. This experiment was only performed
for the Tobacco3482ImageNet and Tobacco3482RV L−CDI P

settings as only those settings have class imbalance. The top 4
highest frequency classes that were removed from the dataset
include Letter, Email,Memo, and Form. In contrast, the top 4
lowest frequency classes that were removed include Resume,
News, Note, and ADVE.

In this experiment, the results are presented only as
accuracy–budget curves, as shown in Fig. 7. A few inter-
esting conclusions can be drawn from the figure. To begin
with, it can be observed that only removing the highest
and lowest frequency classes had a significant effect on the
performance of representation-based AL strategies such as
KMeans, BADGE, and BAIT. This effect was especially pro-
nounced in the Tobacco3482ImageNet case. In both cases of
the Tobacco3482ImageNet scenario, the removal of the high-
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(a) RVL-CDIP
Classes removed (m = 2)

(b) Tobacco3482ImageNet
Classes removed (m = 2)

(c) Tobacco3482RVL-CDIP
Classes removed (m = 2)

(d) RVL-CDIP
Classes removed (m = 4)

(e) Tobacco3482ImageNet
Classes removed (m = 4)

(f) Tobacco3482RVL-CDIP
Classes removed (m = 4)

Fig. 6 Accuracy–budget curves for the different active learning strategies on RVL-CDIP and Tobacco3482 datasets under biased initial labeled
dataset

est frequency classes (Fig. 7a) and the removal of the lowest
frequency classes (Fig. 7c), these techniques performed even
worse than the Random Sampling baseline. Surprisingly,
KCenterGreedy approach while it is also a representation-
based approach stayedunaffected in this experiment.Overall,
we observed no significant effect on performance of other
approaches in this scenario, with the exception of CEAL
(Entropy), which showed some instability in last few AL
rounds when the top four classes with the lowest frequency
were removed.

4.7 Robustness to annotation noise

4.7.1 Experimental setup

The problem of annotation noise is very common in real-
world deployment scenarios of machine learning models.
Past studies have shown that even with human annotators,
the amount of mislabeled samples in the training dataset can
reach up to 10% of its size [45]. This section describes a set
of experiments in which a realistic annotation noise scenario
was created for document data by randomly switching labels
of those document classes that exhibit similarity with each
other based on predetermined weights W ∈ R

N×N .
This process is detailed in Algorithm 1. As shown, for

each class l, we determine the probabilities of drawing labels
for similar classes based on the predetermined weights W ∈

R
N×N . Then, based on the class probabilities p ∈ R

1×N ,
we draw n random labels and assign them to the existing
samples of the class l, where n is the total number of samples
to be updated. This process is repeated for each class and
the training set is updated. Note that we used an in-place
update to the dataset in this scenario, so the noise added to
the dataset for classes that were mutually similar could be
spread over both classes. For example, if two classes Letter
and Memo were similar to each other, Algorithm 1 resulted
in switching a total of 10% of the samples between them.
Additionally, it allowed switching samples between classes
that were only indirectly similar. For example, if Letter was
similar toMemo andMemowas similar to Presentation, then
some of the samples from Letter class were also converted
to Presentation class.

Algorithm 1 Noise Labeling Strategy

1: Input: Training set with image-label pairs S = {(x, y)}Kk=1, y ∈
{1, . . . , N }, class similarity weight matrix W ∈ R

N×N , and anno-
tation noise percentage ε

2: for l = 1 to N do
3: Let p = Wl∑

j∈N Wl j
∈ R

1×N and pi be the probability to draw the

i th class label
4: Randomly draw n = ε | Sy=l | labels L = {i : i ∈ 1, . . . , N }nk=1

with probability of each label defined by pi and assign them to the
sample set Sy=l

5: end for
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(a) Tobacco3482ImageNet
Top 4 highest frequency classes

removed

(b) Tobacco3482RVL-CDIP
Top 4 highest frequency classes

removed

(c) Tobacco3482ImageNet
Top 4 lowest frequency classes removed

(d) Tobacco3482RVL-CDIP
Top 4 lowest frequency classes removed

Fig. 7 Accuracy–budget curves for the different active learning strategies on Tobacco3482 datasets with top 4 highest frequency classes removed
(left) and top 4 lowest frequency classes removed (right)

(a) RVL-CDIP (b) Tobacco3482ImageNet

Fig. 8 Confusion matrices that show the degree of annotation noise added per class for the RVL-CDIP and Tobacco3482 datasets under noise
percentage of ε = 10%. As illustrated, some classes were not subjected to annotation noise due to their distinct differences from others
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Since document classes usually have very high intra-
class variance and inter-class similarity, it was difficult to
visually determine which classes should be considered sim-
ilar in our scenario. Therefore, the weights W ∈ R

N×N

for the similarity between classes were heuristically deter-
mined by inspecting the classes between which the fully
trained ResNet-50Supervised model had shown the highest
confusion. For example, the confusion matrix of the ResNet-
50Supervised model generated on the test set of RVL-CDIP
dataset is depicted in Fig. 10a, which directly shows which
document classes were confused with each other the most.
We use this confusion to directly define the similarity. For
example, to generate the class similarity weight for each
class, we simply applied a threshold followed by normal-
ization to the off-diagonal entries of the confusion matrix.
The resulting similarity weights are presented in Fig. 10b,
from which it can be seen that the classes Letter and Memo
were determined to be mutually similar both with weights of
1.0. In many cases, it was also possible for one class to be
similar to another, but not vice versa. For example, the class
Scientific Report was found to be similar to the class News
Article with a weight of 0.4 but the opposite was not true.

This experiment was conducted with two settings of per-
centage annotation noise (ε) per class, ε = 10% and ε =
20%. The resulting annotation noise confusion matrices for
the two datasets RVL-CDIP and Tobacco3482 after applying
Algorithm 1 with percentage noise ε = 10% per class are
illustrated in Fig. 8. The results of this experiment are pre-
sented in Table 5, and the accuracy–budget curves for each
ALmethod are illustrated in Fig. 9. For a fair evaluation of the
performance of AL methods, the ResNet-50Supervised mod-
els in this scenario were also trained on the fully annotated
noisy datasets and their performances are reported for each
case in the table.

4.7.2 Results on RVL-CDIP

For RVL-CDIP dataset, it can be seen that for noise per-
centage ε = 10% the performance of the Random Sam-
pling baseline was severely affected. Most uncertainty-based
approaches such as Entropy and Least Confidence, and some
enhanced approaches including CEAL (Entropy) and LPL,
were still able to counter the effects of noise significantly
better in comparison, even surpassing the performance of
the ResNet-50Supervised model with just 40% annotated data.
While Entropy showed better accuracy, LPL showed a better
overall performancewith a considerably higherAUBCwhich
can also be observed in Fig. 9a. A slightly different trend was
seen for the noise percentage ε = 20%, where the perfor-
mance of all the techniques was seen to be greatly affected
by the noise. However, CEAL (Entropy) was still consider-
ably effective in countering its effects, surpassing both the
Random Sampling baseline and the fully trained ResNet-
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(a) RVL-CDIP
Noise Percentage (ε = 10%)

(b) Tobacco3482ImageNet
Noise Percentage (ε = 10%)

(c) Tobacco3482RVL-CDIP
Noise Percentage (ε = 10%)

(d) RVL-CDIP
Noise Percentage (ε = 20%)

(e) Tobacco3482ImageNet
Noise Percentage (ε = 20%)

(f) Tobacco3482RVL-CDIP
Noise Percentage (ε = 20%)

Fig. 9 Accuracy–budget curves for the different active learning strategies on RVL-CDIP and Tobacco3482 datasets in the presence of annotation
noise of varying degrees

50Supervised model as evident from both Table 5 and Fig. 9d.
Besides CEAL (Entropy), the uncertainty-based techniques
and the enhanced LPL approach also showed competitive
performance in this case, both of which outperformed the
fully trained ResNet-50Supervised model at 40% annotated
dataset.

4.7.3 Results on Tobacco3482ImageNet

In Tobacco3482ImageNet setting, only uncertainty-based
approaches such as Entropy and Margin Sampling seemed
to consistently perform well for both cases ε = 10% and
ε = 20%. KCenterGreedy and AdvBIM still seemed to per-
form slightly better than the Random Sampling baseline, but
their performance was severely deteriorated for the ε = 20%
case.Most enhanced approaches including CEAL (Entropy),
BADGE, LPL, and WAAL were severely affected by the
annotation noise and performed significantlyworse than even
Random Sampling baseline for the ε = 20% case.

4.7.4 Results on Tobacco3482RVL−CDIP

The Tobacco3482RV L−CDI P scenario showed a different
trend, whereWAAL showed slightly better performance than
other techniques on both the ε = 10% and ε = 20% cases;
however, the overall differences in performance were quite

(a) RVL-CDIP (b) WRVL-CDIP

Fig. 10 Confusion matrix of the ResNet-50Supervised on the test set of
RVL-CDIP dataset (left) and the weights generated from it (right) are
shown

negligible between different approaches. Similar to previous
cases, many of the techniques again surpassed the base-
line performance even with just 15–25% of the training set
queried as evident from Fig. 9c, f.

4.8 Generalization to other models

In this section, we investigate whether the AL strategies
studied in this work are applicable to other deep networks
that can be used for document classification. For this pur-
pose, we apply the AL strategies explored in this paper to
the recently introduced ConvNeXt [46] model, specifically
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(a) RVL-CDIP (b) Tobacco3482ImageNet (c) Tobacco3482RVL-CDIP

Fig. 11 Accuracy–budget curves of the ConvNeXt-B model for the different active learning strategies on RVL-CDIP and Tobacco3482 datasets

its ConvNeXt-B variant. To train the model on RVL-CDIP
and Tobacco3482 datasets, we used the same training strat-
egy as [35] and trained the model with image resolution
of 224 × 224, Adam optimizer, LabelSmoothing, and Cut-
Mix and Mixup augmentations. For RVL-CDIP dataset,
we compare the results of our experiments with super-
vised learning performance achieved by [35] on ConvNeXt-
B/224 scenario, whereas for the Tobacco3482ImageNet and
Tobacco3482RV L−CDI P cases, we separately trained the
model on full Tobacco3482 dataset for comparison. For a
fair comparison, we used the same training strategies for both
active learning and supervised learning. The results of these
experiments are presented in Table 6 in which for each AL
strategy, both the average accuracy achieved on 40% of orig-
inal training datasets and the area under the budget curve
(AUBC) are given. Figure11 illustrates the budget–accuracy
curves for each AL strategy, under different dataset settings,
which indicate the accuracy achieved by themodel after each
AL round until a total of 40% of the training dataset was
annotated.

It can be observed from both Table 6 and Fig. 11a that
with just 40% of the training dataset annotated, the active
learning approaches were able to achieve performances
very close to the ConvNeXtSupervised [35] model. Similarly,
for the Tobacco3482ImageNet and Tobacco3482RV L−CDI P

cases, it can be seen from both Fig. 11b, c that the some
active learning strategies were able to even outperform the
fully trained supervised learning models. This suggests that
active learning may have helped the model learn better
distributions on the imbalanced dataset compared to super-
vised training. A noteworthy observation in this scenario
was the instability of LPL strategy in both RVL-CDIP and
Tobacco3482RV L−CDI P scenarios.While LPLworked quite
well for theResNet-50model, for ConvNeXt-B,we observed
quite a lot of instability in performance during training using
the exact sameLPL configuration. As shown in both Fig. 11a,
c, the LPL technique performed very poorly in this case and
we found it difficult to tune its hyperparameters to reach any
satisfactory results. Similarly, we found it difficult to train

ConvNeXt-B with WAAL on the RVL-CDIP dataset with
the exact same configuration as in the case of ResNet-50,
with the discriminator loss becoming unstable during train-
ing.Aside from these two enhanced approaches,we observed
that most AL techniques generalized fairly well to this model
and even produced exceptional performance on the datasets.

5 Practical implications

This section summarizes the overall results of our study and
discusses its practical implications in the context of document
classification. In Table 7, we present an overview of the per-
formance of different AL strategies under different settings
of datasets and experiments. In the top section, we present
the top 3 highest performing AL approaches for each sce-
nario, and in the bottom section, we present the top 3 worst
performing AL approaches based on the experiments per-
formed on the ResNet-50 model. The types of each approach
are also highlighted with different colors in order to present
an overall view of which types of approaches performed the
best and the worst.

From the table, a few interesting observations can be
drawn.First,we canobserve that the non-Bayesianuncertainty-
based approaches were not only computationally efficient,
but also consistently produced the best results. On the larger
RVL-CDIP dataset, the only two enhanced approaches that
performed slightly better than others were LPL and CEAL
(Entropy), with CEAL (Entropy) performing slightly better
than others in the case of heavier annotation noise. It is worth
mentioning, however, that from our results on ConvNeXt-B,
we also observed difficulty in extendingLPL to othermodels.
In contrast, the three approachesBALD (Dropout), AdvBIM,
and WAAL consistently performed worse than the others on
this dataset. It is interesting to note that both AdvBIM and
WAAL are enhanced approaches that require significantly
more computational resources in comparison with the oth-
ers, yet they failed to produce any satisfactory results in this
case. Overall, we can conclude that for large class-balanced

123



Analyzing the potential of active learning for document image classification 207

Table 7 An overview of the top three most effective approaches as
well as the top three least effective approaches for each of the scenarios
investigated in this study. The approach types Unc. Non-Bayesian, Unc.

Bayesian, Representation-based, and Enhanced/Hybrid are highlighted
in Blue, Seagreen, Yellow, and Orange, respectively

document datasets, the AL strategies that are most practical
in terms of computational performance and computational
costs are uncertainty-based approaches such as Entropy and
Margin, as well as the enhanced techniques LPL and CEAL
(Entropy).While LPL is difficult to train, it can result in slight
performance gains. Thus, it is a reasonable choice if adequate
training resources are available to tune hyperparameters. On
the other hand, CEAL (Entropy) can be particularly useful
when dealing with severe labeling noise.

In the Tobacco3482ImageNet setting, both Bayesian and
non-Bayesian uncertainty-based approaches showed the
highest performance across different scenarios. While most
representation-based approaches were severely affected in
the case of bias in the initial labeled dataset, KCenterGreedy
fared relatively much better and showed performances sim-
ilar to uncertainty-based approaches. In contrast, enhanced
approaches such as LPL, BAIT, andBADGEwere among the
worst performing approaches. In addition, BALD (Dropout)
and KMeans also performed significantly worse than others
in this scenario. Overall, we conclude that for small, imbal-
anced document datasets without document-specific pre-
training, uncertainty-based approaches such as Entropy and
Margin as well as the KCenterGreedy (CoreSets) approach
are most appropriate to attain both better performance and
efficiency.

A similar trendwasobserved in theTobacco3482RVL−CDIP

scenario where uncertainty-based approaches outperformed
other approaches. However, because most approaches per-

formed at a similar scale in this scenario, it was difficult
to identify any significant advantages of some approaches
over others. Nevertheless, enhanced approaches such as LPL,
BADGE, BAIT, and WAAL were generally among the least
effective approaches, with the exception of noisy datasets, in
which WAAL and LPL appeared to be more efficient. As a
general rule, we again recommend that when using small
datasets with document-specific pretraining, the simplest
uncertainty-based approaches seem to be the most appro-
priate option, as they not only provide superior accuracy and
computational performance, but also make the training pro-
cess more convenient.

6 Conclusion

In this paper, we investigated the potential of active learn-
ing in reducing annotation costs while enabling machine
learning models to perform competitively in document
image classification. An analysis of different active learn-
ing strategies has revealed that deep learning models can
achieve competitive performance with as little as 40% of
the training datasets labeled by Oracle with the use of AL,
thereby reducing annotation costs by up to 60%. Addition-
ally, domain-specific pretraining was shown to significantly
enhance AL performance on small datasets, allowing mod-
els to outperform models trained on fully annotated datasets
with as little as 15% of the data annotated. We also demon-
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strated that, in comparison with self-supervised learning
approaches,ALstrategies result in better performanceonpar-
tially annotated datasets. While enhanced approaches such
as LPL and CEAL (Entropy) surpassed the simpler uncer-
tainty or representation-based approaches on the RVL-CDIP
dataset, their performance was severely degraded under class
imbalance on the Tobacco3482 dataset. On the other hand,
uncertainty-based approaches such as Entropy and Margin
performed more consistently on the Tobacco3482 dataset
showing better performance undermultiple scenarios of class
imbalance, annotation noise, and data bias. Overall, it was
observed that class imbalance in the dataset severely affects
the performance of various recent SotA techniques such
as BADGE, BAIT, and LPL. To address the issues of data
imbalance, recently introduced class-balanced active learn-
ing approaches [43] may be explored in the future. Another
plausible future work could be to explore active learning for
multi-modal document analysis tasks, where both image and
textual data are utilized in the training process.
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