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Abstract

Traditionally, spherical keypoint matching has been
performed using greedy algorithms, such as Nearest
Neighbors (NN) search. NN based algorithms often lead to
erroneous or insufficient matches as they fail to leverage
global keypoint neighborhood information. Inspired by a
recent learned perspective matching approach [53] we
introduce SphereGlue: a Graph Neural Network based
feature matching for high-resolution spherical images. The
proposed model naturally handles the severe distortions
resulting from geometric transformations. Rigorous evalua-
tions demonstrate the efficacy of SphereGlue in matching
both learned and handcrafted keypoints, on synthetic
and real high-resolution spherical images. Moreover,
SphereGlue generalizes well to previously unseen real-world
and synthetic scenes. Results on camera pose estimation
show that SphereGlue can directly replace state-of-the-art
matching algorithms, in downstream tasks.

1. Introduction

Virtual and augmented reality applications, 3D recon-
struction, autonomous driving and vision-based robot navi-
gation systems require accurate camera poses. One way to
obtain camera poses is through Structure from Motion (SfM),
which depends on local feature correspondences. Many mod-
els have focused on local feature matching on perspective
images [8, 53, 66, 68]. However, camera pose estimation can
be more precise using spherical images because of their wide
field of view. More formally, this assumption usually holds
as there are more constraints determined by local features
distributed over the surface of the (spherical) image.

Hence, robust feature detection and matching have to be
developed for spherical images. First, traditional (handcraft)
techniques exist for spherical keypoint detection [16, 28, 69].
Also, learn-based feature detectors for perspective images
[22,57,60] can be mapped onto the sphere using local planar
approximations [24]. Second, spherical keypoint matching

Figure 1. Matching with SphereGlue: keypoints extracted with
a front-end handcrafted or learned feature detector are embedded
in a spherical graph. Combined with a local context aggregation
mechanism, our approach naturally models the continuity of the
sphere and properly handles distortions caused by camera motion.

is mainly based on greedy algorithms like Nearest Neigh-
bors (NN) search. NN algorithms exploit neither global nor
neighborhood information as only keypoint descriptors are
used while ignoring keypoint location. In practice, this usu-
ally leads to poor keypoint matching, which in turn impairs
camera pose estimation in SfM pipelines.

Building on recent advances in learned feature match-
ing based on self- and cross-attention for planar perspective
images, we propose a novel neural network model for key-
point matching on spherical images by solving a partial soft
assignment on the unit sphere. We push the boundaries of
learned keypoint matching with two contributions. First, we
embed local features as nodes of a spherical graph. This
allows us to properly model the continuity of the sphere
and naturally handle the connectivity of nodes across im-
age boundaries, which is not possible with state-of-the-art
learned keypoint matchers. Furthermore, our model is robust
to the often severe distortions resulting from spherical geo-
metric transformations caused by camera motion (see Fig. 1).
Second, we use graph convolutions based on the Chebyshev
polynomial. The use of Chebyshev convolutions overcomes
the limitations of a previously introduced message-passing



Figure 2. Unit sphere and the relation between spherical coordinates
and the equirectangular projection image (ERP).

mechanism for self-attention [53] as it supports localized
graph kernels. This formulation provides solid theoretical
foundations that allow us to not only define a local neigh-
borhood centered at each node, but also to control it. We
show that, even though trained on a small set of 15k image
pairs, SphereGlue generalizes well to novel synthetic and
real-world scenes. Moreover, it outperforms state-of-the-art
matching algorithms in spherical SfM by expressive margins.

2. Background and Related Work
Spherical Images

A spherical image is a 180◦ × 360◦ environment mapping
that captures the entire visible area around the camera. Ev-
ery visible 3D point P projects onto the surface of the unit
sphere at a point ω that is a function of (ϕ, θ). In practice,
spherical images are stored as 2D pixel-maps obtained by
a latitude-longitude transformation known as an equirectan-
gular projection that produces full panoramic images com-
monly referred to as ERPs, as shown in Fig. 2.

Different approaches have been proposed to extract key-
points from spherical images. Following the success of
SIFT [42], researchers extended it to wide-angle [33, 34]
and omnidirectional [16] images by computing the scale
space in the spectral domain. In contrast, [28] solves the heat
diffusion equation directly on the unit sphere. This allows
extraction of keypoints on very high-resolution images at
the cost of high computation time. To tackle the efficiency
problem while staying in the spatial domain, Zhao et al. use
local planar approximations [24] to mitigate distortions and
present SPHORB [69], a spherical extension to the well-
known ORB detector [52]. Although these approaches made
significant contributions in detecting keypoints on spherical
images, keypoint matching is performed using traditional
Nearest Neighbors (NN) search.

In the context of spherical SfM, [18, 43] evaluate the per-
formance of different keypoint detectors (planar and spheri-
cal for classical [18] and also learned [43] detectors), but are
limited to pairs of images. Other methods focus on two- and
multi-view spherical pose estimation [29, 31, 46] that can be
used, for instance, in dense 3D reconstruction [45]. In all
these cases, camera pose estimation can only start once key-
point matches have been established, which is achieved by

computing either l2 or Hamming distance between descrip-
tors, depending on the descriptor type, but the underlying
algorithm is nonetheless an instance of NN search.

Deep learning has been applied to spherical images in a
variety of research areas, such as object detection [15,39,56],
3D model recognition [13, 20], cosmology [20, 40, 47], cli-
mate and semantic segmentation [12, 20, 35, 63, 67], shape
classification and retrieval [41], single-view depth estima-
tion [58], novel view synthesis [4, 32] and most commonly
image or text classification [9, 11, 15, 19, 25, 36, 37, 70]. Sim-
ilar to keypoint detection, some authors choose to perform
convolutions in the spectral domain [9, 11, 13, 25], whereas
others prefer the spatial domain. In the latter case, some
approaches operate directly on the ERPs [36, 37, 56, 70], use
local planar approximations [12, 15, 38, 41, 58, 67] or build
on the HEALPix [30] pixelization [20, 21, 47]. However, a
learn-based approach for matching keypoints detected on
high resolution spherical images is still missing.

Perspective Images

In contrast to spherical images, several methods using deep
learning have been developed attempting to improve key-
point matching on perspective images. Recent advances
in learn-based local feature detection [6, 10, 22, 23, 44, 50,
57, 60, 65] produced keypoints that are distinctive and ro-
bust to rotation, scale, illumination and viewpoint changes.
Then, after the computation of putative correspondences
obtained with NN search, some approaches aim at improv-
ing keypoint matching by classifying matches as inliers or
outliers [8, 49, 66, 68], similar in spirit to RANSAC [26].
And like RANSAC, are bound by the aforementioned lim-
itations of NN. To sidestep that limitation, [7] proposes a
handcrafted statistical framework under the assumption of
piece-wise motion smoothness. This assumption is hard to
hold in practice, particularly under wide baseline camera mo-
tion. Moreover, as pointed out by Yi et al. [66], as baseline
increases, SAC-based algorithms—which rely on sampling a
small subset of the matches to instantiate a hypothesis—tend
to suffer because of the increased number of outliers.

Our work is inspired by SuperGlue [53], which replaces
the clustering proposed in OA-Net [68] with self- and cross-
attention mechanisms and eliminates the need to compute
putative keypoint correspondences. This property is specially
attractive for high-resolution spherical images, where it is
common to detect over 20k keypoints per image. However,
SuperGlue uses a “planar” graph formulation that reflects
the distribution of keypoints on perspective images. Con-
sequently, nodes on opposite sides of the image are weakly
or not related. This limits its application to full panoramic
images. In contrast, we represent keypoints as nodes on a
spherical graph, which leads to a natural modeling of the
continuity across all borders of the ERPs as context aggrega-
tion now depends on the geodesic distance between nodes.



3. Proposed Model
Given a pair of high-resolution spherical images for which

keypoints have been detected, we seek a partial assignment
that handles the continuity of the sphere and is robust to the
non-affine distortions caused by camera motion. Existing
works cannot be directly applied to spherical images, as they
are designed for perspective images.

Our model builds upon a state-of-the-art perspective key-
point matching technique dubbed SuperGlue [53]. In Sec-
tion 3.1, we introduce the core aspects of SuperGlue. Sec-
tion 3.2 presents the proposed approach.

3.1. Overview of SuperGlue

SuperGlue is a neural network designed to predict key-
point correspondences on perspective images by solving a
partial soft assignment problem. It combines self- and cross-
attention layers for local and global context aggregation as
well as to achieve permutation invariance to the input key-
points. A keypoint is denoted by its x and y pixel coordinates
along with a confidence value c that infers how salient the
keypoint is and a descriptor vector d ∈ RD encoding the
visual information in the vicinity of the keypoint location.
Together, keypoint coordinates and confidence represent the
positional information p := (x, y, c).

Using Multilayer Perceptron (MLP), each keypoint is em-
bedded into a feature representation xi ∈ RD that combines
(pixel) position, confidence and visual information:

xi = di + MLPenc (pi) . (1)

This representation is then fed into a sequence of self- and
cross-attention layers that aggregate information using a
message-passing strategy. Denoting by A := {1, ...,M}
and B := {1, ..., N} the sets of embedded local features
of input images A and B, the attention aggregation layers
produce features fA ∈ A and fB ∈ B that are subsequently
used to express the similarity between keypoints. These
similarities are gathered in the so-called score matrix:

Si,j =< fA
i , fB

j >, ∀(i, j) ∈ A× B, (2)

where < ·, · > is the dot product. Matrix S is then aug-
mented with dustbins to handle occlusion and keypoints
that cannot be matched due, for instance, failure of the key-
point detector. The sought partial soft assignment is repre-
sented by a matrix ΓM×N that is obtained after applying
the Sinkhorn [17, 54] algorithm and removing the dustbins.
Loss is computed as follows. Given ground-truth matches
M = {(i, j)} ⊂ A× B and labeling unmatched keypoints
as I ⊆ A and J ⊆ B, the loss L is given by

L = −
∑

(i,j)∈M

log Γ̄i,j −
∑
i∈I

log Γ̄i,N+1 −
∑
j∈J

log Γ̄M+1,j ,

(3)
where Γ̄(M+1)×(N+1) is the assignment matrix (with dust-
bins included). Finally, Γ = Γ̄1:M,1:N .

3.2. SphereGlue

In this section, our approach and contributions are ex-
plained in detail. We adopt a spherical graph model [19–21,
47], where each keypoint location is determined by its unit
Cartesian coordinates (x, y, z). The choice of Cartesian in-
stead of spherical coordinates (ϕ, θ)—see Fig. 2—is simply
because they are more convenient for the computation of
geodesic distances. The augmented keypoint position is thus
defined as p′ := (x, y, z, c). We also use MLP to combine
p′ with the associated visual descriptor d similar to Eq. 1.

For simplicity, here A and B represent spherical images.
Following [47], our spherical graph is modeled as an undi-
rected graph G = (V, E ,W), where V is the set of ver-
tices (or nodes) lying on the surface of the unit sphere and
|V| = M +N , with M and N the number of local features
in A and B, respectively. Edges are represented by E and W
is the adjacency matrix. The formulations described above
are simple but effective. SphereGlue inherits the power and
flexibility of SuperGlue with the ability to learn priors over
non-affine (often severe) distortions caused by spherical ge-
ometric transformations. Moreover, while SuperGlue does
not model continuity over image borders, SphereGlue can
natively handle partial keypoint assignments in the sphere
itself, eliminating the issue of discontinuities altogether.

For our main contribution, we observe that SuperGlue’s
self-attention mechanism implies aggregation of informa-
tion from all nodes representing features belonging to the
same image. This does not scale well for large graphs, such
as those resulting from high-resolution spherical images.
Although SuperGlue’s self-aggregation mechanism makes
sense for perspective images, in the context of spherical
images it requires passing information onto nodes that are
generally unrelated or irrelevant to a specific node. This is
usually the case with antipodal nodes, i.e., those on opposite
sides of the sphere. As a result, using SuperGlue’s message-
passing strategy increases both training and inference time.

One way to address this issue is to replace SuperGlue’s
message-passing strategy for self-attention with the introduc-
tion of a local neighborhood centered at each node. As
pointed out in [19, 47], this is indeed possible by using
Chebyshev polynomials. They are often used when replacing
the spectral formulation of graph convolutions—a process
known to be computationally costly—with spatially local-
ized kernels centered at a specific location.

For a given Chebyshev polynomial T(k) of order k, the
Chebyshev convolution produces features F ∈ RQ×D as

F =

h∑
k=0

T(k)XΘ(k), (4)

where Θ ∈ RD×D is the matrix of learnable filter param-
eters, X ∈ RQ×D contains the keypoint encodings, and
T(k) ∈ RQ×Q, with Q ∈ {M,N}, i.e. the number of key-
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Figure 3. Overview: given two sets of keypoints extracted from high-resolution spherical images, SphereGlue predicts a partial soft
assignment matrix Γ. Keypoints are encoded combining their location and visual information. The resulting embeddings are fed into the
self- and cross-attention blocks (Chebyshev convolutions and message-passing context aggregation layers, respectively). The produced
features are gathered in the score matrix S that expresses the similarity between the keypoints from the input images. The score matrix
is augmented with dustbins and Optimal Transport [48, 59], implemented using the Sinkhorn algorithm [17, 54], yields a soft assignment
matrix. Finally, after removing the dustbins, the partial soft assignment matrix Γ is obtained.

points in either image A or image B. The parameter h in-
dicates hops, which is the (smallest) number of edges that
need to be traversed to connect two nodes. Intuitively, h
gives a notion of local neighborhood. See the Chebyshev
convolution block in Fig. 3 for a visual representation. Since
Chebyshev polynomials may be computed using stable re-
currence and denoting X̄(k) = T(k)(̂L)X, we can write

X̄(0) = X

X̄(1) = L̂X

X̄(k) = 2̂LX(k−1) −X(k−2).

(5)

L̂ ∈ RQ×Q is the rescaled graph Laplacian and given by

L̂ =
2L

λmax
− I, (6)

where I is the identity matrix. Finally, L is the symmetrically
normalized Laplacian given by

L = I−D−1/2WD−1/2, (7)

where W ∈ RQ×Q is the adjacency matrix and D ∈ RQ×Q

is a diagonal matrix so that Dii =
∑

j Wij .
This way, we can keep the underlying spherical graph

structure introduced above and simultaneously influence the
convolution by defining the neighborhood while constructing
the adjacency matrix. This is achieved by tuning a single
scalar parameter: the number of hops h we wish to use,
see Eq. 4. This formulation is differentiable, can be easily
integrated into the network and provides solid theoretical
foundations that allow us to not only define a local neighbor-
hood for each node, but also to control it.

We then completely replace the message-passing scheme
and implement context aggregation as a Chebyshev convolu-
tion block. In contrast to the multiplex architecture proposed

in SuperGlue, where self- and cross-attention layers alternate,
the Chebyshev convolution block is followed by a sequence
of layers implementing only cross-attention. The remain-
ing blocks follow the optimal matching layer proposed in
SuperGlue: after augmenting the score matrix S with dust-
bins, Sinkhorn [17, 54] is applied and the assignment Γ̄ is
produced. Finally, the partial assignment Γ is recovered by
removing the dustbins. Figure 3 summarizes this idea and
provides an overview of SphereGlue. Loss is computed by
minimizing the negative log-likelihood as shown in Eq. 3.

4. Experimental Setup
4.1. Dataset

To determine ground-truth keypoint correspondences, it
is necessary to have, for each RGB image, an accurate depth
map and the associated camera pose. Although there is a
growing number of datasets in the spherical deep learning
community [2,51,55,61,62,64,71–73], none satisfy the con-
ditions above. Even though it is possible to render images
according to desired camera poses with Replica [55], the
number and size of the scenes are limited and most impor-
tantly the depth maps lack the required accuracy. Others, for
instance, lack camera pose or the resolution is too small.

We then used Blender [27] to create the required data.
A total of 15 artificial scenes were rendered with camera
poses randomly generated from a subset of predefined poses.
Sample images are depicted in Figure 4(a)-(e). The training
set consists of image pairs with maximum baseline of 3 me-
ters and ground-truth keypoint matches, randomly selected
from 10 synthetic scenes (7 indoors and 3 outdoors). The
test set contains image pairs from 9 novel scenes (5 syn-
thetic and 4 real-world). All 5 synthetic scenes are indoors
whereas the real scenes contain both indoor (Meeting Room
1 and 2) and outdoor (Stadium and Town Square) scenarios.



(a) Bank (b) Barbershop (c) Classroom

(d) Kartu (e) Warehouse (f) Meeting Room 1

(g) Meeting Room 2 (h) Stadium (i) Town Square

Figure 4. Sample images from our dataset (9 out of 19). Scenes
(a)-(e) were used for the experiment presented in Sec. 5.1 and are
also part of the training set (except Barbershop, used for testing).
Scenes (f)-(i) compose our real-world test set.

All synthetic images as well as Stadium and Town Square
are 7070 × 3535 (25 MPixels). Stadium and Town Square
were acquired using the Civetta camera [1] whereas Meeting
Room 1 and 2 were captured with the Theta-S camera [14]
and therefore are 5376 × 2688 (14.5 MPixels).

4.2. Training and Testing

SphereGlue was trained in a supervised manner on a sin-
gle RTXA6000 over 60 epochs and number of hops h = 2.
We used 20 nearest neighbors per hop and a fixed learning
rate of 1e−4. Ground-truth keypoint matches are computed
for each target feature detector (see Sec. 5 for the chosen
detectors) for all image pairs in the training set. We then ran-
domly select a total of 15k image pairs (1.5k from each train-
ing scene) for which at least 500 ground-truth matches exist.
Due to hardware limitations, a maximum of 4k keypoints is
used for training (2k with ground-truth and 2k without corre-
spondences [53]) per image pair. Following [53], we use 20
Sinkhorn iterations. Testing is performed on approx. 170k
image pairs from the 9 testing scenes. Even though distance
between cameras was limited to 3 meters during training, for
the real-world scenes all image pairs were used, regardless of
the distance between cameras. Also, the maximum number
of keypoints per image was raised to 20k.

5. Results
We start by evaluating SuperGlue on spherical images.

The goal is to empirically show the need for an approach
that is robust to the spherical geometric transformations un-
der camera motion. We then proceed to the evaluation of
SphereGlue against NN search and report results on two
classical (SIFT [42] and Akaze [3]) and two learned (Su-
perPoint [22] and KP2D [57]) keypoint detectors for which
code is publicly available. Despite our efforts, the code re-

leased by the authors of SPHORB [69] did not yield keypoint
matches that were consistent enough for two-view pose esti-
mation. As pointed out in [43], the official implementation
of Superpoint fails to retrieve matches under NN search. In
this case (NN search), an alternative 1 was used. We refer
to the alternative implementation as Superpoint*. Note that
SphereGlue results include both implementations. For base-
line NN algorithms we use the mutual (or cross-check) and
ratio [42] tests. The threshold for the ratio test is 0.75.

Previous work [53, 65] use distance to epipolar line to
classify matches as inliers or outliers. We argue that when-
ever ground-truth matches are available, they should be used
instead to measure the matching score (MS). Therefore, we
report MS as a ratio between the number of correctly found
matches and the number of ground-truth matches.

Evaluation on HPatches [5] carries little significance in
the context of spherical images. Furthermore, considering
our interest in spherical SfM, in Sec. 5.2 and 5.3 we used [29]
to assess the performance of SphereGlue in two-view and
multi-view camera pose estimation, respectively.

5.1. SuperGlue on Spherical Images

Sarlin et al. [53] state that SuperGlue learns priors over
geometric transformations and regularities of the 3D world,
but that does not seem to extend to spherical images. To
demonstrate that, we conducted the following experiment.
We rendered a set of 100 random images from five indoor
scenes with different characteristics that aim at capturing
the variety and complexity of urban spaces. See Fig. 4 for
sample views. For each scene, we apply SuperGlue (with
Superpoint as feature detector) using the pre-trained indoor
weights on views rendered using two independent criteria:
pure rotation and pure translation. We use MS to report the
robustness of SuperGlue under each of these conditions.

5.1.1 Pure Rotation

In this experiment, each selected image was rotated around
the z-axis (upright) in steps of 10◦ up to 350◦. Figure 5
shows MS as a function of the rotation angle. For rotations
close to 0◦ or 360◦, MS is high, as expected, since the rotated
images are very similar to the original. However, the score
quickly drops, reaching values below 10% for rotations close
to 180◦. We can conclude that, even without introducing
any additional distortion caused by camera displacement
(keypoints are only being shifted horizontally), SuperGlue
fails to generalize to spherical keypoint matching. Note that
this is neither surprising nor a failure of SuperGlue, as it
was trained exclusively on perspective images. However, it
highlights the need for a method that is robust to spherical
transformations that are common under camera motion.

1https://github.com/rpautrat/SuperPoint



Architecture Detectors Barbershop Klaus Tokyo Seoul Shapespark

MS P R MS P R MS P R MS P R MS P R
SuperGlue Superpoint 37.24 77.27 37.63 19.77 72.84 19.94 21.81 71.68 22.04 27.59 72.14 27.91 19.29 40.63 22.01

NN-Mutual

Superpoint* 32.63 62.64 34.10 18.03 53.41 18.78 19.10 50.88 20.06 24.00 51.86 25.14 19.98 41.82 22.35
SIFT 11.71 75.73 11.83 10.07 64.11 10.21 12.18 62.58 12.36 14.83 65.84 15.00 15.57 64.74 15.74
KP2D 22.43 76.66 22.79 11.93 61.01 12.16 13.65 57.59 14.03 19.25 62.64 19.70 19.44 52.89 20.35
Akaze 15.89 79.79 16.05 9.25 66.30 9.38 10.10 62.99 10.27 13.00 62.53 13.23 18.50 72.65 18.72

NN-Ratio

Superpoint* 15.63 80.99 15.72 7.90 74.15 7.94 9.46 75.95 9.51 11.09 72.62 11.16 10.44 47.97 10.96
SIFT 8.71 83.58 8.74 7.46 77.01 7.48 10.41 79.47 10.46 12.36 81.38 12.39 12.26 73.18 12.31
KP2D 10.60 88.80 10.62 5.28 78.12 5.29 7.29 79.40 7.32 9.81 79.84 9.85 9.47 57.68 9.65
Akaze 8.74 89.68 8.75 4.71 81.51 4.72 5.76 82.59 5.78 7.81 83.99 7.83 8.80 83.80 8.81

SphereGlue

Superpoint* 42.77 66.94 45.27 26.24 60.84 27.86 27.74 60.59 29.65 44.88 70.83 48.29 30.30 60.60 32.69
Superpoint 53.04 71.21 56.20 33.78 60.93 37.11 39.79 66.17 43.17 54.98 74.83 59.15 36.64 62.51 40.25
SIFT 49.49 58.68 56.14 38.07 56.53 43.50 32.33 51.89 36.84 49.69 62.37 56.52 63.97 64.82 71.24
KP2D 49.81 67.98 53.85 33.86 59.64 37.93 34.36 56.69 38.87 50.33 68.27 56.14 54.01 70.00 58.59
Akaze 13.14 71.04 13.36 11.77 71.10 12.00 12.21 65.61 12.54 21.17 71.41 22.05 31.90 74.40 33.04

Table 1. Two-view pose estimation: we report matching score (MS), precision (P) and recall (R), in percent. SphereGlue outperforms
baseline methods by an expressive margin in MS and R. See Sec. 5.2 and 5.3 for discussions on the results for P.
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Figure 5. Performance of SuperGlue under pure rotation.

5.1.2 Pure Translation

Although SuperGlue can find keypoint matches under chal-
lenging perspective viewpoint changes, the same does not
hold for spherical images. In this experiment, instead of
rotations, we apply pure translation in a random direction
with a random displacement in the range [0, 3] meters. We
report MS as a function of displacement in Fig. 6. Even for
small displacements, the difficulty faced by SuperGlue in
finding matches is evident.

5.2. Two-View Pose Estimation

We compare how SphereGlue, NN and SuperGlue 2

matches affect spherical two-view camera pose estimation.
Results for SuperGlue were produced with the pre-trained
outdoor weights. As in previous work [53, 65], we report
matching score (MS) 3, precision (P) and area under the
curve (AUC) of the pose error. In addition, we also report
recall (R). Since these metrics require ground-truth matches,
results presented in this section were obtained from the five

2included only in the two-view pose estimation for reference.
3computed as the ratio between the number of correctly found matches

and ground-truth matches.
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Figure 6. Performance of SuperGlue under pure translation.

synthetic test scenes and exclude the real-world scenes. Im-
ages were rendered as described in Sec. 4.1.

Table 1 shows results for MS, P and R. SphereGlue con-
sistently outperforms both NN algorithms and SuperGlue in
MS and R by an expressive margin. The exception is preci-
sion, which is highest for NN with ratio test for the Akaze
detector. Although a more thorough investigation is required
to support this, a possible explanation is as follows. Akaze
has the shortest descriptor among the detectors used in this
work: 61 elements against 128 for SIFT and 256 for Super-
point and KP2D. Under the assumption that the descriptor
length is proportional to its capacity to encode information,
the Akaze descriptor is less discriminative than its longer
counterparts. Given the high number of extracted keypoints
(frequently above 10k per image) and considering the abun-
dant self-similarities in indoor scenarios, it is expected that
a fraction of the Akaze descriptors are, in general, similar to
each other. Hence, only a small portion (likely consisting of
very good matches) survives the ratio test. This is confirmed
by the high P values along with low values of corresponding
MS and R. As we show in the Sec. 5.3, this can be harmful
for spherical multi-view camera pose estimation. Further
analysis is left as future work.
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5◦ 10◦ 20◦ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦

SuperGlue Superpoint 98.96 99.19 99.54 94.07 95.37 96.61 93.09 95.40 97.13 84.25 88.33 91.81 46.68 49.85 53.91

NN-Mutual

Superpoint* 98.85 99.66 99.94 82.94 85.74 88.68 94.03 96.95 98.03 62.61 68.58 75.35 56.94 61.16 65.77
SIFT 77.21 89.69 97.19 49.41 58.91 67.38 42.45 59.40 74.46 33.83 38.1 42.94 66.66 74.99 82.88
KP2D 93.87 97.13 99.14 57.07 62.44 66.74 62.22 75.98 85.94 48.10 55.07 63.74 63.18 68.18 73.22
Akaze 83.56 91.12 96.39 43.62 54.53 65.59 47.62 65.17 82.67 29.76 35.27 42.01 93.01 96.06 98.11

NN-Ratio

Superpoint* 98.33 98.56 99.14 88.27 90.82 93.44 78.45 85.89 91.66 71.65 78.32 85.83 47.13 52.75 59.71
SIFT 99.37 99.77 99.94 79.14 81.73 84.68 85.42 91.42 95.87 70.91 75.78 81.14 79.01 82.66 87.52
KP2D 93.20 94.87 95.96 63.11 68.34 73.22 65.28 74.81 83.10 65.23 72.09 79.99 51.14 56.64 63.66
Akaze 99.02 99.54 99.77 73.18 78.19 83.34 79.93 87.39 92.37 65.12 71.73 79.97 95.97 97.40 98.54

SphereGlue

Superpoint* 99.19 99.48 99.88 94.46 95.94 97.30 99.85 99.93 99.93 96.03 97.24 98.35 84.41 87.42 90.65
Superpoint 99.31 99.59 99.82 91.29 93.44 95.68 99.72 99.90 99.98 96.49 97.22 98.06 82.81 86.44 91.12
SIFT 99.02 99.14 99.66 90.63 93.34 95.68 96.94 98.85 99.53 88.18 91.26 94.19 99.77 99.86 99.93
KP2D 98.79 99.19 99.82 89.06 91.97 94.60 96.40 98.35 99.25 92.44 94.79 96.85 99.67 99.89 99.96
Akaze 99.02 99.65 99.94 87.80 91.01 93.91 93.18 97.16 98.52 70.82 78.66 86.21 99.22 99.49 99.68

Table 2. Two-view pose estimation: we report AUC of the relative pose error, in percent. SphereGlue consistently outperforms both NN
algorithms across scenes and keypoint detectors in nearly all scenarios. See Sec. 5.2 for details.

Table 2 shows AUC for relative pose estimation error at
5◦, 10◦ and 20◦ thresholds. Relative pose error is simply the

Scenes Detectors NN-Mutual NN-Ratio SphereGlue

Barbershop (80)

Superpoint - - 80
Superpoint* 61 74 80
SIFT 68 68 80
KP2D 71 79 80
Akaze 68 79 80

Klaus (550)

Superpoint - - 549
Superpoint* 550 549 550
SIFT 532 514 550
KP2D 547 340 550
Akaze 550 300 549

Tokyo (90)

Superpoint - - 89
Superpoint* 79 90 90
SIFT 71 77 88
KP2D 69 85 90
Akaze 66 82 90

Seoul (330)

Superpoint - - 320
Superpoint* 329 321 321
SIFT 249 305 330
KP2D 313 321 330
Akaze 318 143 319

Shapepark (860)

Superpoint - - 860
Superpoint* 858 860 856
SIFT 791 851 860
KP2D 841 860 859
Akaze 855 860 856

Town Square (35)

Superpoint - - 35
Superpoint* 35 35 35
SIFT 35 32 35
KP2D 35 35 35
Akaze 35 35 35

Stadium (74)

Superpoint - - 74
Superpoint* 74 73 74
SIFT 74 71 73
KP2D 72 73 74
Akaze 74 71 74

Meeting Room 1 (18)

Superpoint - - 18
Superpoint* 5 3 9
SIFT 18 18 18
KP2D 18 18 16
Akaze 18 18 18

Meeting Room 2 (21)

Superpoint - - 13
Superpoint* 17 21 21
SIFT 20 21 21
KP2D 11 21 20
Akaze 17 20 21

Table 3. Multi-view pose estimation: we report the number of
camera poses recovered. SphereGlue can directly replace NN
algorithms in spherical SfM pipelines. See Sec. 5.3 for details.

maximum angular error in rotation and translation. Except
for the Barbershop scene, where NN with ratio test for SIFT
is marginally superior for 5◦ and 10◦, SphereGlue once again
outperforms the baselines. It is worth mentioning that the
significantly higher AUC values we obtain when compared
to SuperGlue are in part due to the fact that we use spherical
instead of perspective images. In other words, it is expected
to obtain more accurate camera poses when spherical images
are used. The reason is that in this case, constraints on
the pose (given by bearing vectors defined by the keypoint
locations) are usually distributed all over the unit sphere —
in contrast to perspective images, where the bearing vectors
can only span the (limited) field of view of the camera —
and better drive optimization algorithms towards the true
camera pose. Figure 7 shows qualitative keypoint matches
for all real-world test scenes. In both indoor and outdoor
scenarios, keypoint matches established by SphereGlue are
cleaner than those retrieved by NN with mutual test and
richer than those produced by NN with ratio test.

5.3. Multi-View Pose Estimation

In this section, we take a step further and evaluate
SphereGlue against NN in the more difficult task of spherical
multi-view camera pose estimation. Here we consider all
synthetic and real-world test settings. Table 3 summarizes
the number of camera poses successfully recovered. The
original number of cameras present in each scene is indi-
cated next to the scene name. Synthetic scenes allow us to
create challenging settings by rendering a large number of
cameras with a variety of poses that result in severe image
distortions. For instance, Seoul, Klaus and Shapespark con-
tain 330, 550 and 860 images, respectively, and represent
typical urban indoor apartments. Real-world scenarios are
also challenging due to repetitive textures and strong illumi-
nation changes — in case of outdoor — as well as lack of
textures and high self-similarities in man-made structures,
such as indoor environments (see Fig. 4).

Thanks to the wide field of view of spherical images and
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Figure 7. Qualitative keypoint matches: we compare SphereGlue to NN with mutual and ratio tests. NN with mutual test usually retrieves a
large number of matches, specially in well-textured environments, but also containing several outliers. SphereGlue produces almost as many
matches with significantly less outliers. NN with ratio test tends to produce a clean set of matches at the cost of poor performance in indoor
places. In contrast, SphereGlue establishes a richer set of matches even under wide baseline and high distortions. Note how SphereGlue
naturally handles the continuity of the sphere and generalizes to very wide, unseen, baselines (Stadium and Town Square).

large number of keypoints extracted per image, in general,
enough matches can be found across multiple images. As a
result, all detectors performed well under NN and in combi-
nation with SphereGlue. Nevertheless, SphereGlue is clearly
more reliable than NN across scenes and keypoint detectors.
In the following we provide two ways to highlight that. First,
when considering only the cases where all camera poses
were recovered, SphereGlue succeeds in 30 out of 45 (9
scenes times 5 detectors) cases (66.67%) against 12 and 13
out of 36 cases for NN mutual and ratio, i.e. 33.33% and
36.11%, respectively. Second, considering all test scenes
and keypoint detectors together (sum of original number
of images per scene times the number of detectors), there
is a total of 10,290 and 8,232 camera poses to recover for
SphereGlue and NN search, respectively. While NN with
mutual and ratio tests recover 95.29% and 90.17% of all
camera poses, SphereGlue successfully recovers 99.37%.

Finally, as indicated in Sec. 5.2, the fact that NN with
ratio test for Akaze has the highest precision does not imply
it is more suitable for spherical SfM. This becomes evident
from the analysis of results reported in Table 3: it performs
worse than NN with mutual test and SphereGlue regarding
the total number of recovered camera poses and delivers
particularly poor results for Klaus and Seoul scenes.

6. Conclusion
In this paper we proposed the first trainable neural-based

keypoint matcher for spherical images. Inspired by recent
advances in local feature matching for perspective images,
we re-formulate keypoint matching as a partial soft assign-
ment on spherical graphs, which naturally and efficiently
model the underlying data. SphereGlue completely replaces
the previously introduced message-passing strategy for self-
attention with Chebyshev convolution layers, allowing us to
fully control the size of the local neighborhood and simulta-
neously speed up training and inference. Results show that
SphereGlue can replace state-of-the-art matching algorithms
in spherical camera pose estimation pipelines. Future work
includes training on larger sets of image pairs with wider
baselines and under more challenging illumination changes.
Also, considering that Sinkhorn is an iterative algorithm
and thus requires a given number of iterations, investigating
alternatives that could speed up training and inference are
interesting research directions.
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toli. Fast Explicit Diffusion for Accelerated Features in Non-
linear Scale Spaces. In BMVC, 2013. 5

[4] Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian
Richardt, and James Tompkin. Matryodshka: Real-time 6dof
video view synthesis using multi-sphere images. In ECCV,
pages 441–459, 2020. 2

[5] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krystian
Mikolajczyk. Hpatches: A benchmark and evaluation of
handcrafted and learned local descriptors. In CVPR, 2017. 5

[6] Anatoly Belikov and Alexey Potapov. Goodpoint: unsuper-
vised learning of keypoint detection and description. CoRR,
2020. 2

[7] Jiawang Bian, Wen-Yan Lin, Yasuyuki Matsushita, Sai-Kit
Yeung, Tan-Dat Nguyen, and Ming-Ming Cheng. GMS: Grid-
based motion statistics for fast, ultra-robust feature correspon-
dence. In IEEE/CVPR, pages 2828–2837, 2017. 2

[8] Eric Brachmann and Carsten Rother. Neural-guided ransac:
Learning where to sample model hypotheses. In ICCV, page
4321–4330, May 2019. 1, 2

[9] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann
Lecun. Spectral networks and locally connected networks on
graphs. In ICLR, 2014. 2

[10] Peter Hviid Christiansen, Mikkel Fly Kragh, Yury Brodskiy,
and Henrik Karstoft. Unsuperpoint: End-to-end unsupervised
interest point detector and descriptor. CoRR, abs/1907.04011,
2019. 2

[11] Taco Cohen, Mario Geiger, Jonas Köhler, and Max Welling.
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Nathanaël Perraudin. Deepsphere: a graph-based spherical
CNN. In ICLR, Addis Ababa, Ethiopia, April 2020. OpenRe-
view.net. 2, 3
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