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Abstract
Several methods exist to detect and distinguish collisions of robotic systems with their environment, since this information is a
critical dependency of many tasks. These methods are prevalently based on thresholds in combination with filters, models, or
offline trainedmachine learningmodels. To improve the adaptation and thereby enable amore autonomous operation of robots
in new environments, this work evaluates the applicability of an incremental learning approach. The method addresses online
learning and recognition of motion and contact episodes of robotic systems from proprioceptive sensor data using machine
learning. The objective is to learn new category templates representing previously encountered situations of the actuators and
improve them based on newly gathered similar data. This is achieved using an artificial neural network based on adaptive
resonance theory (ART). The input samples from the robot’s actuator measurements are preprocessed into frequency spectra.
This enables the ART neural network to learn incrementally recurring episodic patterns from these preprocessed data. An
evaluation based on preliminary experimental data from a grasping motion of a humanoid robot’s arm encountering contacts
is presented and suggests that this is a promising approach.

Keywords Adaptive resonance theory · Robotics · Contact detection · Incremental learning

1 Introduction

The distinction of contact situations is an important depen-
dency for many robotic tasks, be it the detection of an
unexpected collision during motion of a manipulator arm,
the determination of a contact during a grasping operation,
or the assessment of a foothold of walking robots. Robotic
systems that are used in unstructured environments, or that
work closely with humans, or are operated autonomously,
etc., have to be able to deal with a variety of contact situa-
tions. Unlike structured industrial processes, these situations
cannot be fully predicted in advance. Detection based on
static models and initial assumptions may not work in all
situations. A continuous learning strategy enabling robotic
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systems to recognize and distinguish episodes of motion
and contact during operation and over its lifetime is there-
fore desirable. Rather than relying on dedicated sensors that
translate into well-defined physical quantities, these learning
strategies should seek to leverage the large amount of pro-
prioceptive sensory signals wherever possible—even if the
connection to the detection is not directly visible.

Traditional solutions for considering contacts in robotic
manipulator applications involve reactive strategies such as
various types of impedance control or end-effector force con-
trol, as well as hybrid approaches. While this is valid for
preprogrammed tasks with known specific reference forces
and motions, a purely reactive control strategy does not dis-
tinguish the source of the external force. For this purpose,
dedicated collision detection methods are applied. In the
simplest and most common case, two situations are distin-
guished. In the case of a robot manipulator arm, this can
be the normal operation and an unexpected collision, which
often leads to an emergency stop. Classically, this kind of
collision detection is usually implemented as either model-
based method relying on an accurate dynamic (physical)
model or by using dedicated sensors measuring directly the
forces. Manually tuned filters and thresholds are then used
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for the detection. An early work is described in [1], where
a disturbance observer is used to determine a signal for the
threshold-based detection of collisions. An extensive survey
with a focus on dynamic model-based methods for collision
detection or monitoring can be found in [2]. While the meth-
ods considered in that work are generally applicable to rigid
body systems, it is clear that the filtering, thresholding, and
error estimation need to be closely tailored towards a spe-
cific robotic manipulator, involving mostly manual work. An
approach described in [3] tries to address this issue using
proprioceptive motor side measurement data. It introduces
dynamic thresholds and an adaption of the filter coefficients
to reduce the experimental effort for parameter tuning and
parametric model identification.

With the emerging of the field of human-robot collabo-
ration, where humans may actively interact with a robotic
system also through physical contact during cooperative
tasks, the class of intended contacts get into focus. To achieve
this, it is necessary to divide the collisions intomore than two
categories. Cho et al. [4] further divide the rate of change in
the torque measurement to distinguish collisions from exter-
nal forces due to interaction. For less reliance on the absolute
value of the measurement, detection methods have been
applied in the frequency domain instead of directly moni-
toring the measurement signal in time domain. In particular,
Kouris et al. [5] showa threshold-basedmethod to distinguish
between hand guidance and collisions based on the existence
of high-frequency components in the frequency spectrum of
the external forces. The external forces are measured directly
with a dedicated force sensor, using a manipulator arm in a
laboratory environment. In [6], the same author extended
the method proposing a “distinction method based on the
derivative of the spectral norm of the external force/torque
signal in the frequency domain” in order to further reduce
the delay between impact and detection. In addition to the
threshold-basedmethods, data-driven approaches such as [7]
exist, where a fuzzy modeling of the expected force/torque
is used. However, this is more to improve the prediction
of the dynamic model for the expected joint torques than
to learn and classify the different contact situations during
runtime. Another data-driven approach is described in [8],
where tactile sensation and reflex is combined with a classi-
cal model-based control method through a concept of robot
pain sensation. Deviation from a nominal pain level is then
used to influence a joint-level impedance controller.

From these samples of related work, it can be seen that
the improvement of contact classification is still an ongo-
ing effort. Limitations of model-based and thresholding
approaches based on assumptions during the setup of a sys-
tem have been identified in the literature. Extensive work
has been done to improve preprocessing and filtering. If the
aspect of adaptation is considered, the adaptation usually
refers to the thresholds or the parameters of a parametric

model. One, sometimes two categories of contact situations
are regarded and the detection is mostly based on the instan-
taneous measurement signals and derivatives. The release of
the contact, i.e., the end of a contact situation, is largely not
addressed.

However, the conditions can change when a robot system
is operating autonomously, or needs to quickly adapt to han-
dling of similar product variants without reprogramming in
industrial production. The dependence on once tuned thresh-
olds and models limits the ability of robotic systems to adapt
to these new conditions. Themotivation of this work is there-
fore to improve the ability of a robotic system to adapt and
to let it learn incrementally from its own measurement data
during its operation. In particular, the aim of this work is
to achieve a more fine-grained and automated discrimination
of the episodes arising in repetitive tasks in terms of motion
and contact. It should enable a robotic system to learn and
recognize typical episodes itself, while performing moving
and manipulating actions and use data from what almost any
robotic system has—the actuators.

The operating principle of incremental learning allows an
adaptation to new situations and also offers the possibility
of a finer classification of contact and motion episodes. The
novelty and contribution of this work lie in the combination
of an incremental learning approach and the use of low-level
actuator measurements of a robotic system in the frequency
domain as a source of information to build an online classi-
fication system.

In a preprocessing step, the time-domain actuator sensory
data are transformed into frequency domain. To enable the
system to incrementally learn from these data, a neural net-
work based on adaptive resonance theory (ART) is employed.
These ART-based neural networks inherently support incre-
mental learning of new data without catastrophic forgetting.
In this combination, recurring episodic patterns in the data,
such as resulting from the motion of a manipulator arm, can
be used to classify different motion and contact situations.
An overview of the procedure is shown in Fig. 1. Thismethod
can serve as a basis for a higher level behavioral architecture,
which could adapt it’s controllers, or to use a visual system or
similar for closer inspection upon creation of new categories
in order to rate the new situation.

Both parts, the preprocessing of the data and the clas-
sification approach, are described in Sect. 2. Section3 then
presents an experimental evaluation, followed by the discus-
sion and conclusions in Sect. 4.

2 Proposed contact learning and
classificationmethod

Robot motion in particular, but also human motion [9], often
contains recurring episodes, i.e., motions (or applied forces),
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Fig. 1 Overview of the data flow of the proposed method. The intended
procedure is as follows: The robotic system executes a repetitive task,
initially cautiously and being monitored manually or by additional sys-
tems. For some cycles of successful executions, the proprioceptive data
are continuously preprocessed into the frequency domain and fed into
ART network for an initial training. The ART network then learns cat-
egory templates for the recurring episodic patterns in the data. As the

patterns repeat, the creation of new category templates stops.Only exist-
ing templates are matched and updated with new data. Upon encounter
of patterns not matching any previously seen episodes, a high-level
control system has to decide on an action such as to trigger a closer
inspection. The new patterns can be learnt as a new category template
by the ART network for future reference or discarded. The focus of this
work is the incremental learning of actuator-level data

which are executed repeatedly in a similar way. The aim of
preprocessing is to extract and encode the corresponding data
patterns from the raw sensor data, such as the motor current
measurements. There are different options for the inclusion
of the signal history in the classification. These can be time-
delayed samples, derivatives, or the implicit inclusion by
filtering and transformation. In this work, the transformation
to frequency domain has been selected, because frequency-
domain analysis for collision detection (e.g., in [6]) has
proven to be successful in the thresholding approaches dis-
cussed earlier. This way, the time duration a sample covers is
implicitly determined through a windowing function and the
following Fourier transformation. However, instead of using
dedicated force sensors for the classification task, proprio-
ceptive data coming from the actuators of a robotic system
are used. This preprocessing part is briefly described in the
next Section. Section2.2 then presents the ART-based neural
network approach applied to classify the resulting frequency-
domain data.

2.1 Frequency-domain proprioceptive data

To transform the raw data samples into frequency domain,
the method short time Fourier series (STFT) [10, 11] is used.
It analyzes the time-domain signal by calculating the dis-
crete Fourier transform (DFT) for a window moving over
the original signal with time. To determine the DFT of the
windowed signal X(m, ω) at time m and frequency ω from
the time-domain signal x[n] sampled at time n, the following
transform is executed:

X(m, ω) =
∞∑

n=−∞
x[n]w[n − m]e− jωn, (1)

where w[n − m] is the sliding window function and e− jωn

is a modulation shifting the spectrum in order to select the
frequency ω.

The effects for this work are as follows: (1) it removes
the hard dependence on the absolute values of the raw data
(of the motor current measurements, for instance), (2) by
applying the window function, the signal history is implic-
itly included in each transformed sample, and (3) the data
are compressed (depending on the window size and over-
lapping). The implementation provided by the Python SciPy
package, scipy.signal.stft, is used. On the down-
side,with STFTanumber of parameters is introduced into the
problem. Particularly, the window size, the type of window,
and the number of overlapping samples have to be selected.

2.2 ART-based classification

Classification is one of the classical application fields of
machine learning methods as they can significantly reduce
the manual effort of modeling or the development of specific
rule-based or (traditional) statistical classification systems.
However, many of the currently popular artificial neural net-
works (ANNs) are based on an offline or batch training with
prior definition of the number of classes. The incremental
integration of new information is challenging as old infor-
mation must be stably retained and on the other hand the
network must have a certain plasticity to incorporate the
new information. This trade-off is also known as plasticity-
stability-dilemma [12]. While strategies have been discussed
for the retraining of these kind of neural networks, solutions
to this problem are particularly challenging due to the funda-
mental network properties and also due to the nature of the
often used training based on back-propagation [12–16].

ART is a theory of cognitive and neural sciences and was
introduced by Carpenter in Grossberg [17–19]. ART-based
artificial neural networks are self-organizing and address
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Fig. 2 Basic structure of aFuzzyARTnetworkwith complement coding
of the input samples

the plasticity-stability dilemma as they inherently allow
the online learning, in particular to update category tem-
plates or to create additional category templates to represent
new information. While early implementations were lim-
ited to unsupervised training of binary data, various variants
and extensions were developed to handle real valued input
data and supervised training. An extensive survey is given
in [20]. One of the most widely used and extended vari-
ants is FuzzyART [21], which uses fuzzy set theory in the
metric for the similarity and resonance computation. This
results in a rectangular-like shape (for two-dimensional data)
of the category representation and is also referred to as
hyper-rectangular shape. In particular, as shown in Fig. 2,
a FuzzyART network is composed of an input layer F0, a
feature representation layer F1, a category representation
layer F2, and an orienting subsystem. The operation is as
follows: an input sample’s features are linearly scaled to the
range [0,1]; to reduce proliferation of the category templates
(due to weight erosion), the sample x is then complement-
coded in the F0 layer, giving the encoded feature vector
I = (x, 1 − x)T ; then the encoded input sample I is pre-
sented by the F1 layer to the F2 layer. The nodes of the F2

layer then compete for the best value according to the acti-
vation function,

Tj = ‖I ∧ w j‖
α + ‖w j‖ . (2)

where ‖·‖ refers to the L1 norm and w j are the weights of
the category template—composed of the stored weights wi j ,
which in this ART variant are combined bottom–up and top–
down weights. The operator∧ is the fuzzy set AND operator,

i.e., an intersection, and is defined as the element-wise min-
imum,

a ∧ b ≡ (min(a0, b0), . . . ,min(ai , bi ), . . .)
T . (3)

Thewinner of the competition is activated by the orienting
subsystem and has to overcome the resonance criterion

Mj ≥ ρ, (4)

in order to be successfully selected, where 0 ≤ ρ ≤ 1 is
the vigilance parameter controlling the granularity of the
categories. The match value Mj is computed by the match
function,

Mj = ‖I ∧ w j‖
‖I‖ . (5)

In this case, the category weights wold
j are updated using the

input sample I according to

wnew
j = (1 − β)wold

j + β
(
I ∧ wold

j

)
, (6)

where 0 ≤ β ≤ 1 denotes the learning rate.
Otherwise, if the resonance criterion was not satisfied, the

winning node is reset and the category with the next highest
activation is tested for resonance. If no resonance occurred
at all, a new category is created based on the data from the
input sample.

Due to the complement coding, an advantage is the match
region shrinks as the category grows—resulting in a stabi-
lizing evolution of the category size. A disadvantage of the
(original)FuzzyART is the representation of the template data
in hyper-rectangles. This leads to a limited classification per-
formance, degrading with the ability to cover the actual data
clusters’ shapes with the hyper-rectangular FuzzyART cate-
gory templates. Thus, manyART variants evaluated different
metrics, resulting in different shapes of the category tem-
plates and match regions. Recently, da Silva et al. introduced
the variant DistributedDualVigilanceFuzzyART (DDVFA)
[22, 23]. In particular, DDVFA is an extension of the ART
network by an additional layer of nested ART networks as
shown in Fig. 3. Each node in the global ART’s category
representation field F2 does not represent the data directly,
but instead is a local ART. Each local ART contains a group
of category templates of the actual input data. This allowed
to model more complex shapes by a group of FuzzyART
category templates. Thereby, the classification performance
can significantly improve, especially if the data of a class
do not fit a single hyper-rectangular (or, respectively, for
other variants) shape and compete with current offline meth-
ods for two- and three-dimensional datasets. Instead of one,
two vigilance parameters have to be set: the global vigilance
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Fig. 3 The structure of the DistributedDualVigilanceFuzzyART [22],
which embeds local FuzzyART networks as F2 nodes, thereby repre-
senting a cluster by a group of hyper-rectangles (comparable to a pixel
graphic)

parameter ρglob, controlling the resonance among the nested
ARTs, and the local vigilance parameter ρloc, controlling the
resonance inside a nested ART. This results in the constraint
ρloc ≥ ρglob for a useful operation.

The method was re-implemented for the contact learn-
ing and classification task envisioned in this work using the
Python programming language. To scale the individual sam-
ples, multiple options have been implemented. In order to
improve the balance between frequency ranges of rather high
magnitudes and ranges with typically lower magnitudes, the
absolute of the STFT magnitudes can be scaled logarithmi-
cally before linearization to the [0,1] range. A second option
deals with the linearization itself. By default, the lineariza-
tion uses the global minimum and maximum (or estimated
bounds) of the features for all samples. This requires a pri-
ori knowledge of the feature value bounds. Alternatively, it
is also possible to linearize each sample by using the mini-
mum and maximum values of the sample itself. In this case,
the features express a relation of the magnitudes in each win-
dow.The advantage is that no globalminimumandmaximum
needs to be estimated and fixed beforehand. The disadvan-
tage is that sampleswith similar relativemagnitudes, butwith
different norm, become indistinguishable.

To summarize, in this work a combination of the two
methods, STFT and ART, is implemented and applied on
the actuatormeasurements obtained fromahumanoid robotic
arm and body actuators. The next section presents the respec-
tive experimental results.

3 Experimental evaluation

System Setup

The experimental system is the robotic system RH5v2 [24],
composed of an upper body having 3 degrees of freedom

(DOF) and two arms with 7 DOF per arm. In contrast to typ-
ical commercial robotic manipulators, in this system access
to the lowest level of actuator control is available and the
actuator measurements can be obtained in a sufficiently high
sampling rate. Two test scenarios have been investigated
experimentally. In the first one, collisions are introduced into
an otherwise free armmotion. This is used for a first analysis
of the data and general applicability of the method. In the
second one, the normal motion includes a contact episode
with significant forces as a plug is inserted into a socket.

3.1 Collision contact

3.1.1 Experimental Setup

The experimental data have been generated as follows: The
robot’s upper body and right arm perform point-to-point
motions, mimicking an approach motion to grasp an object
from a table top. An external operator then introduces a num-
ber of collisions by placing objects on the table, see Fig. 4.
The joint positions, velocities, and motor currents are mea-
sured. In addition, an end-effector force–torque sensor is used
as ground truth to later on determine the impact times.

From the 7 arm and 3 body actuators of the kinematic
chain, the arm actuators of Joint 12 (Shoulder) and Joint 13
(Shoulder) have been selected for analysis in this experi-
ment. In particular, the joint torques are calculated from the
motor current measurements of these actuators, which are
then used for the learning and classification task. The data
have been sampled with 500 Hz, thus resulting in a spectrum
up to 250Hz. The corresponding actuators are BLDCmotors
(rotational joint) with a gear ratio of 100:1. Exemplary raw
datawith a non-contactmovement and amovement disturbed
by pushing an obstacle are shown in Fig. 5. The short time
Fourier transform is then applied on these raw data measure-
ments, resulting in frequency magnitudes over time. These

Fig. 4 Data collection experiments: Robot gripper approaches and
pushes different types of objects such as a toolbox, a wood piece, and
a bin
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Fig. 5 Exemplary raw data (zoomed in) of one actuator while multiple
repetitions (period time ca. 8s) of an arm motion are executed; high-
lighted in red rectangle (solid line): collision at ca. 63s, highlighted
in green rectangle (dashed line) for comparision: the same part of the
motion in a repetition without collision (colour figure online)

Table 1 Parameters used for the preprocessing and classification

Parameter name Symbol Value

Sampling frequency fs 500Hz

Number of features 513

Number of samplesa 67760

STFT segment length nperseg 100 . . . 500

STFT window type window blackmanharris

Overlap noverlap 0; nperseg/2

Local vigilance ρloc 0.8 . . . 0.97

Global vigilance ρglob 0.8 . . . 0.97 ρloc

Learning rate β 0.7

aTime-domain samples of motor current per actuator

spectra are then scaled and used column-wise, i.e., over time,
as feature vector for the input to the ART network. For this,
the magnitudes are linearly scaled to the range [0, 1]. The
values of the free parameters (see Table 1) have been deter-
mined through a grid search.

3.1.2 Results

The resulting category assignment in relation to the input
frequency spectra for the selected measurements is shown
in Figs. 6, 7. Figure 8 shows the L2 norm of the raw wrist
force measurements to serve as ground truth. Depending on
the choice of the vigilance parameters, this results in ca. 1–6
baselines of recurring category assignments resembling the
episodic nature of the motion. Additionally, a number of out-
liers, i.e., new categories with few assignments, are visible.
Table 2 gives an overview of the contact events and the out-
come of the classification in terms of the detection of contact
events as new category. In combination, the classifications of
the spectrum from the three actuators result in a successful
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Fig. 6 Experimental results from the collision experiment. Multiple
repetitions are shown. A complete cycle of the grasping motion has an
approximate period time of 8 s, resulting in the visible periodic patterns.
From top to bottom:Rawactuator torquemeasurement, STFT frequency
spectrum of the windowed raw data, timeline of the assigned categories,
and indication of a mismatch leading to creation of a new category. For
this joint, after some collision-free cycles, the ART neural network
indicates a mismatch at times ca. t = 63s, t = 82 s, meaning the data
are different to what it has seen up to that point

detection. For the actuator of Joint 12 and 13, the full fre-
quency range has been used. The next section discusses the
influence of vigilance parameters, windowing parameters,
and the frequency range.

Analysis of parameter influence
The effect of the local and global vigilance parameters has
been analyzed for the experimental data of this work. The
resulting number of categories created with increasing val-
ues of the vigilance parameters is shown in Fig. 9. In addition,
the number of samples assigned to the individual categories,
also depending on the vigilance parameters, has been inves-
tigated. The outcome is shown in Fig. 10. To obtain the
histogram representation, the following 7 bin sizes (intervals)
have been set to determine the distribution of categories vs.
the assigned samples: [0, 21−1], [21, 22−1], . . ., [25, 26−1],
[≥ 26]. The vigilance parameters have to be chosen such
that the desired granularity of the classification is achieved.
The extremes thus are assignment of all samples to one cate-
gory vs. one category per sample. In addition, if the relevant
information is mostly present in part of the feature vector, the
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Fig. 7 Experimental results from the collision experiment. Multiple
repetitions are shown. A complete cycle of the grasping motion has an
approximate period time of 8 s, resulting in the visible periodic patterns.
From top to bottom:Rawactuator torquemeasurement, STFT frequency
spectrum of the windowed raw data, timeline of the assigned categories,
and indication of a mismatch leading to creation of a new category. For
this joint, after some collision-free cycles, the ART neural network
indicates a mismatch at times ca. t = 72 s, t = 80 s, t = 97s,t = 104s,
t = 113s, meaning the data are different to what it has seen up to that
point
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Fig. 8 Experimental results from the collision experiment. This plot
shows the L2 norm of the raw wrist force measurements to serve as
ground truth. Multiple repetitions are shown, and the contact events can
be seen in the spikes of the signal

classification performance may be improved when limiting
to the respective range of the feature vector. In this work,
this is for example selection of lower or upper quarter of the
frequency range only for the classification. Moreover, the
window size can be varied to focus on a longer or shorter
time period in each sample.

Table 2 Detectability of the contacts

Contact event Intensity Joint
12 13

at ca. t = 63 s Strong ✓ ✗

at ca. t = 72 s Light ✗ ✓

at ca. t = 80 s Light ✓ ✓

at ca. t = 97 s Medium ✗ ✓

at ca. t = 104 s Strong ✗ ✓

at ca. t = 113 s Medium ✗ ✓

aDetected as distinct event/new category

Fig. 9 Number of categories with increasing vigilance parameters
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Fig. 10 The figure shows a distribution of the number of categories by
how many samples they would get assigned for different ρloc. Reading
example: Setting ρloc = 0.93 results in 9 categories representing only
1 sample, 2 categories representing 2 to 3 samples, and so on
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Fig. 11 For comparison, the resulting label assignment from the k-
means algorithm based on the same data used in Fig. 7. Multiple
repetitions are shown. A complete cycle of the grasping motion has an
approximate period time of 8 s, resulting in the visible periodic patterns.
From top to bottom: STFT frequency magnitudes of the windowed raw
data, timeline of the assigned labels using the k-means algorithm (only
non-incremental batch processing), and indication of first occurrence of
a label. The number of clusterswas set to 17 and has to be set beforehand

Comparison with Batch-Clustering
Multiple classical unsupervised clustering algorithms avail-
able in the scikit-learn Python package have been
tested for comparison. The previously obtained frequency-
domain data shown in Fig. 7 are used as dataset to apply the
offline-clustering algorithms. Prior to application of the clus-
tering algorithms, the data have been scaled as suggested in
themanual if necessary. Initially, two density-based unsuper-
vised clustering algorithms, density-based spatial clustering
of applications with noise (DBSCAN) [25] and ordering
points to identify the clustering structure (OPTICS) [26],
have been tested as they do not require the specification of the
number of clusters beforehand. However, for the used dataset
no meaningful clusters were found using the standard set-
tings, and varying the ε parameter. Therefore, the k-means
algorithm [27] has been tested. It requires the number of
clusters to be defined beforehand. The number of clusters
has been increased until the resulting labels shown in Fig. 11
were obtained. As we can see, some of the contact events are
detected and the results are—depending on the parameters—
of a similar nature as the classifications obtained from the
ARTneural network. In comparison toART, the disadvantage
is the requirement to specify the number of clusters and the
offline processing of the complete dataset, which prevents the

Fig. 12 The experimental setup used for the plug insertion and removal
task. a shows the overall setup, b robot gripper with grasped plug, c the
socket, d the plug, and e a misalignment

operation in a continuous way. For an extensive comparison
of the employed DDVFA ART variant, other ART variants,
and classical clustering algorithms, the reader is referred to
[23].

3.2 Plug insertion and removal

3.2.1 Experimental Setup

In a second experimental setup, a peg-in-hole-type task was
performed by the robot. The setup is shown in Fig. 12. In par-
ticular, the robot is used to insert a 5 pin power plug (3L + N
+ PE, 6h according to standard IEC 60309) into a socket and
remove it again. The alignment tolerance is approximately
±1mm. The arm and body motion has been taught in by
waypoints; object detection has not been used as the focus is
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Fig. 13 Motion of the robot body and right arm as performed for the plug insertion and removal experiment. Themotion is determined by previously
taught-in points

on the classification of the actuator-level data. Snapshots of
the motion are shown in Fig. 13. It requires significant forces
to insert the plug into the socket. So, the difference to the
previous experiment is that the repetitive task includes these
contact episodes within its normal operation. This makes it
considerably harder to distinguish the contacts of the normal
operation from collisions, which is the main challenge of this
experiment.

Due to the forces needed to insert and remove the plug,
the plug will slightly change the alignment within the gripper
during the plugging and unplugging phase. Thus, a misalign-
ment of the plug’s and socket’s circumference and notch is
to be expected. Obviously, if the misalignment becomes too
large, it prevents a successful insertion of the plug. The pro-
posed method is employed to distiguish this situation from
the previously executed successful insertions.

Again the joint positions, velocities, and motor currents
are measured. In addition, an end-effector force-torque sen-
sor is used as ground truth.

In a training phase the system is taught via programming
by demonstration to plug and unplug. During a successful
run, the system learns from the new data to improve its cat-
egory templates. For the analysis in this work, the data have
been acquired and stored. However, the operation of the ART
network is fully incremental. An online operating component
has been developed and can be used once the hyperparame-
ters are chosen. It receives a continuous stream and after 1–2
initial cycles of plug insertion and removal (in this experi-

ment) the category template creation settles. The presented
method only covers the contact/motion episode classifica-
tion. It is therefore necessary to use it in a larger framework
to react on mismatches after the initial learning phase.

3.2.2 Results

The motor current measurements of a body actuator have
been selected for the learning and classification task. The
data have been sampled with 1000 Hz, thus resulting in a
spectrum up to 500Hz. The resulting actuator measurement,
frequency spectrum, as well as a timeline of category assign-
ment and creation is exemplarily shown for a single actuator
measurement in Fig. 14 and Fig. 15. In the data shown, one
cycle of insertion and removal is successfully performed. In
the second cycle, a slight misalignment has been introduced.
The plug then does not slide into the socket but first gets
stuck on the circumference of the socket. Only as the forces
increase, the plug suddenly releases and slips into the socket.
The motion is then stopped.

To show the effect of different scaling, Fig. 14 uses a
logarithmic scaling of the frequency-domain data, whereas in
Fig. 15 only the linear scaling is applied. In addition, Fig. 16
shows the L2 norm of the raw wrist force measurements to
serve as ground truth. The parameters have been obtained
through a grid search.

123



Intelligent Service Robotics

−20

0

20

40

A
ct
ua

to
r
T
or
qu

e
[N

m
]

0

100

200

300

400

Fr
eq
ue
nc
y
[H

z]

0

2

4

C
at
eg
or
y
[#

]

0 10 20 30 40 50 60 70 80

Time [sec]

N
ew

C
at
.
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Fig. 14 Experimental results from the plug insertion, one cycle of suc-
cessful insertion and one partial cycle with misalignment of plug and
socket at ca. t = 67s. From top to bottom: raw actuator torquemeasure-
ment, STFT frequency spectrum of the windowed raw data (logarithmic
scaling), timeline of the assigned categories, and indication of a mis-
match leading to creation of a new category. At ca. t = 67s, the ART
neural network indicates a mismatch, meaning the data are different to
what it has seen up to that point

From this experiment, we can conclude that the method
also works in a repetitive task involving contacts to detect
unseen episodes.

4 Discussion and conclusion

The aim of this work was to achieve a more fine-grained and
automated discrimination of the episodes arising in repetitive
tasks in terms of motion and contact. The proposed method
builds up on an incremental learning neural network and
the preprocessing low-level actuator into frequency-domain
data to allow an online operation. The presented experimen-
tal results show that this method can be used to recognize
and distinguish recurring episodes in the data. In compar-
ison to [6], the proposed method works without additional
end-effector sensors directly on the actuator measurements.
Moreover, using the incremental learning approach, an arbi-
trary number of categories can be learnt during an initial
phase. As the experiments have shown, also episodes with
contacts canbedistinguished. A sub-objectivewas to analyze
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Fig. 15 Experimental results from the plug insertion, one cycle of suc-
cessful insertion and one partial cycle with misalignment of plug and
socket at ca. t = 67s. From top to bottom: raw actuator torquemeasure-
ment, STFT frequency spectrum of the windowed raw data, timeline of
the assigned categories, and indication of amismatch leading to creation
of a new category. At ca. t = 67s, the ART neural network indicates a
mismatch, meaning the data are different to what it has seen up to that
point. For comparison with Fig. 14, the samples here have been scaled
linearly only before classification
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Fig. 16 Experimental results from the plug insertion, one cycle of suc-
cessful insertion and one partial cycle with misalignment of plug and
socket at ca. t = 67s. This plot shows the L2 norm of the raw wrist
force measurements to serve as ground truth

the way in which the parameters influence the classification
for the selected input data. Instead of thresholds for the input
data, the vigilance parameter effectively allows to control the
resolution. It determines how fine-grained the classification
will be or how similar the input data must be to be assigned
to the same category. A particular interest is whether the
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number of categories stabilizes with the continuous input of
episodic movements, while at the same time new situations
can be recognized. The experimental results show that val-
ues for the vigilance can be found through grid search, such
that the number of categories stabilizes and does not grow
indefinitely with more data captured. This also means previ-
ous episodes have been mapped to already known category
templates. Minor numerical differences in the data do not
lead to continuous creation of new categories, which would
otherwise increase the number of categories rapidly with
new data samples. Thus, the system is robust with respect
to small differences resulting from sources such as mea-
surement noise. After an initial phase, a pattern of category
assignments matching approximately the pattern of the fre-
quency spectrum became visible. If disturbances result in a
different distribution of frequency amplitudes, new category
templates were learnt subsequently. Some of the new cate-
gory assignments are visible as outliers, since they have been
placed where no new disturbance was introduced. In some of
the cases, by closer inspection of the frequency spectrum cor-
responding differences can be found in the data. This leads to
the assumption that the assignment of new categories at these
points was correct. A potential effect to consider is the indi-
rect influence of the contact on the actuators due the resulting
oscillations of the structure.

It is clear that depending on the configuration of the kine-
matic chain, a single actuator measurement is limited in its
contribution to a classification. It could be shown that the
classification of the measurements of several actuators can
be combined to improve the recognition capabilities, though.
Due to the use of joint actuator measurements, the applicabil-
ity of the method is limited to those configurations where the
forces are not transmitted exclusively through the structure
of the robot. In principle, ART-based classification can work
with arbitrary sensor data, possibly coming from different
sensor modalities. If necessary, the use of additional sensors
is therefore a possible option to overcome this limitation.

While ART allows incremental learning, some prior
knowledge of the input data is required. In particular, these
are theminimumandmaximumvalues of the features in order
to scale the samples into the range of [0, 1] and to allow the
complement coding. In this work, this information has been
determined from the full experimental dataset. Additionally,
due to the nature of incremental learning, initially very dif-
ferent samples may be connected by intermediate samples
only at a later state. As a result, for a single data cluster mul-
tiple categories may be created. To correct this, compression
or merging procedures can be used to reduce the number of
categories—during times where the system is not actively
operating and has free resources.

For a useful application, the classification needs to be inte-
grated in a larger framework to, on the one hand, trigger
actions based and the classification results.On the other hand,

it needs to receive information to map the category templates
to a more high-level knowledge, and obtain labels for the cat-
egories. The ART network can be used to detect a previously
unseen episode, learn its signature, and communicate this
event to the high-level robot behavioral control system. This
could initiate a fast response of the robotic system, to reduce
the speed or force, and a slow response to use a vision system
to inspect the particular areamore closely. Finally, communi-
cating the result back to the ART network—directly or even
after an offline processing at a later point—would allow to
mark this category appropriately as critical or as ordinary
during the operation.

The ART neural network only has few parameters to tune,
with the vigilance parameters having by far the most influ-
ence. However, the parameters of the preprocessing are as
well crucial. In particular, if the frequency range of the input
data is large, changes in small ranges may be ignored if the
sample otherwisematcheswellwith the category template. In
this case, a contactmight bewell visible in lower frequencies,
but may still be matched to a non-contact category since the
higher frequencies are matching well to a non-contact cat-
egory. Increasing the vigilance parameter value then is an
option, but could introduce sensitivity to noise. As an out-
look, having a committee of ARTs with different focus on
the features, i.e., streaming the data through an additional
attentional layer, could mitigate this trade-off. At least it was
possible through manual focusing, by selecting a frequency
range empirically, to improve the classification for some of
the actuators.

ART is a very transparent and explainable ANN. This
work combines it with the proprioceptive data, which is any-
ways available in robotic systems and often goes unused.
The results indicate that the method is a promising approach
towardsmore autonomous operation of a systemdealingwith
the classification of contacts and motion patterns. Further
experiments and analysis are necessary for a more precise
performance quantification and are therefore focus of ongo-
ing and future research.
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