
CoBaIR: A Python Library for Context-Based Intention Recognition in
Human-Robot-Interaction

Adrian Lubitz1, Lisa Gutzeit1 and Frank Kirchner1,2

Abstract— Human-Robot Interaction (HRI) becomes more
and more important in a world where robots integrate fast in
all aspects of our lives but HRI applications depend massively
on the utilized robotic system as well as the deployment
environment and cultural differences. Because of these variable
dependencies it is often not feasible to use a data-driven
approach to train a model for human intent recognition. Expert
systems have been proven to close this gap very efficiently.
Furthermore, it is important to support understandability in
HRI systems to establish trust in the system. To address the
above-mentioned challenges in HRI we present an adaptable
python library in which current state-of-the-art Models for
context recognition can be integrated. For Context-Based In-
tention Recognition a two-layer Bayesian Network (BN) is used.
The bayesian approach offers explainability and clarity in
the creation of scenarios and is easily extendable with more
modalities. Additionally, it can be used as an expert system if
no data is available but can as well be fine-tuned when data
becomes available.

I. INTRODUCTION

Our day-to-day lives are becoming increasingly involved
with robotic devices. The industry is currently changing from
static robotic environments to dynamic environments where
humans collaborate with robots instead of operating robots.
In private homes, robotic applications like robot vacuums
and digital assistants for home automation are becoming
regular household items [1]. Although this movement is
drastically changing our society, interactions between hu-
mans and robots are very command-driven and unnatural in
contrast to Human-Human Interaction (HHI) [2], [3]. While
Large Language Models (LLM) like GPT-3[4], BERT[5],
LLaMA[6], and LaMDA[7] show very promising results in
general language understanding, they have problems with bi-
ases, alignment, uncertainty estimation, and most importantly
they lack multimodal understanding of their surroundings
which is a key feature for Intention Recognition needed
in modern HRI applications [8]. In general, data-driven
Intention Recognition systems [9], [10] have the drawback
of relying on large and complex (high dimensional) human-
robot interaction data. Because in most scenarios data is not
available or impractical to record, data-driven approaches
are not suitable for this problem. Bayesian context-based
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Intention Recognition is an approach to overcome those
limitations and offer an expert system that can be fine-tuned
with data when it becomes available. Existing research in this
direction [11], [12], [13], [14], [15], [16] is promising but
introduces very complex network structures which induce the
need for the designer of an HRI scenario to have a profound
knowledge of Bayesian probability theory. Furthermore, it
makes adaptations and re-configuration of the network cum-
bersome. To overcome the aforementioned limitations of
current systems we propose a two-layer BN for context-
based Intention Recognition. The simple structure enables
us to make several optimizations that allow the designer
to concentrate on the HRI scenario instead of Bayesian
probability theory.

In [17] we proposed a first concept on how the design
for context-based Bayesian Intention Recognition in HRI
scenarios can be described in a more compact and intuitive
way. In this paper, we introduce Context-Based Intention
Recognition (CoBaIR), a python software library that comes
with the power to infer intentions from the current context
— context describes every observable aspect in an HRI
scenario. Furthermore, CoBaIR pays great attention to the
design process of HRI scenarios. It provides a configuration
format that decreases the number of values that need to be
set during the design process of the Bayesian Network from
an exponential to a linear scale. Additionally, it provides a
Graphical User Interface (GUI) which visualizes the two-
layer BN with its weights and offers an intuitive way of
configuring it.

This paper starts by pointing out the key challenges in
Intention Recognition for HRI in Section II-A. In Section
III we provide a detailed view of the proposed two-layer
BN structure and highlight how this structure can make
the process of designing HRI scenarios easier and faster.
In Section IV we highlight the advantages of the proposed
approach. We point out the most important features of the
python implementation in Section V. In Section VI we show
an example of how the described python library was used in
a research project. Finally, in Section VII we conclude with
the interpretation of the results and an outlook on future
work.

II. RELATED WORK

During the extensive literature review conducted for this
paper, it was observed that existing intention recognition
implementations were often tightly coupled with specific
modalities [18], [19] or designed exclusively for particular
scenarios [20], [21]. In some cases, these limitations were



found to coexist [22], further hindering the applicability of
such implementations. However, as part of our objective to
provide a generic framework for HRI within the KiMMI
Project, we recognized the need for a solution that could
exhibit high flexibility and adaptability across various modal-
ities and scenarios.

A. Challenges in Intention Recognition

HRI depends in many ways on the scenario at hand. For
Intention Recognition we define the following challenges
that need to be addressed in order to implement natural and
meaningful HRI systems:

Hardware constraints: Just like humans, robots come in
all shapes and colors. More precisely, social robots for HRI
have different sensing modalities to perceive the human and
its surrounding. While some robots are equipped with stereo-
vision or RGBD-camera systems and multiple microphones
for echolocation, as well as LiDAR for navigation, a simple
digital assistant may only be equipped with one microphone.
The designer of the HRI scenario needs to know which
sensory modalities are available for the system in question.
[23], [24], [25]

Application specifics: Furthermore, the designer needs to
know about the application scenario which can vary from
space applications over industrial to domestic applications.
In all of these different application scenarios gestures, voice
commands, etc. can mean different things. [23], [25]

Cultural differences: Research on cultural differences in
social robotics is an often neglected topic although social
robots will be deployed in multi-cultural place e.g. airports in
the future in a more and more globalized world. One behavior
may have different meanings in different cultures. Therefore
the designer must be aware of the cultural differences, and for
different cultures, different HRI scenarios must be designed.
[25], [26]

Individual differences: When we think about developing
robots that interact with humans in a very intuitive way
we need to ask ourselves what is intuitive for us. Intuitive
may be slightly different from person to person even within
one cultural group. Humans interact slightly different on
an individual level based on their knowledge about the
interaction partner. If the interaction partner is not known
a default is chosen which allows for adaptation in the future.
While this behavior is very subtle and unconscious in HHI
it is an important factor while designing HRI scenarios with
the possibility for inter-personal adaptation. [24], [25], [26]

Trust & Acceptance: Trust in a robotic system is less
scenario specific than the aforementioned challenges and
can therefore not as obviously be integrated into the design
process of an HRI scenario. Trust is primarily connected with
the human’s expectation of the behavior of a robot. If the
robot behaves accordingly to the human’s expectations the
human can foresee the behavior and build a model of trust
for the robot’s abilities. Secondarily, it is connected with
the explainability of a behavior. If the human is not able to
foresee the robot’s behavior because it is, e.g. not completely
deterministic or too complex to foresee, the human will seek
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Fig. 1. The architecture of the two-layer Bayesian network allows for a
high degree of flexibility

reasons for the observed behavior. If reasons can be found
trust can still be maintained, while if no reason can be found
the trust will decrease immensely. This model of trust can be
very complex in a way that trust exists for specific abilities
but not for others. The trust for specific abilities weighted
with their specific importance for the human determines the
acceptance in the system. [24], [23], [25]
In Section III - VI we illustrate how we address these chal-
lenges, which advantages arise from the proposed approach,
how it is implemented, and how it can be used to model an
HRI scenario.

III. ARCHITECTURE OF THE TWO-LAYER BAYESIAN
NETWORK FOR CONTEXT-BASED INTENTION

RECOGNITION

In Section II-A we highlighted some of the key challenges
in Intention Recognition in HRI. We propose a two-layer
BN to address these challenges in a computational and data
efficient as well as an intuitive way. The general structure of
the BN for context-based Intention Recognition is depicted
in Figure 1. In [12] and [15] Bayesian Networks (BNs)
with 3 or more layers are proposed to additionally model
actions. We believe the two-layered structure comes with
several advantages over using three or more layers. From
a usability point of view, it allows us to assume that the
designer of the HRI scenario has no prior knowledge about
Bayesian probability in general and BNs in specific.

In this way every contexts can be treated in the same
way, as an observable phenomenon. Using further layers
would give actions, as suggested by [12], a special meaning.

This special meaning however is not always valid and
furthermore, it introduces a bias towards actions in the design
of HRI scenarios. In cases where external context is of more
importance than the performed action, the introduced bias
towards actions can distort the design of the scenario.



In cases where external factors like the time have an
influence on the intention the action itself should not play a
predominant role. The action of grasping a mug could lead
to the intention make coffee but at night the intention
becomes more unrealistic and a higher probability should be
given to the intention store mug. This is a very simple
example of how the action bias could lead to the intention
make coffee at night where the correct intention should
be store mug.

Modeling relevant observable phenomena as context
reduces the action bias and the complexity of the BN and
allows the designer of the scenario to concentrate on the
specifics of the scenario without the need for in-depth
knowledge about the underlying probabilistic modeling.

The final step we took to uncouple probabilistic modeling
from the intuitive design of HRI scenarios is to make
some assumptions over the given two-layer structure. These
assumptions reduce the probabilistic notion and drastically
reduce the number of values that need to be set by a human
expert to describe a scenario.

Independent context and intentions

The basic assumption is that all intentions are independent
of each other as well as all contexts are independent of each
other. This allows for the strict two-layer structure which has
only connections between context and intentions as depicted
in Figure 1.

Binary intentions

We consider all intentions as binary — an intention is
either present or not. This allows us to concentrate on
the positive (an intention is present) case while designing
the scenario and consider the negative (an intention is
not present) case as its complement while calculating the
probabilistic model. This small constraint already cuts the
number of values that need to be set by the human expert in
half. Contexts on the other hand can have as many discrete
instantiations as needed to create a meaningful HRI scenario.

Single Condition Assumption

We make the Single Condition Assumption (SCA) which
implies that every context has an individual and inde-
pendent influence on a specific intention. Using this as-
sumption, we can approximate the conditional probabil-
ity P (Im|C1,l, C2,l, ..., Ck,l) as the average over all single
condition probabilities P (Im|Ck,l), where Im is the m-th
intention and Ck,l is the l-th instantiation of the k-th context.
This allows us to calculate the conditional probability of the
m-th intention given the first instantiation for all contexts in
the following way:

P (Im|C1,l, C2,l, ..., Ck,l) =

∑k
k̂=1 P (Im|Ck̂,l)

k
(1)

Influence values on a Likert scale

We generalize the single condition probability
P (Im|Ck,l) as an influence value vk,l,m on a six-
point Likert scale [27] for every context-intention-
tuple (Ck,l, Im) to make them more manageable.
The scale is mapped in the following fashion:
0 7→ 0%; 1 7→ 5%; 2 7→ 25%; 3 7→ 50%; 4 7→ 75%; 5 7→ 95%

The above-mentioned assumptions reduce the amount of
values that need to be set by a human expert from an
exponential growth given through

V (i, j, c, n) =

j∑
ĵ=1

cĵ + i×
i∏

î=1

nî ×
j∏

ĵ=1

cĵ (2)

to a linear growth given through

V (i, j, c) = (i+ 1)×
j∑

ĵ=1

cĵ (3)

where V is the number of values to be set, i is the number of
intentions, j is the number of contexts, cj is the number of
context instantiations for the j-th context, ni is the number
of intention instantiations for the i-th intention. The

∑j
cj

in Equations 2 and 3 describes the amount of a priori
probabilities for all context instantiations. The remaining
term describes the values needed to fill the Conditional
Probability Tables (CPTs) manually for Equation 2 and
automatically for Equation 3. The SCA contributes in a huge
way to the ease of designing HRI scenarios but ignores cases
in which joint probabilities are necessary. An example could
be the handling of voice commands through a robot that is
able to estimate directed speech over Visual Voice Activity
Detection (VVAD) as shown in [28]. The robot should infer
the intention pick up tool with a higher probability if
the speech command for picking up a tool was emitted
AND the speech was directed towards the robot than one of
them individually. Only the speech command should have a
high probability to infer pick up tool but there is still a
chance that the robot was picking up noise or the speech was
not directed towards the robot. The context of directed speech
on the other hand does not have a high probability for any
intention individually. For those special cases, we provide
the possibility to set (partially) conditioned influence values
containing multiple contexts that provide more information
when combined. [17]

While the two-layer BN was originally not designed to
handle temporal dependencies, it is possible to model the
previously inferred intention as context. Using this recursive
pattern, it is possible to model a temporal dependency under
the Markov assumption [29]. This allows to model situations
where it becomes more or less likely to infer a specific
intention if the same or another intention was inferred
before. In a conversational setting it would be possible to
adjust how shy a robot is. Given that the context eye
contact is true the robot infers the intention human
interested in conversation and could initiate a



conversation. If the robot is a little shy last intention
could be modeled as context and the intention recognition
could be configured in a way that eye contact must be
true, human interested in conversation must
be true to infer the intention human wants robot
to initiate conversation. This shifts the initiation
from the robot side by one timestep.

IV. ADVANTAGES OF A TWO-LAYER BAYESIAN
NETWORK FOR CONTEXT-BASED INTENTION

RECOGNITION

CoBaIR uses a two-layer BN to represent the dependencies
between contexts and intentions. In this section we want to
highlight the key advantages of this structure:

Flexibility

The biggest advantage of the architecture is its flexibility.
It allows for the usage of any algorithm for context creation,
whether it be probabilistic, heuristic, data-driven or any other
approach. The generated contexts will be used as the input
to the two-layer BN which fuses the context information
to jointly infer a probability distribution over all possible
intentions. On the one hand, using CoBaIR as an expert
system the simplifications explained in Section III allow the
human designer to create a scenario in a fast and intuitive
manner. Fast design and adaptation of HRI scenarios helps
researchers to concentrate on the specifics of an experiment
and therefore reach results faster and more reliably without
any deeper knowledge about Bayesian probability and how
to configure BNs. On the other hand the two-layer BN can
be trained or fine-tuned with data, which allows to gradually
shift from a system trained by an expert to a data-driven
approach. Furthermore, the simple structure of the BN allows
for the easy removal and addition of contexts. This makes
an iterative prototyping approach, where the HRI scenario is
build up over time, possible.

Uncertainty Quantification and Explainability

Uncertainty Quantification (UQ) is an often neglected
topic, especially in the field vision based tasks [30]. The
Bayesian approach for Intention Recognition offers the im-
plicit advantage that it comes with a inherently good UQ
due to the probabilistic nature of the model. Additionally,
the compact structure of the two-layer BN allows users to
easily identify the contexts that played the predominant role
in the decision making. Using this interpretable compact
structure we are able to generate explanations to understand
the decisions made by a robot using CoBaIR as its Intention
Recognition system. Explainability and UQ in a system
strongly increases the trust in the system and therefore the
acceptance to use the system in general [31].

Modularity

Another advantage of the described architecture is its
modularity. Using a two-layer BN to fuse the output of
different modules that provide contexts makes it possible
to use existing solutions for context creation, like PAZ

[32] which provides a large variety of models for visual
perception, as well as use case specific models that need to
be trained from scratch. Furthermore, it is possible to switch
seamlessly between different models on the fly for evaluation
and optimization of HRI scenarios.

Handling missing input

While most data-driven approaches have problems
handling missing input [33] and additional data needs
to be recorded or artificially generated, BNs provide the
advantage of defining a priori probabilities for the input.
The a priori probabilities for the context can be estimated
by an expert or calculated from a few observations. In this
way knowledge about missing input can be incorporated
and during inference time the missing inputs will handled
accordingly.

The above-mentioned advantages of the two-layer BN
highlight why we think a two-layer BN is suitable to en-
hance the design, inference and explainability of Intention
Recognition in HRI scenarios.

V. COBAIR: A PYTHON LIBRARY

CoBaIR is a python library for Context-Based Intention
Recognition. The library allows to create complex HRI
scenarios in a fast and intuitive manner. Furthermore, it
provides a GUI which visualizes the underlying two-layer
BN and guides through the configuration procedure.

CoBaIR is divided into two parts:

A. Core library

The core library provides all the key features described in
Section III to make the design of HRI scenarios intuitive and
fast. It mainly provides the class BayesNet which handles
the creation of the two-layer BN from a given configuration.
The configuration is provided in YAML and its fields and
format is depicted in Listing 1. The format contains the fields
contexts, instantiations, intentions and decision threshold.
contexts gives names to the observable phenomena, like
weather. instantiations are the discrete instantiations of that
phenomenon, like cloudy, rainy, sunny. The binary intentions
are the inferable intentions in the scenario, like turn on
sprinkler. All instantiations have an a priori probability
which needs to be set and furthermore the instantiations
have an influence value for each intention. Additionally,
there is a field decision threshold which can be a value
between 0 and 1 and denotes the threshold an intention’s
likelihood needs to surpass during inference to be considered
as the inferred intention. If the likelihood of the most likely
intention is below the threshold, None is returned as the
inferred intention.

Listing 1. Configuration format for Intention Recognition with CoBaIR
c o n t e x t s :

c o n t e x t 1 :
i n s t a n t i a t i o n 1 : f l o a t

.
i n s t a n t i a t i o n m 1 : f l o a t

c o n t e x t n :
i n s t a n t i a t i o n 1 : f l o a t

.
i n s t a n t i a t i o n m n : f l o a t



Fig. 2. The GUI of CoBaIR supports the designer of an HRI scenario.

i n t e n t i o n s :
i n t e n t i o n 1 :

c o n t e x t 1 :
i n s t a n t i a t i o n 1 : i n t # one o u t o f [ 5 , 4 , 3 , 2 , 1 , 0 ]
.
i n s t a n t i a t i o n m 1 : i n t # one o u t o f [ 5 , 4 , 3 , 2 , 1 , 0 ]

c o n t e x t n :
i n s t a n t i a t i o n 1 : i n t # one o u t o f [ 5 , 4 , 3 , 2 , 1 , 0 ]
.
i n s t a n t i a t i o n m n : i n t # one o u t o f [ 5 , 4 , 3 , 2 , 1 , 0 ]

i n t e n t i o n p :
c o n t e x t 1 :

i n s t a n t i a t i o n 1 : i n t # one o u t o f [ 5 , 4 , 3 , 2 , 1 , 0 ]
.
i n s t a n t i a t i o n m 1 : i n t # one o u t o f [ 5 , 4 , 3 , 2 , 1 , 0 ]

c o n t e x t n :
i n s t a n t i a t i o n 1 : i n t # one o u t o f [ 5 , 4 , 3 , 2 , 1 , 0 ]
.
i n s t a n t i a t i o n m n : i n t # one o u t o f [ 5 , 4 , 3 , 2 , 1 , 0 ]

d e c i s i o n t h r e s h o l d : f l o a t

The core library provides the means to validate, load and save
the configuration. With the information from the configura-
tion a fully defined two-layer BN will be created. bnlearn
[34] is utilized as a backend to handle the two-layer BNs
and do inference on them. The Application Programming
Interface (API) is fully documented an publicly available
under https://dfki-ric.github.io/CoBaIR/API.

Graphical User Interface

On top of the optimizations we described in Section III,
we provide researchers and practitioners with a helpful GUI
depicted in Figure 2. The GUI supports the designer to create
a configuration and makes sure it is always valid and provides
helpful insights in the case of an invalid configuration.
Furthermore, it visualizes the two-layer BN in a live view
which helps to keep a good overview of the configuration.
The complete Python software package is available on PyPI.
Additionally, the code is open sourced on GitHub and open
for contributions.

VI. APPLICATION OF COBAIR

We applied CoBaIR in an interaction scenario in the
project KiMMI SF1 to infer the intentions of a human
operator. This user controlled a simulated human during the
interaction with the simulated robotic arm from Universal
Robot UR5 mounted on a movable base. The simulated envi-
ronment is depicted in Figure 3. The human can be navigated
through the environment, which contains shelves in which
different tools are stored, a working station with an inactive
robotic system MANTIS2 that should be repaired, and on
the left back side a dark area. Based on the human behavior
the robotic system should infer the human’s intention in
order to react accordingly. For example, if the human wants
to repair the inactive MANTIS robot, the supporting robot
should bring the tool which is stored in the shelf, which is
shown on the right side in Figure 3.

The BN used to infer the human intentions is shown in
Figure 4. The human behavior is measured based on four
contexts: hand opening, human pose, location of interest,
and speech commands, where the first three are determined
in the simulation and the speech commands are captured
from the operator of the simulation with a microphone. Each
context is discretized to different values, e.g., hand opening
can be either open or closed. This is shown on the left side
of Figure 4 for each context. In the presented scenario, based
on the given contexts, the following five intentions should be
inferred: 1. go work station, i.e., the human wants to go to
the work station; 2. go dark space, i.e., the human want to
go to the dark area; 3. robot bring tool, i.e., the human wants
the robot to bring the tool stored in the shelf; 4. robot stop,
i.e., the human wants the robot to stop its current action; 5.
robot store tool, the human wants the robot to store the tool
back to the shelf.

Using CoBaIR and the included GUI shown in Figure 2,
the BN shown in Figure 4 could easily be designed and
optimized for the described scenario. With the resulting
BN all human intentions could be reliably inferred and the
correct reactions of the UR5 could be triggered to realize
a successful interaction between the human and the robotic
system.

During the KiMMI SF project we followed an agile
development process which led to multiple incremental as
well as complete changes in the design of the HRI scenario.
CoBaIR enabled us to incorporate these changes fast and
effectively in the development process.

VII. CONCLUSION AND FUTURE WORK

We presented the python library CoBaIR in this paper.
We demonstrated that the concept from [17] using a two-
layer BN with the assumptions highlighted in III can be
effectively implemented. Additionally, we provided a GUI
to visualize and guide the design process for HRI scenarios.
In Section VI we showed that CoBaIR was successfully used

1https://robotik.dfki-bremen.de/en/research/
projects/kimmi-sf/

2https://robotik.dfki-bremen.de/en/research/
robot-systems/mantis/



Fig. 3. Screenshots of the HRI application scenario, in which a simulated human interacts with the UR5 robot mounted on a movable base. The scenario
includes a shelf with tools stored in it, a dark area which should be lighted by the UR5 if the human needs support in the dark area, and a work station
highlighted in green area where the human can work on the robotic system MANTIS and the UR5 should assist by bringing the desired tool.

Fig. 4. BN of the application scenario. Based on four different contexts
(left side), five possible human intentions (right side) should be inferred.
Arrows indicate the influence of the possible values of the contexts with
small numbers representing the assigned influence value.

in the KiMMI SF project. We advise practitioners to use the
state-of-the-art models for context recognition from the open
source library PAZ [32] which is constantly updated with
perception models for autonomous systems. In the future
we plan on providing tutorials and examples on how to
use CoBaIR with PAZ. While it is theoretically possible
to train or fine-tune the two-layer BN with data from the
scenario,so far the fine-tuning and data-driven training from
scratch was not tested. In future works we want to investigate
the capability of data-driven training and fine-tuning within
CoBaIR. Additionally, we want to quantify the effect in terms
of quality and speed which CoBaIR has on the design of HRI
scenarios, conducting user studies comparing the time and
cognitive load to create a HRI scenario using our solution
in contrast to creating a HRI scenario using CPTs for the
creation of the BN.. We will be incorporating CoBaIR in
future projects and by making CoBaIR open source we hope
to provide a helpful tool for researchers and practitioners in

HRI all over the world. Everyone is welcome to use, give
feedback and contribute to CoBaIR through GitHub.
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