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Abstract. Motivated by the critical yet unsolved task of fair value distribution in 
digital ecosystems (DEs), this study presents a methodological approach that al-
lows us to determine ecosystem components' value share to the total co-created 
value. Our method takes a holistic perspective on DEs. It suggests that when 
viewing DEs as complex networks, the value share of a component to the total 
co-created value stems from the network size and the interaction between the 
network participants. We demonstrate the applicability of the proposed method 
in a simulation of a Smart Living service ecosystem. Our simulation shows that 
our method is suitable for unraveling hitherto hidden interconnectedness between 
value-co-creating ecosystem components. Components that offer a low structural 
contribution to the total value can still play a crucial role in the network and have 
the most significant value share to the whole network.  

Keywords: Value Decomposition, Value Share, Co-created Value, Digital Eco-
system, Network Theory 

1 Introduction 

In today's highly competitive business environment, companies increasingly recognize 
the importance of Digital Ecosystems (DEs) as a pathway to success and growth 
(Subramaniam et al., 2019). DEs are dynamic multi-agent environments in which 
interconnected digital services, goods, and platforms interact to create unique better 
products and services for their clients (Wang, 2021). One of the biggest appeals of DEs 
is that they enable their participants to generate unique value that otherwise would not 
materialize (therein co-created value). Specifically, in DEs, the participants jointly 
contribute to the ecosystem's success by creating technologies, services, or tools that 
other ecosystem participants can recombine with other components to generate new 
complementary products and services (Floetgen et al., 2022).  



Because in DEs co-created value emerges only through resource sharing and 
recombination of data and services, successful DEs demand extensive collaboration 
among their participants (Floetgen et al., 2022; Valdez-De-Leon, 2019). Yet, to keep 
participants motivated to contribute, DEs must have adequate mechanisms for fair 
revenue allocation across partners (Valdez-De-Leon, 2019). If the co-created value of 
the DE is not fairly distributed across contributing partners, the ecosystem is 
unattractive for new actors and, thus likely to fail (Valdez-De-Leon, 2019; Wang, 
2021). Surprisingly, despite the importance of fair value distribution for DE’s success, 
currently, it remains unclear how to achieve a fair value sharing mechanism. 
Prior literature focuses predominantly on the value creation in DEs but remains silent 
on the distribution of the co-created value across the involved participants. One of the 
most probable reasons for this gap in the literature is the recombinant yet partly opaque 
nature of DEs. Although co-created value arises from the interconnectedness of the 
assets of various ecosystem participants, these interconnections often remain hidden. 
Accordingly, each participant's contribution to the total co-created value remains 
concealed. Viewing co-created value as the sum of value shares contributed by a variety 
of ecosystem components (e.g., products, data, services), a fair distribution of the total 
co-created value requires us to identify and quantify the contribution share of each 
participant. As of now, the critical task of determining each participant's value 
contribution share to the total of parts of the co-created value has yet to be solved. Our 
paper addresses this literature gap by addressing the question: [RQ]: How can we 
determine the value shares of each contributor to the co-created value in DEs? 

2 Theoretical Background and Related Work 

As the literature on DEs continues to develop across various disciplines, there is no 
widely established vocabulary to theorize various aspects of DEs. To avoid jingle-
jangle fallacies stemming from the ambiguous use of our focal terms (e.g., participant, 
co-created value), in this section, we present insights from prior literature while 
clarifying the central terminology in our paper. First of all, for the sake of simplicity, 
we refer to any actors involved in the value-creation process as participants. 
Participants are typically providers of components. Depending on the DE domain, such 
components can be data, software artifacts, or hardware (e.g., Internet of Things 
devices). Whether participants are companies, organizations, independent developers, 
or individuals is not essential at this point. Similarly, whether a component is a data 
source, a trained Artificial Intelligence (AI) model, or a complex service is also 
unimportant. After all, we understand the allocation of value to be fair when it is not 
based on actors' size or available resources but rather based on the value that a 
component brings when it is combined with other components. Analogous to new 
products developments in a firm, where extant core-components of previous products 
are used for the development of new products and services (Mihale-Wilson et al., 2022), 
in digital ecosystems companies effectively integrate the functionalities and essential 
components of other products and services into their new offerings. This deliberate 
approach significantly shortens their time to market while substantially mitigating the 
risks of failure (Mihale-Wilson et al., 2022).  



The most important characteristic of components is that they are tangible assets that can 
exist independently but simultaneously be part of a larger system. To illustrate the 
concept of components, let us assume an exemplary DE for AI-based services in Smart 
Living. The Smart Living concept (also often referred to as “smart home”) envisions 
that by integrating technology (e.g., wearables, home sensors, intelligent transportation 
systems, and other AI-based systems), we can automate and optimize daily routines and 
activities to improve humans’ comfort and quality of life. Hence, within the context of 
smart living DEs, various components are working together and form new complex 
products and services such as improved predictive maintenance of housing 
infrastructure (e.g., Lowin et al., 2021; Lowin & Mihale-Wilson, 2021), or AI-based 
personal assistance (Mihale-Wilson et al., 2019, 2017). AI-based assistants can help 
individuals fulfill their personal and professional obligations easier. In the future, AI-
based assistants will be able to perform tasks on their users' behalf, freeing up time for 
more meaningful activities (Meurisch et al., 2020). To this end, the ecosystem might, 
for instance, encompass an AI model that forecasts anomalous behavior in a heat sensor 
(call it <AI model>). This <AI model> can function on its own and predict heat sensor 
failures. Simultaneously, the same <AI model> can be combined with a particular 
dataset <dataset> and trained to generate a service <service> that predicts failures in 
more than one type of sensor and device. Based on our definition above, all three assets 
<AI model>, <dataset>, and <service> represent components. After all, <dataset> and 
<service> can again exist as independent entities on their own. Simultaneously, 
<dataset> and <service> can be combined with other data sets and services to generate 
more complex services. These examples illustrate the hierarchical relationship between 
components and, ultimately the participants in a DE. The fact that each component can 
exist in more than one version and is combinable with a multitude of other components 
which can also exist in more than one version complicates these relationships even 
further. Case in point: the <AI model> can exist in an initial version <_v1> which is 
trained on a relatively small set of sensor data. Additionally, more elaborate versions 
of the <AI model> may exist <vx>. Analogously, there might also be varios versions of 
<dataset_vx> and <service_vx>. Assuming that there exist three versions <v1>,<v2>, 
and <v3> of each of the three components <AI model>, <dataset>, and <service>, there 
are 27 possible recombinations. Clearly, in practice, there are more than three 
components and versions available to recombine with each other to co-create value. 
Against this background, we follow Kortum et al. (2022) and suggest modeling and 
analyzing the complexly interwoven relationship between the components of a DE 
based on network theory. 
Nascent in the field of mathematics network theory can be used to model and analyze 
a wide range of phenomena, including social networks, biological systems (Albert & 
Barabási, 2002; Newman, 2003), product and service systems (Hagen et al., 2019), and 
technological networks (Kortum, Hagen, et al., 2022). The core idea of network theory 
is that actors within a network influence each other. Hence, the overall performance 
and behavior of the network depend not only on network size but also on the 
interactions in the network. 
Following Newman (2003), a network consists of a set of items (in our case, 
components, which are also referred to as nodes) and the connections between them 
(also referred to as edges). Networks are often represented as graphs. The most 
parsimonious network entails a set of nodes joined by edges. More complex and 



sophisticated networks, however, can distinguish between more than one type of node 
and edges (Newman, 2003). Circling back to our exemplary components (<AI model>, 
<dataset>, and <service>) and the network they build: The simplest form of the network 
would be to list the three components and link them to each other. More sophisticated 
representation of the network, however, would incorporate, for instance, the class of 
the AI model (i.e., decision tree, neural network), or directed or weighted edges to better 
describe the relationships between the nodes they connect. 
While graphs allow visual investigations and inferences when the network under 
investigation is small and parsimonious, they are less visually informative as the 
number of nodes and edges and the level of detail increase (Newman, 2003). Against 
this background, network theorists have developed various models and statistical 
methods to quantify large and complex networks. We use extant methods to model and 
document the value chain within a DE–i.e., the path of how independent components 
contribute to the total co-created value. 
Central to the idea of value chains is that new value is generated when adding 
components to the chain. A value chain starts with an organic component—i.e., a com-
ponent that is not the product of combining other components. We refer to the value -
added when combining another component with the organic component as Value Share 
(VS). We must clarify the term value at this stage, as it has several connotations across 
different research disciplines (Jimenez & Arenas, 2021). 
In essence, value can be defined in economic or more abstract terms. Most of the extant 
work investigating value contributions in complex networks such as DEs gravitates 
around economic value like revenue or pricing (e.g., Fricker & Maksimov, 2017; Ngu-
yen & Paczos, 2020; Stoppel & Roth, 2016). Nguyen and Paczos (2020), for instance, 
discuss approaches to measure the economic value of data, data monetization strategies 
for new business models, and how the value of data can be conceptualized and 
measured from a business perspective. Fricker and Maksimov (2017) analyze 
mechanisms used to evaluate the pricing of data products in data marketplaces. Stoppel 
and Roth (2016) transfer value-based pricing from the product to the service-oriented 
perspective. We acknowledge that the economic perspective on value is helpful on nu-
merous occasions. However, for the purpose of this study, a more comprehensive per-
spective is needed. In this vein, revenue and pricing capture only the financial perfor-
mance of the ecosystem, whereas a more abstract understanding of value can also entail 
non-financial, intangible benefits. Most recently, Jimenez and Arenas (2021) built on 
Grover and Kohli (2012) and used IT-based value to refer to the value generated when 
companies collaborate to implement joint IT-based products and services. In this study, 
we follow these scholars and comprehend co-created value as an abstract concept that 
can incorporate all types of utility generated through component recombination. 

3 Methodological Approach for Value Decomposition in DEs 

We process the various streams of literature to develop a method that allows us to de-
compose the co-created value in DEs. Our method exploits one of the many advantages 
of DEs—that they typically reveal (machine-readable) information on the relationships 
between individual components. Applying network theory to DEs and using the previ-
ously discussed nomenclatures, we can visualize components as nodes that are related 



to each other via directed edges. Components can form subnetworks. This representa-
tion allows new ways of calculating the value share each component contributes to the 
network or subnetwork (denoted by τ). Due to the network representation of the DE, 
one would immediately be tempted to determine that a node contributes to τ based on 
the node’s position in the network (e.g., centrality) and other parameters. Although this 
approach is per se correct, it is incomplete, as it disregards the fact that nodes are re-
combinant, and thus the value of a node also depends on the value it generates for the 
subsequent nodes. Following this logic, our proposed method postulates that the value 
share that a node contributes to τ depends on (i) the network size—i.e., the amount of 
nodes and edges in the network and (ii) its recombinant (or recursive) nature.  
We distinguish between contributions and weights of a node to τ. Contributions are 
generally computed within a (sub-)network while weights are typically parameters pro-
vided by domain experts. Besides, we also distinguish between the structural and value-
added worth of a node within the entire network. The value-added stems from any value 
chains’ central assumption that each component within the chain needs to add value to 
subsequent components of the chain. The structural value of a node, however, reflects 
that within a network there are interdependencies of components that need to be 
accounted for. After all, the interdependencies between components imply that the 
failure or malfunctioning of one component can have dire consequences for the entire 
network. We use this nomenclature to describe the value shares that a node can have 
in a network. We introduce four core constructs: Structural Contributions (SC), 
Value-added Contributions (VC), Structural Weights (SW), and Value-added Weights 
(VW). We elaborate on these core constructs individually. 
The structural contribution (SC) of a component (i.e., node) is based on its location 
within the network. We explain based on a simplified example: A component that is 
located at the periphery (call it periphery node) of a network and thus has relatively few 
edges linking them with other components yields a comparatively small value for the 
network. In contrast, a component located at the center of the network (call it central 
node) with many edges that link it to various other components will yield a compara-
tively higher value to the network than the periphery node. The difference in value 
contribution of the exemplary periphery and central nodes stems from their relative 
importance for the network's overall performance. If the central node fails or malfunc-
tions, large parts of the ecosystem will no longer be functional. In contrast, a failure of 
the periphery node is likely to have only minor effects on the overall performance of 
the ecosystem. Recently, Kortum et al. (2022) identified possible metrics from network 
theory suitable for quantifying the relevance of a node within an ecosystem. In this 
work, the authors mention that PageRank is a popular method suitable for this purpose. 
PageRank evaluates the structural importance of a node based on the number and de-
pendencies of other nodes in the network. This way, it provides insights on the under-
lying structure and importance of a node in relation to the network as a whole. In par-
ticular, PageRank uses the incoming edges to a node for calculating the importance of 
that node relative to the network as a whole. Thus, PageRank yields a network im-
portance and ranks the nodes in an ‘inverse’ order compared to the aforementioned 
value chain contemplation. A node with a higher number of incoming edges are con-
sidered more important than edges with a low number of incoming edges.  



In contrast to the structural contribution, the Value Contribution (VC) of a component 
(i.e., node) does not depend on its position in the network. It is determined directly from 
its value for one (or more) specific subsequent node(s). In this sense, a single node 
sometimes has several value contributions depending on the number of nodes that fol-
low it. In technical terms, the value contribution represents the amount a node adds to 
the fulfillment of the task of its successor. This can be nicely illustrated based on the 
example of an AI–based component for the prediction of a value, which uses as input 
several services that provide or manipulate data. 
Reusing the introduced nomenclature, imagine the following: An <AI model> is used 
by two different Services <S_1> and <S_2>. In both cases, <AI model> uses the same 
<dataset> for its training. Now, for <S_1>, the <AI model> is the only input and thereby 
has a high VC for <S_1>. In contrast, <S_2> has many different inputs, one being <AI 
model>. Clearly, the VC of <AI model> will probably be lower. If we assume that two 
<AI models> with the same functionality but from different providers are present in the 
DE, their VC for a <Service> might be different. To quantify their respective VC, dif-
ferent approaches are applicable. For example, the VC can be measured via the mean 
squared error (MSE). Generally speaking, the lower the MSE, the better the AI service. 
In this case, the MSE depends on the inputs (‘features’) provided by the predecessor 
node(s), here the <dataset>. A feature's specific contribution to the forecast's quality 
can be quantified using state-of-the-art statistical methods and represents the VC of the 
predecessor node for the AI service. For AI-based components, we can use, for exam-
ple, SHapley Additive exPlanations (SHAP) values, permutation feature importance, 
or feature importance for trees. For non-AI services, other forms of contribution deter-
mination can be used (e.g., coefficient magnitude method, variance inflation factor 
(VIF), partial regression coefficient method). 
We now turn to the Structural (SW) and Value Weights (VW), which should currently 
be determined by domain experts, who can evaluate the relative importance of SW and 
VW for the particular DE and within a specific domain. After all, every DE is marked 
by specific characteristics or manners dictated by the encompassing domain (e.g., Smart 
Living, production, etc.). These specific characteristics need to be accounted for, espe-
cially because these weights can vary greatly from application domain to application 
domain. In ecosystems with close links between services and few redundancies, for 
example, structural weights play a more important role than in ecosystems in which 
many substitutes exist for a particular service. Since both weights express relative im-
portance, they must sum up to one. 
All previous things considered, we formally propose that the value share (VS) of a com-
ponent (c) to the overall network value τ (∑ 𝑉𝑆

ଵ ) is calculated as: 

𝑉𝑆 =  
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where: 
VS  denotes the value-added worth of a component (i.e., node) in the value 

chain to a related component (i.e., node) 
SW is the structural weight of a node (i.e., represents a context-dependent 

weighing of the structural contribution of a node). SW together with the 
value weight (VW) add up to 1. 



SC denotes the structural contribution of a node (i.e. the importance of a node 
in the value chain depending on its position in the (sub-) network) 

VW refers to the value weight (i.e., calculated as a context-dependent weighting 
of the value contribution). VW together with the structural weight (SW) add 
up to 1.  

VC is the value contribution of a node (i.e., the amount a component adds to 
the fulfillment of the task of its successor) 

c denotes the focal component (i.e., node) for which the value share is com-
puted 

n is the number of components (i.e., nodes) in the DE (i.e., network) 
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ଵ  denotes the structural contribution of the component multiplied by its im-

portance weight. This value does not change unless the structure of the DE changes. In 

contrast, 𝑉𝑊
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ଵ  captures the value contribution of a component depending on 

the subnetwork evaluated. This value contribution might change in accordance with the 
value that that particular node adds to other services. 

4 Simulation Study to Demonstrate Applicability 

To demonstrate the applicability of the proposed method, we conduct a simulation 
study mimicking a DE in the Smart Living industry. The network was built with the 
Python package NetworkX (https://networkx.org/) and contains the relationships of 
components in the domain of Smart Living—e.g., energy optimization (i.e, appliance 
energy disaggregation, energy consumption recommendations), user assistance (e.g., 
smart access system, cooking assistance, nutrition value calculation, fridge inventory 
detection) and other generic components (e.g., face recognition, dataspace prepro-
cessing, activity recognition or mold risk recognition). We generated a representation 
of the mentioned components (nodes) and their relations to each other (edges) and im-
plemented equation (1) in Python. Figure 1 illustrates the simulated network and the 
assumed components and edges. 
For our simulations, we randomly assume edge values (VC) between [0 to 5]—see Ta-
ble lower left of Figure 1. In a real DE, VCs can be estimated by using model-agnostic 
determined values such as SHAP. To calculate each node's structural contribution (SC) 
we used the previously mentioned PageRank method. To calculate the value shares of 
components such as services that do not offer any direct value to subsequent nodes in 
the network, we need only the structural contribution (SC)—in our case their PageRank. 
To calculate the value share (VS) of a node, we need the value and structural weights 
of the DE under scrutiny. Domain experts in Smart Living estimated the structural 
weight (SW) to 0.7 and the value weight (VW) to 0.3. Based on these parameters and 
equation (1), we first calculate each node’s corresponding value share (VS) to the co-
created value in the entire network. Table 1 presents the estimated value shares 
within the postulated network. As the VCs in the table reveal, the dataspace prepro-



cessing component has the highest value share to the total network (VS=0.178), fol-
lowed by the cooking assistance component (VS=0.096). The smart access system and 
energy consumption recommendations are on par (VS=0.077).  
 

 
Figure 1: Simulation of a DE for Smart Living services and assumed VC  

 
Interestingly although we set the value weight to only 0.3, which should in theory, result 
in a network value distribution still close to other current approaches, we end up with 
the node Dataspace_Preprocessing (VS=0.178) having the highest value share contri-
bution in the network. Even though, its structural importance is relatively small (SC = 
0.056). This in turn, reiterates how important our methodology is to represent the added 
value in new DE. By giving a slight benefit to nodes that offer a high value to their 
subsequent nodes (VW=0.3), components such as "data preprocessing" reveal their im-
pact to the total co-created network value. This is important to encourage nodes that 
offer added value (e.g., enriched, data, preprocessing steps) to subsequent components 
in the value chain. 
To verify the plausibility of the estimated VS, we assess the instantiation of the node 
Activity_Level_Apartment in more detail. Precisely, we first calculate the inner term of 

our formula (𝑆𝑊
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ଵ


 𝑉𝐶)



ଵ
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node before considering the overall network to create the value share (VS). With our 
structural weight (SW) set to 0.7, the node Activity_Level_Apartment has a structural 
contribution (SC)—i.e., PageRank of ~ 0.063. The VC is computed by considering the 
nodes' contribution to all connected nodes, divided by the sum of the VC in this smaller 
sub-network. 
With our set value weight factor (VW) at 0.3, the VC of our node 'Activ-
ity_Level_Apartment' is ~ 0.167. Now we can calculate our inner term in the formula 
to get the value-added ~0.094. Note that this value-added is not yet in relation to the 
network. 



𝑉𝑆ௗ =  
1

∑ 𝑉𝑆
ଵ ′

(0.7 ∗ 0.063 + 0.3 ∗ 0.167) 

To compute our overall value share (VS), we calculate the relative share of the value-
added ~0.0941 in relation to the value co-created to the entire network. To this end, we 
divide ~0.0941 through the sum of all inner terms of all nodes in the network. In our 
simulated network this results in the overall network value-added at ~ 1.0. We compute 
𝑉𝑆ௗ  as 0.094 / 1.0 = 0.094. 

Table 1. Value Share (VS) to the total co-created value (per node)  

Node VS per node (computed) 
Face_Recognition 0.072 
Smart_Access_System 0.077 
Activity_Level_Apartment 0.094 
Mold_Risk_Prediction 0.063 
Energy_Consumption_Recommenda-
tion_on_Activity_Level 

0.063 

Appliance_Energy_Disaggregation 0.066 
Energy_Consumption_Recommendation 0.077 
Fridge_Inventory_Detection 0.089 
Purchasing_Assistance 0.063 
Cooking_Assistance 0.096 
Nutri_Value_Calculation 0.061 
Dataspace_Preprocessing 0.179 

Cumulated Value 1.0 

Next, we focus next on each node's value share (VS) to the total co-created value 
within a sub-network—i.e., a node’s corresponding value chain(s). Let us consider 
the value chain of the component Energy_Consumption_Recommendation. Figure 2 
highlights this path in red. In this example, the biggest contribution to creating the focal 
component Energy_Consumption_Recommendation comes from the Appliance_En-
ergy_Disaggregation component. Next to the graphical network in Figure 2, each net-
work value chain is listed with its internal value shares for the nodes in its correspond-
ing sub-network. These are also calculated based on equation (1). However, the co-
created value under consideration is that of a sub-network rather than the entire net-
work. This implies that to calculate the VC of a node, only subsequent nodes inside the 
value chain are considered. Likewise, to calculate the VS's of all nodes in the value 
chain, again, only the sum of the added value of the nodes inside this sub-network is 
considered. However, this approach allows for more in-depth analyses of specific value 
chains. Additionally, it can offer insights into diversifying a specific value chain. 
To demonstrate the usefulness and functionality of the weights we also simulated other, 
contrary or more extreme allocations. In many occasions this leads the first and last 
node in the network to ‘switch’ importance, which is expected due to the underlying 
methods for value calculation. For the intermediary nodes it depends, obviously, on the 
structure of the network and their individual VC, but in general the changes are less 



significant compared to the first and last nodes. In the example given above these results 
are plausible and also in general suggest the comprehensiveness of the approach.  
 

 
Figure 2: Value Distribution per Value Chain in the network 

5 Discussion 

In rhis work, we develop and present a methodological approach suitable to decompose 
the co-created value in (sub)networks. We demonstrate the applicability of the proposed 
methodology in a simulation with a Smart Living service ecosystem. This way, we pre-
sent various contributions to theory and practice. 
We highlight three of this study’s main theoretical contributions. Firstly, our research 
closes the gap in the literature surrounding the question of how to achieve fair value 
allocation. Although various scholars (e.g., Valdez-De-Leon, 2019; Wang, 2021) em-
phasize the importance of fair value distribution across the ecosystem contributors for 
the DEs' long-term success, the corpus of literature presents a “blindspot” on this topic. 
The second main contribution of our work is its holistic perspective on co-created value. 
We suggest viewing DEs as complex entities for which we can model the value creation 
and relationship between its components based on constructs from network theory. This 
is not new per se. What is new, however, is our proposition to leverage the strengths of 
the network representation of the DE to account not only for structural interconnected 
relationships between DE components but also for the recombinant, recursive nature of 
these relationships. Earlier, we noted that components can exist alone and are part of 
more complex components. These more complex components can provide input and 
can be recombined with other components to generate even more sophisticated 
components. The recursive nature of DE components implies that the value contribution 
of a component is determined not only by its direct successors but also recursively by 
those components that build on the successors, and so on.  
Based on the described recursivity and Wang's (2021) idea that DEs should be 
investigated not only in their parts but also as a whole, we argue that considering only 
structural interconnectivity would yield an incomplete and thus erroneous 
quantification of the contributors’ value shares in the ecosystem. In contrast, our holistic 
approach will generate more accurate quantifications of components’ value shares the 



co-created value. Ultimately, we contribute to the current corpus of literature by pre-
senting a domain and component-agnostic approach to value decomposition. Extant 
literature investigated primarily data and value in economic terms (e.g., Fricker & 
Maksimov, 2017; Nguyen & Paczos, 2020). While we agree that the economic 
perspective on value is valuable in various contexts, the economic perspective is 
incomplete for complex and heterogenous DEs that entail many types of digital species 
(e.g., data, software, and hardware). Our work rests upon the notion that fair value con-
tribution implies that all types of tangible assets within an ecosystem need to be 
considered. In this vein, our method uses "component" as one of its core constructs. 
Thereby it is not crucial whether these components are data, hard- or software.  
From a pure practice perspective, our methods represent a novel approach (1) to 
generate transparency of value contributions within an ecosystem, (2) to allocate the co-
created value fairly across participants, and (3) ultimately increase the attractiveness of 
the DE for other potential contributors. Starting with the dual consideration of structural 
and value-added contributions to total co-created value: our approach will generate 
more accurate quantifications of components’ individual shares on the total value 
created. Further, by considering each component's structural and value-added 
contribution (i.e., the value a component adds to the subsequent component), we can 
better understand the overall value distribution within the focal (sub-) network. By in-
corporating the structural and value contributions in our approach, we can also identify 
the value shares of components within a specific value chain. This can in turn, help us 
identify components that may be undervalued or underutilized. As mentioned, a 
common problem in DEs is that interconnections between components and their value 
contributions often remain hidden. Our approach allows us to unravel the previously 
hidden interconnections between contributors and generate hitherto unachieved 
transparency on value flows. Together, the transparency and the accurate quantification 
of components' value shares to the co-created value will enable DEs to distribute value 
equitably among all its participants. Because “fair” distribution of value will 
continuously attract potential new contributors into the ecosystem (Valdez-De-Leon, 
2019), our proposed method is essential to ensuring DE’s long-term success.  
Despite the numerous benefits our methodological approach affords, our work also fea-
tures some limitations that can be addressed in future research. The most significant 
limitation of our proposed method is its “good faith” character which assumes provider 
honesty about the components a provider recombines to generate new components. Be-
cause this information is essential to compute VC, DEs need mechanisms to ensure the 
traceability of component recombination. Certifications, change logs, and audit trails 
can be helpful tools to motivate providers to be honest about the components they com-
bine. This is particularly the case for established DEs but also for those in their incep-
tion. However, for the latter, DE designers should consider implementing dependency 
management tools (that track the recombination of components in a network), compo-
nent metadata management, or component monitoring and logging. These tools will 
help increase transparency on recombining components within the DE without solely 
relying on stakeholders’ honesty. Nonetheless, future research should develop other 
methods to ensure that the information needed to compute VC is derived automatically 
without providers' involvement. 
One major challenge of formalizing the VC of a component is the discoverability of the 
value-added through each node for the subsequent nodes. This discoverability is directly 



linked to the accessibility of relevant data for the value determination of the subsequent 
nodes. For AI services, this could be based on model-agnostic determined values over 
the input variables. However, this would require fully open access to data concerning 
the inner workings of each service node. Such open access to such information is, in 
practice, unrealistic. Thus, our approach highlights the importance of data accessibility 
and discoverability for data ecosystems in determining their value contribution. 
The domain experts’ involvement in setting the structural and value weights as another 
potential limitation of our method. However, given the complexity and relative novelty 
of DEs in practice, reliance on domain experts is, at this stage, appropriate. In our sim-
ulation study, domain experts set the structural weight (SW) to 0.7 and the value weight 
(VW) to 0.3. As our discussion in section 4 reveals, our method yields plausible value 
shares. We believe that domain experts can gauge the SW and VW values appropriate 
to describe the weights of the structural and value-added contributions. In the future, 
we encourage scholars to develop human-in-the-loop-based approaches to support do-
main experts in setting the SW and VW values. However, as long as these weights need 
to be defined by domain experts alone, we suggest that it is highly important to ensure 
the reliability and validity of the structural and value weights by (1) finding the right 
experts and (2) and deriving the correct weights by consolidating experts’ opinions. On 
finding the right experts: it is important that these are familiar with the domain of the 
DE and the market developments within this domain. In this vein we deem experts to 
be appropriate if they are operating the ecosystem, they are part of a public entity or 
associations involved in the development and/or operation of the DE. Related to deriv-
ing the correct weights by consolidating experts’ opinions: suitable methods include the 
Delphi method, structured workshops, and discussion rounds. Further, we note that our 
approach envisions only rigid values for the weights for all components of the network. 
Future research should try to develop methods or extend our approach to allow for var-
ying weights across all different components entering the calculation of the value share. 
Ultimately, we like to mention that our simulation study was based on an exemplary 
smart service network in the Smart Living domain. However, our method is scalable 
and transferable to more complex and other types of DEs (e.g., AI-based components, 
libraries, data) in other domains. Future investigations should seek to extend our 
proposed method to more complex network structures from real-world ecosystems. 
Overall, given the importance of “fair” value distribution across participants as a driver 
for the long-term success of ecosystems, we expect to see significantly more research 
on the topic in the future. 
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