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ABSTRACT Time-of-Flight (ToF) can be an advantageous sensing modality for several indoor applications,
used alone or in combination with other sensors such as RGB cameras. As part of the research project
VIZTA (Vision, Identification, with Z-sensing Technologies and key Applications), we developed methods
using Machine Learning algorithms with ToF depth measurements as inputs to address two key areas of
applications, in-car cabin monitoring (person detection and segmentation) and smart building monitoring
(person counting and anomaly detection). In this article, we discuss the entire research approach followed
in VIZTA, from setting up the experimental environments for collecting data and creating the VIZTA public
datasets, to developing Deep Learning algorithms tailored to ToF data, used either in 2D depth map or 3D
point cloud format. We discuss the advantages and challenges of using ToF-data, as well as the lessons
learned during the evaluation and benchmarking of our methods.

INDEX TERMS Building monitoring, deep learning, detection, in-car monitoring, machine learning,
segmentation, time-of-flight.

I. INTRODUCTION
Time-of-Flight (ToF) sensors generate depth maps by mea-
suring the time required for light to travel from the camera to
a surface and back. Although there are some widely used sen-
sors such as theMicrosoft Kinect series using this technology,
ToF sensing is not yet widely used in commercial and indus-
trial applications. However, in the last few years, an increase
in the use of ToF sensing is recognizable, e.g. through
the tendency to incorporate ToF sensors in smartphone
devices [1].

In fact, there are several advantages of ToF sensing com-
pared to the commonly used RGB or monochrome cameras
and other depth sensing techniques such as stereo. ToF can
provide highly accurate depth at real-world scale even in
feature-less environments, and is generally more resilient
to illumination and color variations. The characteristics of
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ToF sensors make them especially attractive for indoor
applications such as in-car or building interior monitor-
ing. Another important factor are privacy considerations.
Persons are much easier identifiable on RGB images than
on depth maps, therefore depth sensing can be of interest
for monitoring areas (person counting, anomaly detection
etc.) without being invasive of peoples’ privacy in public
spaces.

Depth information in general, can be very beneficial as
an input modality to a wide range of scene understanding
problems of computer vision. Depth information is known
to facilitate background removal and segmentation tasks as
well as 3D understanding and reconstruction, for example in
object pose estimation or SLAM [2], [3]. Another important
point to consider is that realistic synthetic (3D rendered)
depth data is much easier to generate than synthetic RGB
data. This can be highly advantageous when large amounts of
realistic data are needed to train neural networks. Nowadays,
affordable sensors such as the Microsoft Kinect Azure [4] or
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the Intel RealSense [5] are widely used in computer vision
research.

It is in this vain that the VIZTA (Vision, Identification,
with Z-Sensing Technologies and Applications) EU
Research project had been launched [6]. VIZTA aimed at
developing innovative technologies in the field of optical sen-
sors and laser sources for short to long-range 3D-imaging and
to demonstrate their value in several key applications areas.
Within VIZTA, 23 partners from Industry and Academia
collaborated with the goal of developing new optical 3D
Sensing devices (ToF, LiDAR) and use their outputs for
developing improved algorithms in different areas of applica-
tions including automotive, security, smart buildings, mobile
robotics for smart cities, and industrial maintenance. Our
work in this project, described in this article, was to develop
computer vision and machine learning algorithms using ToF
cameras as input, for the areas of in-car cabin monitoring
(person detection and segmentation, driver pose, attention
and intention) and smart building monitoring (person detec-
tion, counting, anomaly detection). In contrast to the more
widely used RGB-D variant, the goal was to explore the
boundaries of machine learning models trained exclusively
with the depth modality of ToF cameras, towards lower cost,
privacy preserving systems.

The main contributions of this article is the summarizing
of some of the first application-focused deep learning work
done in VIZTA using exclusive ToF-depth input instead of
using depth as an auxiliary modality to RGB. We provide
end-to-end case study description for systems build for ToF
starting from the experimental setup, data acquisition and
annotation to the design of neural networks and their evalua-
tion. Finally, our publically available benchmark ToF datasets
available at https://vizta-tof.kl.dfki.de/ are unique in the field
and currently being used to advance the topic of ToF-based
perception. In this article, we summarize the most important
results reported so far on these benchmarks as well as some
highly interesting findings such as the ability to obtain results
equivalent to RGB-D systems with a single ToF camera.

In the following we will first refer to the principles, his-
tory and future perspectives of ToF sensing in Section II.
Subsequently, we describe our efforts in the VIZTA project,
starting from the construction of experimental environments
in Section III, the generation of the research datasets TICaM
and TIMo in Section IV, the development of ToF depth image
specific algorithms in Section V and finally the summary of
all reported benchmark results on the VIZTA datasets to this
day VII.

II. TIME-OF-FLIGHT CAMERA SYSTEMS
Time-of-Flight (ToF) sensors generate depth maps by mea-
suring the time required for the light to travel from the camera
to a surface and back. In this regard, the physical principle is
the same as that of Lidar scanners. The difference is that the
scene is not subsequently scanned to generate a depth map of
the scene, but that the sensor performs the depthmeasurement
parallel on a pixel matrix. ToF cameras have therefore special
imaging sensors which correlate incoming light intensity with
emitted light.

Therefore ToF cameras require a source which illuminates
the scene with modulated infrared light. As the whole scene
has to be simultaneously illuminated the light power density
in the scene is low compared to that in a concentrated beam
of a laser scanner. Therefore, ToF-cameras are only suited for
short range application, with a typical working range of a few
meters.

The range of ToF cameras corresponds to that of active
stereo systems which rely on a pattern projector (see, e.g., the
comparison of Kinect v1 and Kinect v2 [7]). Unlike those
cameras, the illumination of the ToF cameras does not pro-
duce any particular pattern but is instead modulated in time.
An advantage of ToF cameras is that they can be very com-
pact, because there is no baseline required between the image
sensor and the illumination.

The first ToF sensors that appeared around two decades ago
had very low resolution of the order of 1k pixel because of
the special pixel design including electronic circuits for the
so-called demodulation of the incoming light [8]. However,
over the last two decades new chip processes and pixel design
allowed to increase the fill factor and demodulation contrast
of the pixels, such that their size has been drastically reduced,
thus increasing the sensor resolution (see [9] and references
therein). In parallel, efficient infrared light sources, based on
VCSEL technology, became available which are able to emit
ultra-short light pulses or light continuously modulated with
100Mhz or more, which enhances drastically the precision
of the depth sensing. State-of-the art ToF sensors have reso-
lutions of up to 1Mpix and achieve frame rates of typically
30Hz up to 60Hz. The typical depth range is 5m. Depending
on the sensor size, the pixel number and the FOV the range
may be smaller or larger.

A breakthrough for ToF camera technology was the launch
of the Kinect v2 as a component of the Xbox One by
Microsoft in 2013, which replaced the structured light based
first version [10]. Meanwhile the third device generation, the
Microsoft Kinect Azure with further enhanced ToF sensor
[4], [7] is available and already widely used in the research
community.

The introduction of the Kinect v2 to the consumer mar-
ket was the first application for a mass market of the ToF
camera technology. Several other application fields for ToF
sensors have been explored since then. Existing applications
are:

• Building management: Monitoring system based on ToF
sensors have been around for about ten years [11], which
realize basic building management functions such as
people counting or single access control.

• Automotive in cabinmonitoring: As an option for luxury
cars, BMW (2017) [12] and Daimler (2020) [13] offer
ToF cameras integrated in the overhead module of the
car which and can recognize hand, respectively arm
gestures.

• Industry automation: Several camera manufacturers
offer ToF camera systems for industry applications
based on latest sensor technologies which offer resolu-
tions up to 0.3Mpix, framerates of up to 60Hz, and a
range of up to 10m [14], [15]
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These are applications with a rather low market volume.
However, the tendency to incorporate ToF sensors in the
smart phone devices, has in recent years given a newmomen-
tum to the further development of the ToF technology, mainly
with focus on energy- and size optimized sensors with high
resolution [9].

From this progress in the sensor technology all applica-
tion areas can potentially profit. In particular if the sensor
technology is combined with state-of-the-art deep-learning
algorithms as was done in the VIZTA project, novel function-
alities can be realized.

III. EXPERIMENTAL ENVIRONMENTS
Due to the absence of existing ToF datasets corresponding to
the planned tasks in the VIZTA project, it was necessary to
built dedicated environments for data collection and testing of
the developed solutions. Therefore, two experimental setups
were created, corresponding to the in-car scenario and the
building monitoring scenario respectively.

A. DRIVING SIMULATOR - AUTOMOTIVE IN-CABIN
ENVIRONMENT
The in-cabin test platform [16] is based on a driving simulator
consisting of a realistic in-cabin mock-up and a wide-angle
projection system for a realistic driving experience. The test
platform has been equipped with a wide-angle RGB-D cam-
era system (Microsoft Kinect Azure [4]) for monitoring the
entire interior of the vehicle mock-up from a position corre-
sponding to the overhead module of a real car. In addition,
an optical ground truth reference sensor system [17] that
allows tracking and recording the occupant’s body move-
ments synchronously with the 2D and 3D video streams of
the camera. Moreover, the precise positioning of the front
seats can be controlled and registered via a CAN-interface.
The OpenDS driving simulator [18] software is utilized with
three projectors covering almost the driver’s entire field of
vision as can be seen in Figure 1.

FIGURE 1. VIZTA in-cabin driving simulator experimental environment.

B. SMART BUILDING SETUP
Similarly to the in-car scenario, a dedicated setup was created
for the buildingmonitoring scenarios. The recording platform
was equipped with a Kinect Azure RGB-D camera as well.

Two separate views were designed. First, a top down view
(bird’s eye) with the camera mounted close to the ceiling,
suitable for access control and person detection operations.
Secondly, a tilted camera view, able to monitor a larger space,
making it more suitable for behavior analysis operations such
as anomaly detection. Depthmaps from both views are shown
in Figure 2.

FIGURE 2. Top: IR images and depth maps from tilted camera view in
building setup. Bottom: IR images and depth maps from the bird’s eye
camera-view.

FIGURE 3. Sample data from the TICaM dataset. Top: Real data - IR
image, Depth map with box annotation, Segmentation Masks. Bottom:
Synthetic data - IR simulation, Depth map, Segmentation Mask.

IV. DATASETS
Due to the absence of any publicly available datasets of ToF
camera images covering our target application areas of in-car
cabin monitoring and smart building person and anomaly
detection, we utilized our experimental setup environments
described above in Section III in order to record two new
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TABLE 1. Overview of main characteristics of all VIZTA ToF Datasets.

ToF datasets. The datasets TICaM (in-car) and TIMo (Indoor
monitoring) were published in [19] and [20] respectively, and
were made publicly available for research purposes through
our website https://vizta-tof.kl.dfki.de/.

Both datasets use the Kinect Azure RGB-D camera. The
annotation of the data was done manually, assisted by some
semi-automatic functionalities of our annotation tool, such as
the transfer of bounding box proposals between subsequent
frames [21]. Table 1 summarizes the attributes of the two
datasets.

A. TICAM - IN-CABIN DATASET
Due to the general interest in the in-car monitoring task, there
is a significant number of publicly available research datasets
in this domain [22], [23], [24], [25], [26], [27], however most
of them focus on the task of activity recognition or head-pose
estimation (no bounding box and segmentation labels), while
their field of view only covers part of the car cabin, i.e. only
the driver is monitored [22], [23], [24], [25], [27]. In addition,
only [22] and [25] provide depth data but not from a ToF
camera. The most relevant dataset to our work, in terms of
specifications is SVIRO [26], however this dataset provides
only synthetic data of cars’ back seats.

Our dataset, TICaM [19], is the first dataset provid-
ing wide-angle ToF images with a FoV covering the
entire car-cabin in three modalities (ToF Depth, ToF IR,
RGB) and different occupancy scenarios (driver + passen-
ger/object/child seat). A total of 118K frames are pro-
vided with per-frame person activity annotations, while 10K
frames (6.7K real, 3.3K synthetic) are annotated with object
bounding boxes and segmentation masks. The dataset pro-
vides multi-level classification granularity, with the most
commonly evaluated class-set being (Person, Object, Child,
Infant, Forward-facing child seat, Rearward-facing infant
seat). The combination of both synthetic and real images
in the same dataset is another unique feature of the TICaM
dataset, enabling synthetic model training to real data infer-
ence transfer learning evaluation and domain adaptation strat-
egy development. Sample data from the TICaM dataset are
shown in Figure 3.

B. TIMO - INDOOR MONITORING DATASET
Same as in the case of in-cabin monitoring, we recorded
and annotated our own dataset, TIMo [20] for our indoor
monitoring cases. The dataset consists of two sub-parts:

• The TIMo Anomaly Detection dataset is designed
for unsupervised anomaly detection, consisting of 1588
Sequences with a total of 612K ToF depth and cor-
responding IR frames from a top-down and a tilted
camera view (See also Figure 2). The training set con-
tains only normal data (365K frames) while the test
data contains 170K normal and 75K anomalous frames
with frame-level anomaly annotations. All anomalies
were acted and belong to three main categories, namely
Medical Emergencies, Violent Behavior and Left-behind
Objects. Selected IR frames from two sequences are
shown in Figure 4.

• The TIMo Person Detection dataset addresses the
needs of applications such as people counting or access
control, and therefore provides ToF depth and IR data
from a top-down camera view only, from 2 different
locations. For supporting the generality of developed
machine learning solutions, the height of the camera is
varied between 2.25 and 2.75 meters. In total, more that
22K frames (14K training, 8.6K testing) are provided,
annotated with bounding boxes and segmentation masks
for single-class classification of persons.

The TIMo datasets are also unique when compared to exist-
ing datasets in similar domains. Scene anomaly detection
datasets are typically recorded outdoors [28] and often do not
provide depth camera information [29], while some provide
only action class annotations instead of anomaly information
[30], [31].

V. ALGORITHM DEVELOPMENT
A. IN-CABIN DETECTION AND SEGMENTATION
In a number of research studies, we have investigated algo-
rithms for occupant detection and segmentation based on ToF
data, with focus on several questions, which are:

1) How to adapt network architectures originally devel-
oped for RGB images to depth data?

2) Which network architecture is most promising in terms
of performance and real-time capability?

3) Which training strategy allows the optimal use of syn-
thetic training data for adaptation to real evaluation data
for detectors?

The most promising approach to achieve a real-time capa-
ble person and object detector is to adapt a state-of-the art
2D convolutional neural network based detector to depth
data.
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FIGURE 4. Example anomaly sequences from the TIMo Anomaly dataset, ToF IR modality. Top row: Medical emergency case (Fainting
person). Bottom row: Aggressive beahviour case, arguing and fighting.

These detector approaches can be broadly divided into
two categories based on their architecture. So-called two-
stage detectors employ a ‘propose regions first, then detect’
approach, where several regions are first selected from the
image based on their likelihood to contain an object. These
regions are used to pool features within them and then to com-
pute the location of the object and the probability that they
belong to a certain class. Architectures like Faster R-CNN
and its predecessors R-CNN, and Fast R-CNN fall in this
category (see [32] and references therein).

Several state-of-the art instance segmentation methods are
built upon these two-stage detectors. Mask R-CNN is, e.g.
an extension of Faster R-CNN, which incorporates a parallel
mask prediction branch [33].

The second class of object detectors are one-stage detec-
tors, which treat object detection as a problem of regression.
The objective is to directly arrive at the bounding box coordi-
nates and the class probabilities of the objects from the feature
maps extracted from the entire image. In this way, single-
stage detectors such as YOLO, YOLACT and SSD have a
significant higher detection speed with comparable accuracy
compared to two-stage detectors (see [34]). The advantage
of YOLACT compared to the other one-stage detectors is
that it offers also an instance segmentation in addition to the
detection. Because of its parallel architecture, the segmenta-
tion adds only small computational overhead to the detection.
Thus, the YOLACT architecture, published in 2019 after the
start of the VIZTA project, has become during the project the
most promising candidate for a real-time in-cabin person and
object detection and segmentation system.

The most straight-forward way to apply a 2D neural net-
work originally developed for RBG images is to scale the
depth image to the appropriate input value range and to
replicate the values in all 3 channels. In the in-cabin algorithm
algorithm depth data have been clipped to a relevant range

which was chosen to be [0, 2.55m] and then normalized to
the input range of the model to maintain maximal precision.
Alternative representation of depth data as surface normals
or HHA representation may also be considered. In any case,
one needs to be aware that the initial weights from a model
pre-trained on RGB data may not be optimal for training
the detector due to the different characteristics to depth data.
A training from scratch on annotated depth data is therefore
recommended.

Since the collection and labelling of training and validation
data is a tedious and error-prone task, the question arises to
what extent real data can be substituted by synthetic data. This
idea becomes particularly relevant for the serial development
of automotive in-cabin sensing systems where algorithms
must be rapidly adapted to different vehicle models and vari-
ants. However, as long as the synthetic data do not reproduce
all specific artefacts of real depth data caused by both the
sensor and the scene, a network purely trained on synthetic
data will be challenged to generalize well on real data.

In our work [35], we have investigated different strate-
gies to incorporate synthetic data in the network training
and explored an adversarial training based framework for
adapting depth images from synthetic to real domain in
an unsupervised manner. Synthetic training data were taken
from the SVIRO dataset [26], while real test data and addi-
tional training data were taken from a subset of the later
published TICaM dataset. Trained model architectures were
Faster R-CNN and Mask R-CNN for detection and instance
segmentation. Several baseline results were presented. The
main observations and conclusions are:

• As expected, a network trained exclusively on synthetic
depth data does not generalize well on real data. This
negative impact of the domain shift between synthetic to
real data is thereby larger on the segmentation precision
than on the detection precision.
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FIGURE 5. Examples of person detection from top-down perspective.

• A fine-tuning training strategy, in which the network is
trained on combination of synthetic and real data, yields
for both detection and segmentation a performance supe-
rior to a network trained on real data only.

• A refinement of synthetic data with a generative network
for domain adaptation can substitute real data in training
of a detector. However, an accurate segmentation still
requires a fine-tuning with real data.

Therefore this study has clearly indicated the need for further
research in the domain adaptation of depth data with the goal
to minimize detail loss in real data which seems crucial for
segmentation.

B. SMART BUILDING - PERSON DETECTION AND
SEGMENTATION
In a smart building monitoring scenario, a vision-based sys-
tem can have multiple uses with some of the most common
applications including person counting on area entrances
for crowd control or access control systems for tailgating
avoidance. Detection of persons on camera images from
a top-down perspective is typically the first computational
step of algorithms developed for such building monitoring
applications.

The use of ToF cameras, offers again some significant
advantages compared to RGB cameras. Privacy preservation
is enhanced since persons can be detected on depth images
based on shape but are not easily identified (recognition
of person identity). Furthermore, depth information is very
valuable for person detection since it enables a natural back-
ground separation, and allows to accurately track the position
of a person in a room. Finally, in indoor scenarios, ToF-based
systems are more resilient to lighting variations being active
light sensors and can therefore function well in very low-light
conditions.

For the specific problem of person detection from ToF
images, no prior work to ours was published. Our imple-
mentation of the person detector was based on an adaptation
of the RGB-based YOLACT neural network [34] detector.
Using the original ResNet101 backbone led to overfitting
and false positives in the TIMo dataset, therefore it was
replaced with a smaller and easier to train ResNet18 back-
bone. Examples from the algorithm output are shown in
Figure 5.

C. SMART BUILDING - ANOMALY DETECTION
Anomaly detection at a per-frame level aims to mark specific
camera frames of a video sequence that may contain anoma-
lous events, such as criminal activity (violence, forgotten
objects) or medical emergency situations. In building mon-
itoring, it can serve in surveillance systems as an indication
of a possible situation requiring intervention measures.

Anomaly detection is a challenging real-life application for
machine learning since the search space is not deterministi-
cally defined, meaning that it is not possible to create supervi-
sion data for all possible target cases. Therefore, unsupervised
learning is realistically the most promising approach for
anomaly detection. Indeed, most existing techniques exploit
the latent space representations learned exclusively from
normal data. These learned representations can be used for
reconstructing inputs with an autoencoder or for predicting
the next frame in a sequence. It is then expected that when
such trained networks are presented with abnormal data, they
produce reconstructions or predictions of lower accuracy,
which can then serve as an indication of an anomalous (out
of distribution) incident in the video sequence [36].
The use of ToF depth as the sole modality for this appli-

cation had not been investigated before our work in [37],
even though there are considerable advantages. Most impor-
tantly, ToF depth offers privacy preservation, as discussed
beforehand, while it is also more robust to lighting variations.
Moreover, a ToF camera can bemore compact, less costly and
less energy-consuming than RGB-D variants.

FIGURE 6. Depth map of the TIMo anomaly dataset (left) and
corresponding extracted foreground (right).

In practice, surveillance systems of this type in buildings
are typically set-up statically. This means that the scene is
clearly separated into a static or slowly changing background
and a dynamic foreground where the interaction between
persons or between persons and objects happen. The targeted
anomalies are dynamic events happening almost exclusively
in the foreground.

Depth data offer another significant advantage here,
namely that background-foreground segmentation is very
simply possible by inspection of the depth data compared to
an empty background image [38] (see Figure 6). Therefore,
since anomalies happen in the foreground, our initial notion
was to perform both the training and the inference for our
anomaly detection algorithms on foreground images. How-
ever, this was proven to be ineffective, possibly due to loss of
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some interaction information or due to having too few depth
values overall in the foreground images.

Therefore, in [37], we suggested to use a modified loss
function that applies a weighting of the pixel reconstruction
losses of autoencoders depending on whether they belong to
the foreground or background. An example of the effect of
applying this W-MSE (Weighted Mean Square Error) loss
in reconstruction is shown in Figure 7. In this manner, the
foreground reconstructionwheremost of the anomaly activity
can happen is given priority, while the background is not
completely ignored.

FIGURE 7. Autoencoder reconstruction when a normal Mean-Square
Error (MSE) is used in training (left) vs. the Weighted Foreground MSE
(right). W-MSE reduces slightly the reconstruction quality of the
background (scene) while improving the person reconstruction.

VI. NEURAL NETWORK OPTIMIZATION FOR EMBEDDED
SYSTEMS
The detection networks for the studies on person detection
in buildings [19], [35], [39] and in-cabin occupant detection
[20] were implemented in Python using the PyTorch frame-
work with the possibility of further network conversion to
ONNX format with opset 11. The training was done on an
Ubuntu 18.04 × 64 PC with 4 Nvidia GTX 1080Ti Graphics
Processing Units (GPUs). The inference evaluation on an
embedded platformwas performed on the JetsonAGXXavier
platform [40].

The detection network based on YOLACT network
showed compared to two stage detectors, like Faster R-CNN,
not only a higher detection accuracy, but also a faster infer-
ence speed. This algorithm runs at 0.03sec per frame on an
Nvidia GTX 1080Ti GPU, making it suitable to process a
depth camera stream captured at 30fps.

However to run the algorithm on an embedded GPU, like
the Nvidia Jetson platform, the network size was reduced and
a target-platform specific optimizations was performed.

To reduce the network size, the original ResNet101 fea-
ture extraction backbone network was replaced by ResNet18
which has a smaller number of layers. In this way, the network
size has been reduced from 49.5 M parameters to 21 M. The
reduced network size affects also the runtime, which was
thereby reduced from 0.03s/frame to 0.025s/frame.

In addition, the smaller number of training parameters
reduces the risk of overfitting. The smaller number of layers
also allows to train the network with a larger batch size. The
features from pre-trained ResNet on ImageNet are not used
anymore, since their usage with depth data is not optimal.
Instead, the weights were initialized randomly. According to

our test configuration, randomweight initialization converges
to a lower number of false positive detections.

For deploying the detection algorithm on the embedded
target platform NVIDIA Jetson, the trained model is first
converted to the conventional ONNX format, which repre-
sents the network structure and contains the trained weights.
For its inference, the model is passed through a TensorRT-
based pipeline, which uses the platform-specific optimization
for the generation of faster models with minimal accuracy
drop. Based on the model definition the framework performs
weights quantization to lower bit resolution and replace par-
ticular network function calls to the best ones for the desired
GPU. It positively affects the running time of the YOLACT
algorithm on embedded hardware, increasing the runtime
performance from 11 to 30 fps.

VII. EXPERIMENTAL EVALUATION
Although our two introduced benchmark datasets TICaM [19]
and TIMo [20] were only recently introduced, several
research publications have already used them for evaluation
and reported quantitative evaluation scores on them. In the
following, we attempt to summarize and compare the hetero-
geneous results from all these publications aswell as possible.

A. TICAM BENCHMARK
The TICaM dataset [19] was used in several works, with
diverse research questions addressed. An overview of all
reported results on the dataset is given in Table 2. Ini-
tially, in the TICaM publication [19], several baselines on
the target tasks of object detection and segmentation using
only the depth-map modality were given. The best results
were achieved with an approach based on the YOLACT
model [34], adapted to depth as discussed in Section V-A.
As in the previous study [35], a very large domain gap can
be seen when models are trained exlusively on synthetic data
and applied on real data. When training on the real set or a
combination of synthetic+real fine tuning the results were
very promising taking into account the exclusive use of depth
information without RGB or IR.

The work presented in [39], investigated the possibil-
ity of creating partial-view 3D point clouds out of depth
images of TICaM, and performing segmentation using point
cloud based methods such as PointNet [43], before mapping
back to the depth image. The comparison of point cloud
based approaches against depth-map based methods, showed
that each have their own strengths and weaknesses, with
PointNet++ achieving the highest mIoU value on TICaM so
far.

The work of [45] argued that the use of multi-task networks
with a shared backbone and branches for segmentation, detec-
tion and pose estimation is advantageous in the in-car moni-
toring task. DaCruz et al. [47] addressed the issue of domain
adaptation from synthetic to real data. They suggested an
auto-encoder based method that learns to reconstructs the
input as support to the classification task. In their experi-
ments, they achieved an impressive adaptation result in terms
of detection mean Average Precision (mAP) when training on
the purely synthetic SVIRO [26] dataset of back-seat views
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TABLE 2. Summary of reported experimental results on VIZTA TICaM dataset for in-car cabin monitoring. † [45] uses a custom training/validation split on
TICaM.

TABLE 3. Summary of reported experimental results on VIZTA TIMo dataset for the task of anomaly detection. ⋆ Modified CAE architecture compared
to [36], more details in [20].‡ A Vision transformer autoencoder inspired by [54]. Implementation details in [37]. P- denotes prediction of next frame as
anomaly detection approach, R- denotes reconstruction of current frame for anomaly detection.

and adapting for testing on the real front-seat view TICaM
dataset.

Finally, Sharma et al. [51] investigated network architec-
tures such as ShapeConv [52] or Depth-aware CNN [53]
and proposed a combination of them with the addition of
multi-task learning for depth completion. Most importantly,
this work showed that the segmentation performance when
RGB+Depth data are used can be matched or even surpassed
by an IR+Depth input combination that can be provided by
a single ToF camera device (no RGB).

Overall, results on the benchmark show that existing
solutions can already achieve very promising performance.
Synthetic to real adaptation remains a very relevant problem,

considering its viability for a scalable solution towards direct
deployment of the network models to commercial vehicle
applications.

B. TIMO BENCHMARK
To this day, there are not asmany reported results on the TIMo
benchmark as there are for TICaM, which is also related to its
later time of publication. However, some key aspects mainly
concerning unsupervised anomaly detection fromToF images
were investigated in depth in [37].

In Table 3, we summarize the results reported on the TIMo
Anomaly detection dataset. Results on the top-down and
tilted-view data (see Figure 2) are shown separately in two
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TABLE 4. Summary of reported experimental results on VIZTA TIMo dataset for the task person detection.

sections of the Table. The evaluation metric used is the area
under the ROC curve (AUROC), which is the standard metric
for unsupervised anomaly detection.

Initially, as a benchmark baseline for the TIMo anomaly
detection, two typical methods for unsupervised anomaly
detection were applied to the ToF depth modality in [20].
CAE is a convolutional autoencoder that is trained on normal
data to reconstruct the input. ConvLSTM is a convolutional
LSTM that is trained to predict the current frame from a
sequence of N previous frames. In both cases, a threshold on
the reconstruction or prediction accuracy is used to classify
frames as anomalous. In [20], bothmethods showedmoderate
performance in this challenging task.

In [37], a more detailed evaluation of different aspects
of the dataset was performed and the achieved AUROC
was significantly increased for the TIMo benchmark. The
main reason for this increase was the use of the foreground
aware loss as described in Section V-C. In addition to
approaches and network architectures based on frame pre-
diction (denoted P-) or frame reconstruction (denoted R-),
a vision transformer-based autoencoder network was tested
as well (ViT-AE). The highest AUROC scores were however
achieved by the CAE networks on both the top-down view
and the tilted-view dataset, which could be attributed to the
size of the training dataset as well since transformer networks
are expected to require more training data.

Interestingly [37] also compared the anomaly detection
performance when the IR modality of the ToF camera is used
instead of the depth map, and showed the IR performs consid-
erably worse. Other evaluations not included on Table 3, used
a splitting of the testing dataset by anomaly type (aggresive
behavior, medical emergency, left-behind object) and showed
that the aggresive behavior category was the easiest to detect,
while the other two categories lacking dynamic motion were
more challenging for the tested methods (see results in [37]).
Recently, He et al. [55] presented the top-performing

method on the TIMo dataset up to now. In this work,
point clouds derived from the depth images were used in
multi-frame autoencoder reconstruction method for anomaly
detection.

In Table 4 the results on the TIMo person detection
benchmark from [20] are summarized. Two networks (Mask
R-CNN [33], YOLACT [34]) were evaluated with both show-
ing comparatively good results on the benchmark, indicating
that this supervised task is less challenging than the anomaly
detection.

VIII. DISCUSSION AND CONCLUSION
In this work, we presented an overview of our work on ToF-
based perception within the 42Months of the VIZTA research
project.

The most significant outcome of this work is the introduc-
tion of the notion that high-accuracy perception for different
tasks is possible with a single ToF camera, profiting from
advantages such as privacy preservation, natural foreground
separation, indoor lighting variation robustness and facilita-
tion of synthetic training data generation. This is contrast to
the highly popular RGB-D combination of a normal cam-
era with a depth sensor that induces additional effort for
calibration and synchronization, data processing and over-
all power consumption. Indeed, in the experimental results
section, we refer to examples where the competitiveness of
Depth+IR from a single ToF sensor against RGB-D devices
was validated.

Equally important outcomes of VIZTA are the shared
know-how in the use ToF depth images specifically, as well as
the release of two publically avaialble ToF datasets, TICaM
and TIMo, that can serve as a reference benchmark in ToF-
based algorithm development by the scientific community
as well as the industry in a multitude of problems including
in-car object and person detection, activity recognition and
anomaly detection in smart buildings.

Looking at the benchmark datasets and results reported
thus far, it is clear that there is a varying degree of task diffi-
culty. Detection tasks (especially large object / human) have
already reached very high accuracy levels on our benchmarks
(around 90%) even though some applications such as people
counting will require almost perfect accuracy (above 99%).
However, in a concrete application like people counting one
would complement the person detection algorithm which can
lift the performance significant by filtering out transient false
detections. Meanwhile, unsupervised anomaly detection is a
much more challenging task due to its non-deterministic def-
inition with very promising results shown already on TIMo.

ToF Sensing is expected to increase in popularity, either
on its own or in combination with other sensors in the
upcoming years. At the same time, it is expected to see
more product-level systems that rely on such modalities. The
VIZTA project prototype results have already been or are
expected to be integrated in commercial systems developed
by the industrial project partners.
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