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Abstract— Trajectory optimization methods have become
ubiquitous for the motion planning and control of underac-
tuated robots for e.g., quadrupeds, humanoids etc. While they
have been extensively used in the case of serial or tree type
robots, they are seldomly used for planning and control of
robots with closed loops. Series-parallel hybrid topology is
quite commonly used in the design of humanoid robots, but
they are often neglected during trajectory optimization and the
movements are computed for a serial abstraction of the system
and then the solution is mapped to the actuator coordinates.
As a consequence, the full capability of the robot cannot
be exploited. This paper presents a case study of trajectory
optimization for series-parallel hybrid robot by taking into
account all the holonomic constraints imposed by the closed
kinematic loops present in the system. We demonstrate the
advantages of this consideration with a weightlifting task on
RH5 Manus humanoid in both simulation and experiments.

I. INTRODUCTION

The recent developments in robotics have seen a large

adaptation of closed-loop mechanisms in various robots like

exoskeletons [1], [2], multi-legged robots [3], humanoid

robots [4], [5] etc. These parallel mechanisms provide higher

stiffness, high payload capacities, higher precision, etc.

Series-parallel hybrid robots can be defined as the combina-

tion of serial chain and parallel mechanisms which can bring

together the advantages of both topologies. An extensive

survey on these is available in [6]. They are often combined

to closely mimic the human and animal capabilities which

require high stiffness, optimum mass and inertia distribution

properties, etc. While there are many advantages, these

series-parallel hybrid robots also inherit the kinematic com-

plexities of both serial and parallel architectures. Currently,

the trajectory optimization approaches are very popular and

powerful methods for motion planning. They can help in

generating various complex movements for multi-body sys-

tems [7]. Most of the trajectory optimization problems are

usually based on tree type systems as they are easier to
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Fig. 1. Screenshot of the RH5 Manus robot performing a 15 kg lifting
motion. The motion is generated using the constrained series-parallel model
of the robot in the trajectory optimization process.

model and control. Many of these solvers allow modeling

of external kinematic constraints acting on the robot for e.g.

humanoid legs while standing or in multi-contact scenar-

ios [8], [9], [10]. Parallel robots have the advantages of high

accuracy and rigidity with a large payload, however they

involve loop closure constraints that are difficult to model

and control. The optimization process is usually difficult or

time-consuming, which makes it impossible to use in real-

time control [11]. Some researchers have tried to control

these systems using trajectory optimization approaches such

as [12] where a cascade controller was proposed to control

a pneumatic driven parallel robotic platform with optimal

parameter tuning. However the intended tasks are industrial

tasks, which means that they are repetitive and only involve

kinematics. In [13], the authors proposed an optimal con-

troller based on the firefly algorithm to generate optimal tra-

jectories for a hydraulically parallel robot. In contrast, a com-

plex series-parallel hybrid robot is difficult to solve since it is

a combination of many parallel robots. In addition to optimal

control formulation, resolving loop closure constraints is a

burden on the optimization. When it comes to direct methods,

[14] has proposed DIRCON a direct collocation algorithm

which can effectively deal with kinematic constraints in both

trajectory generation and stabilization steps with third-order

integration accuracy. However, the method was applied to

deal only with external kinematic constraints arising from

contacts. Various shooting methods have also been proposed

in the literature for whole body trajectory optimization [15]

which can deal with kinematic constraints like contacts but

have not been studied for kinematic loops within the robot.

Most previous studies using shooting methods considered a

serial abstraction of the series-parallel hybrid robot and the

results were mapped to the closed-loop mechanisms present

in the system using an additional mapping [5], [16], [17].



This process has the following disadvantages:

• Box constraints used to model the physical limitations

of the mechanisms either overestimate or underestimate

the effective workspace of the robot (see Section III).

• Parallel mechanisms may be subject to singularities that

are not taken into account in the optimization problem

while working with serial models.

• The optimization formulation is not accurate since it

does not take into account the full dynamics of the

closed-loop mechanisms of the system (see [18] for a

case study on the involved trade-offs).

Contribution: In this paper, we propose a first case

study on resolving all the loop-closure constraints of the

robot within the trajectory optimization process. To this

end, we use the open-source software Pinocchio with its

recently introduced proximal formulation of the constrained

dynamics [19]. This approach allows us to converge to an

optimal solution according to the least squares principle,

even in the context of singularities. Among the optimization

methods available in the literature, the differential dynamics

programming (DDP) approach was used to generate optimal

trajectories with respect to the constrained dynamics. We

consider the weight lifting task with 15 Kg in two arms for

the RH5 Manus humanoid and demonstrate that by planning

the trajectories directly in the actuation space, we can exploit

the full capabilities of the robot which is not possible when

working with a serial abstraction of the robot model. Results

are shown in simulation as well as experiments on the real

robot. This work is significant for humanoid robots based on

electric actuation where one must seek to push the robot to

its limits to achieve human like agility.

Organization: Section II presents the mathematical

preliminaries for whole body trajectory optimization with

kinematic constraints. Section III presents the design of the

study on RH5 Manus humanoid platform for weight lifting

task. Section IV presents the results and discussion and

Section V concludes the paper and highlight our future work.

II. MATHEMATICAL BACKGROUND

Series-parallel hybrid robots are subjected to large number

of holonomic constraints. These constraints can act externally

on the system, e.g. multiple contacts with the environment

or internally, e.g. loop closure constraints for closed-loop

mechanisms present within the system. This section presents

the mathematical preliminaries of constrained dynamics for-

mulation and the corresponding trajectory optimization prob-

lem.

A. Constrained Multi-Body Dynamics

The unconstrained multi-body dynamics of the robot is

written in the following canonical form:

M(q)q̈+b(q, q̇) = τ +
K

∑
k=1

J
⊺

k (q)φk (1)

where, q, q̇, q̈ corresponds to the vector of generalized posi-

tions, velocities and accelerations, M(q) is the generalized

mass-inertia matrix, b(q, q̇) is the bias force vector which

includes Coriolis-Centrifugal and gravity forces and τ is the

vector of generalized torques. K accounts for the additional

kinematic constraints on the robot, such as external contact

with the environment and internal kinematic loops. At po-

sition level, the kinematic constraints could be implicitly

written as fc(q) = 0. However, since we are solving the

dynamics in the acceleration space, it is common to use the

second derivatives of this constraint in our problem:

Jk(q)q̈+ J̇k(q)q̇ = a∗
c (2)

Jk(q) is the Jacobian matrix corresponding to the kth ap-

plication of constraint on the robot. φk = [λk ηk]
T is the

vector of the dual external forces (λk) and the torques (ηk)

that corresponds to the kth constraints. a∗
c is the desired

acceleration with corrective terms for constraint satisfaction.

1) Kinematic loop-closure as a rigid Constraints: Under

kinematic constraints (i.e., kinematic loop closure), the dy-

namics of the robot is subject to the constrained equations

of motion presented in (1) and (2), and this can be written

as an optimization problem under equality constraints. The

solution of the associated Lagrangian of this constrained

dynamics (see [19] for full expansion) is then given by:
[

0 Jk

J
⊺

k M

][

−φk

˙̈q

]

=

[

−J̇k(q)q̇+a∗
c

τ −b(q, q̇)

]

, (3)

Multiple formulations have been proposed to solve this prob-

lem, for example using Schur’s components of the cholesky-

factorized constrained dynamics matrix [15] [20]. We use

the recently proposed constrained dynamics algorithm in

Pinocchio [19]. It reformulates the problem in a proximal

way and provides a sparse way to efficiently handle this

problem and its derivatives. We use the Pinocchio C++

Library for our formulations here, since it provides us with

an efficient implementation of the unconstrained as well as

constrained dynamics along with their analytical derivatives

for help in optimization [19] [21][22].

B. Trajectory Optimization Formulation

The discrete time optimal control problem can be written

as follows:

min
x,u

lN(xN)+

N−1

∑
t=0

l(xt ,τt)dt (4a)

s.t. x0 = f0, (4b)

∀i ∈ {0...N −1}, xi+1 = ft(xi,τi) (4c)

• x= (q, q̇) : robot state,

• τ ∈ R
nu : actuator effort,

• N : nodes number for the discretized trajectory,

• lN : terminal cost model, applied on the last node of the

trajectory,

• l : running cost model, applied on all remaining nodes,

• f0 : the initial state of the problem (q0, q̇0),
• ft : the discretization of the robot dynamics (3).

Optimal trajectories are computed using the Box Feasibility

DDP (BoxFDDP) solver proposed by the open-source C++

library Crocoddyl [15]. The Feasibility DDP [23] enables us



to overcome the numerical limitations of the original single

shooting DDP formulation [24]. The Box-FDDP [25] gives

us the ability to reason about the actuation limits of the

robot.

III. EXPERIMENTAL DESIGN

This section presents the experimental design where we

consider the fixed base RH5 Manus [16], a series-parallel

hybrid robot with multiple kinematic loops for a weight

lifting task using whole body trajectory optimization. Firstly,

it describes the complete hybrid upper body of the robot with

closed-loop mechanisms identifying the theoretical limits

of the full robot and its tree abstraction. Next, it presents

optimal control formulation for weight lifting with tree and

full hybrid robot models.

A. Closed-loop mechanisms in RH5 Manus robot

The fixed base model of RH5 Manus robot consists of a

total 61 spanning tree joints (n = 61). Among these, there

are 20 independent joints (m = 20) and 20 active joints

(p = 20). The topological graph of the robot can be seen in

Fig. 2. All the independent joints are shown as green edges

and the actuated joints are shown as red edges. Remaining

spanning tree joints are passive in nature. The cut joints

for loop closure is denoted by dotted lines. All closed-loop

mechanisms in the robot are shown in blue boxes.

The series-parallel hybrid system in Fig. 2 can be rep-

resented as a tree type composition of 10 submechanisms.

There are 5 serial chain submechanisms and 5 closed-

loop submechanism. The first closed-loop submechanism

connected to the root of the graph is a multi closed-loop

torso mechanism of type 2SPU+1U [26] and is actuated by

two prismatic actuators (Joints 5 and 8), each on the left

and right of the submechanism. Pitch and roll movements

denotes the independent coordinates (Joints 1 and 2) of

the submechanism. Each cut joint is a spherical joint and

imposes 3D translation constraint in the submechanism.

The second closed-loop submechanism present in both

arms of the robot is a planar closed-loop elbow mechanism

of type RRPR and is actuated by a prismatic actuator (joints

15 and 38 in right and left elbows). The elbow rotation is

chosen as the independent coordinate (joints 13 and 36 in

right and left elbows). In this submechanism, the cut joint is

a revolute joint that impose planar translation constraints.

The third closed-loop submechanism in both arms is

complex multi-loop closure wrist mechanism of type

2SU[RRPR]+1U [27] and is actuated by two prismatic

actuators (joints 28, 31, 51, and 54). Wrist pitch and yaw

movements represents the independent coordinates (joints

17, 18, 40, and 41). There are multiple cut joints in the

mechanism. One of the cut joint on both sides of the

submechanism is a spherical joint that imposes 3D translation

constraint. Other cut joint is a revolute joint on both sides

imposing the planar translation constraints.

B. Box constraints

In an optimization problem, the physical limits of the

robot’s joints are generally modeled as box constraints [28],

[25]. However, this is true for serial or tree type systems

but is not necessarily a good argument for closed-loop

mechanism [29]. In closed-loop mechanisms, the configu-

ration space can be different from actuation space. When

independent joints are considered, the physical limits of the

actuators are masked and hence not exploited. There can be

various configurations which are feasible in actuation space

of the closed-loop mechanism but cannot be exploited while

considering box constraints. The configuration analysis in

independent joints space and actuation space of the closed-

loop mechanisms in RH5 Manus have already been studied

[30], [31], [27].

1) Torso: As an example, consider the torso submecha-

nism in RH5 Manus robot in Fig. 3(a). The full admissible

configuration space in the actuation coordinates is shown in

Fig. 3(b). The box constraints are shown by blue lines in the

plot as the actuator position limits. When this mechanism

is modeled using independent joints, the configuration space

can be seen in Fig. 3(c). The black curves represents the

effective actuator limits, mapped from actuation space to

independent joint space. However, due to box constraints,

only green region can be reached acting as conservative

limits. The full capabilities of the robot cannot be exploited.

2) Elbow: The same behavior can be observed on velocity

and torque level for the elbow mechanism shown in Fig. 4(a).

The maximum velocity of the linear actuator depends on the

joint configuration, shown in Fig. 4(b). The box constraint

provides the conservative limit for the maximum velocity,

shown with dotted line. Similar conservative limits can be

observed in Fig. 4(c) for maximum torque.

3) Wrist: Fig. 5(a) shows the wrist closed-loop mech-

anism in the robots and gives the same insight. The red

lines act as box constraint for the actuation configuration

space in Fig. 5(b). When the actuation space is mapped to

independent joints configuration space, the box constraints

act as conservative limits (shown with white dotted lines in

Fig. 5(c)).

4) Overall ROM: The complete range of motion (ROM)

for the linear actuators in the closed-loop mechanisms is

summarized in Table I. The maximum force limits of the

linear actuators reported here are lower than the ones re-

ported in [16] in order to respect current limitations of the

robot electronics. When box constraints on the actuators are

mapped to independent joint space, the limits are config-

uration dependent and hence can take any value between

maximum lower and maximum upper limits, summarized in

Table II.

TABLE I

ROM OF LINEAR ACTUATORS USED IN RH5 MANUS

Actuator ROM (mm) Max. force (N) Max. vel. (mm/s)

Wrist [113,178] 612 200
Elbow [173.8,295.42] 921 266
Torso [195.0,282.8] 910 291
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Fig. 2. Upper body of RH5 Manus robot
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Fig. 3. Box constraints for RH5 Manus torso [30].
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Fig. 4. Box constraints for velocities/torques for RH5 Manus elbow [29].

(a) 2SURRPR+1U (b) Actuation space (c) Independent joint space

Fig. 5. Box constraints for RH5 Manus wrist [27].

TABLE II

ROM OF THE INDEPENDENT JOINTS IN RH5 MANUS

Joint ROM Max. Torque Max. Velocity
(◦) (Nm) (◦/s)

Elbow [−105◦,0◦] 18.98–67.96 177–633
Wrist Pitch [−42.5◦,100◦] 29–56 364–696
Wrist Yaw [−32◦,34◦] 38–50 386–499
Torso Pitch [−20◦,30◦] 107.45–141.41 184–238
Torso Roll [−25.5◦,25.5◦] 91.42–110.67 208–400

C. Tree Abstraction of RH5 Manus

As multiple closed-loop mechanisms in a robot can be-

come complex to resolve for errors in a computationally

efficient manner, a tree-abstraction of the whole system is

generally considered. A tree abstraction of the RH5 Manus

robot in Fig. 2, is a tree-type system considering only

independent coordinated or green edges of the topological

graph. The tree abstraction of RH5 Manus robot consist

of 20 degrees of freedom (m = 20) and Table II provides

the joint limits for the closed-loop mechanisms. Note that a

conservative choice would be to consider lower maximum

values for torques which may underestimate the capabilities

of the robot. An ambitious choice would be to consider the

upper maximum limits for torques which would overestimate

the capabilities of the robot.

D. Optimal control formulation

The optimization problem was designed with the same

costs and time horizon for the full hybrid model and the

tree-type abstraction model, with 3 different choice of torque

and velocity limits, namely: lower, middle and upper limits.

The middle limits for torque and velocity of the joint are

computed as the average of the lower and upper limits.

For the full robot model, 61 DOF model with 30 loop-

closure constraints were considered in the optimization pro-

cess. These constraints are defined in the SDF model and



automatically mapped by the Pinocchio software. For the

open tree-type model, 20 DOFs with no kinematic constraints

were involved in the optimization. The optimal trajectories

are computed numerically by solving the Optimal Control

Problem (OCP) using Crocoddyl. As a result, we can obtain

the decision variables: state x= (q, q̇) and control command

(τ ). For the motions of the constrained model, the forces φk

are calculated in accordance with the constrained dynamics

formulated in (3). The optimal trajectories for the task

movements are formulated with a running cost model and

a terminal cost model. The running cost models are defined

by the following cost functions:

l =

C

∑
c=1

αcΦc(q, q̇,τ), (5)

αc ∈R is the applied weight to the cost function Φc. All the

generated motions involves the same type of cost functions.

• Wrist Target tracking: The wrist position rw (right and

left) track the final wrist target placement for each

desired end configuration.

Φ1 =‖ rw(t)− r
re f
w (tN) ‖

2
2 α1

• Control regularization: Minimization of the joint control

for dynamically feasible motions.

Φ2 =‖ τ(t) ‖2
2 α2

• Posture regularization: This cost manage the redun-

dancy of the multi-body system.

Φ3 =‖ q(t)−qre f (tN) ‖
2
2 α3

Here, tN refers to the final time of the motion. The terminal

cost model includes only the wrist target tracking and the

posture regularization cost. In addition to these cost func-

tions, in the full model formulation of the OCP, the proximal

parameter has to be determined as well. In this 15 kg lifting

simulation, the proximal parameter prox = 10−5. All the

hyper-parameters in the OCP formulations are determined

empirically.

IV. RESULTS

This section presents the results of trajectory optimization

on a fixed-base RH5 Manus robot for the weight-lifting task1.

The chosen weight for trajectory optimization is 15 kg (7.5

kg in each hand). These trajectories are first presented in

simulation and also tested on the real robot. Lastly, the com-

putational timings are reported for trajectory optimization in

both the serial abstraction model and the full hybrid model

of the robot. The simulation and experimental results can

also be seen in the accompanying video.

A. Tree abstraction model vs full hybrid model

For full hybrid model, the main objective is to feasible

trajectory considering the internal loop-closure constraints

in the robot. For the tree abstraction model, the closed loop

kinematic constraints are neglected. The trajectory optimiza-

tion formulation is done to lift 15 kg weight (7.5 kg in each

1https://github.com/dfki-ric-underactuated-lab/

case_study_traj_opt_hybrid_robots, https://youtu.be/
qcJiLLTbDmk

(a) Lower (b) Middle (c) Upper

Fig. 6. Screenshots of the simulations of RH5 Manus robot lifting 15 kg
with the serial abstraction model for lower, middle and upper limits. The
blurred images correspond to the initial state of the robot and red bubbles
denote the end-effector targets.
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Fig. 7. Independent joint velocity and torque obtained from the simulations
of lifting 15kg using the tree-type model (dotted lines denote the limits).

arm). The formulation of OCPs based on the two models is

set to reach the same end-effector targets while lifting the

same weight. The same cost models and time horizons were

applied for both models as defined in the previous section.

1) Tree abstraction model: The trajectory optimization

results are shown in Fig. 6 for the considered three cases. It

can be seen that the tree-type model of the robot is not able

to reach the defined target (red bubbles in Fig.6) in all the

three cases. It performs badly with lower and middle limits

of the independent joints of the closed-loop mechanism. The

trajectory optimization with the upper maximum limits on

the independent joints performs better than the other two

cases and is closer to the desired target.

In Fig. 7(b), same can be observed from the torques plot

for left elbow joint from trajectory optimization. The dotted

lines in the plot refers to the joint torque limits for the

three cases. For lower and middle maximum limits, the left

elbow joint torques are getting saturated during the trajectory.

However, with upper maximum limits, elbow torques are

less saturated. Considering conservative limits leads to task

failure in the trajectory optimization. On the other hand,

ambitious choice of the limits may find results in some cases

but are not transferable on the robot.

To support the argument on ambitious choice of limits in

independent joint configuration space, the results for upper

maximum limits are observed in actuation space of the

closed-loop mechanism. The torque results from trajectory

optimization are mapped in actuation space using the in-

verse statics mapping of the mechanism. The linear actuator



forces required to perform the obtained trajectories from

optimization are plotted in Fig. 9(a). It can be observed

that the mapped actuation forces are outside the real limits

for both linear actuators in left and right elbow closed-

loop mechanisms. Therefore, trajectory optimization while

considering the serial abstraction model of the robot failed

to perform for the required task.

2) Full hybrid model: In the full hybrid model of the

robot, full actuation capabilities of the robot are exploited

by planning directly in the actuation space of the robot.

OCP formulation remains same for trajectory optimization as

discussed before. The results are shown in Fig. 8 where the

robot can be seen to reach the desired target. The torque plots

1 2 3

Fig. 8. Screenshots of the obtained simulations of the robot lifting 15 kg
weight with full hybrid model.

in the actuation space can be seen in Fig. 9(b). For both linear

actuators in the elbow closed-loop mechanisms, the forces

are well under the actuator limits. The trajectory optimization

is able to find feasible trajectories to lift 15 kg weight in full

hybrid model as opposed to serial model. Hence, considering

full hybrid model provides an edge over serial abstraction

model in trajectory optimization by exploiting admissible

configuration space in a proper manner.

B. Experimental Results

In addition to the presented simulations, the motion was

also performed on the real robot. To achieve the obtained

full hybrid models motion on the system, the independent

joint position trajectories are mapped to the actuator space

using HyRoDyn [32]. The snapshots of the robot executing

the motion can be seen in Fig. 1. The velocity and effort

plots for the left elbow actuator are shown in Fig. 10. The

plots highlight the fact that the reference trajectories obtained

from trajectory optimization, while considering a full hybrid

robot can also be performed on the real robot with velocity

and effort respecting the limits.

C. Computational Timings

The average CPU time was measured for solving the

OCP for 1 iteration 1000 times on a standard laptop with

an Intel(R) Core(TM) i7-10750H @ 2.60GHz processor.

These were 31.07 ms and 412.27 ms respectively for tree-

type model and full hybrid model which show a large

difference when the closed loops constraints are included in

the resolution of an OCP. For the OCP resolution formulated
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Fig. 9. Actuation forces obtained in simulations for the elbow mechanism.

in this work, the computational time using the tree-type

model was 3.86 seconds, while for the full hybrid model,

the trajectory optimization required about 1.5 hours.

29.0 29.5 30.0 30.5 31.0 31.5
Time [s] +1.6776072× 109

−0.2

−0.1

0.0

0.1

0.2

V
el
o
ci
ty

[m
/s
]

measured right actuator

measured left actuator

(a) Velocity

29.0 29.5 30.0 30.5 31.0 31.5
Time [s] +1.6776072× 109

−1000

−500

0

500

1000

F
or
ce

[N
]

measured right actuator

measured left actuator

(b) Force

Fig. 10. Elbow actuators velocity and effort for lifting 15 kg weight on
the real system.

V. CONCLUSION AND OUTLOOK

In this work, we generated a dynamic weight-lifting

motion using the design specifications of the RH5 Manus

robot model. The RH5 Manus, with its series-parallel hybrid

design, provides high stiffness and large payload lifting

capabilities. However, in order to exploit these capabilities,

it is important to take into account the full robot model,

as demonstrated in the paper. For this purpose, we included

the loop-closures constraints in the trajectory optimization

process. This allowed us to overcome the limitations of the

tree-like abstraction model currently used in the state of

the art to model and control systems involving loop closure

mechanisms. Through this process, we were able to achieve

15 Kg weight lifting motions in simulation and on the real

system. Thus, not only the payload capabilities are improved

using the constrained full model, but also the workspace of

the robot is better exploited. This feature was highlighted

in the weight lifting motion of 15 Kg, where neither of the

three tree-like abstraction models could successfully achieve

an optimal trajectory to reach the target configuration while

lifting the loads whereas the full model succeeded in this

task. This work allows us to demonstrate a well-known

theoretical property, that exploiting the closed loop kinemat-

ics constraints in the trajectory optimization process leads

to better trajectories for the series-parallel hybrid robots.

The closed loops were modeled using implicit constraints

at the acceleration level which are susceptible to numerical

inaccuracies. In order to ensure that these do not affect the



physical robot in a negative way, the resulting trajectories

were verified with an explicit solution of the constraints using

HyRoDyn software [32] before sending them to the robot.

Additionally, it was noted that tuning this kind of constrained

OCP requires selecting a suitable proximal parameter value.

This parameter is variable from task to task for the same

robot model. The adjustment of all hyper-parameters in the

constrained OCP is more sensitive than a classical OCP and

can be time consuming. The computational time of solving

a constrained OCP also increases significantly, making on-

line stabilization, including loop-closure impossible at the

moment. A bi-level optimization could be a solution to

achieve online trajectory optimization while respecting all

the capabilities of the robot. This approach should involve

different time horizons for each optimization level, separating

the resolution of the loop-closures from the minimization of

the cost model. To avoid such numerical and computational

efficiency issues, explicit formulation of loop-closures could

be implemented in the OCP. Furthermore, we would also

like to extend the HyRoDyn software to include trajectory

optimization in order to resolve the loop-closures constraints

in an explicit form.
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