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MoCaPose: Motion Capturing with Textile-integrated Capacitive
Sensors in Design-centric Loose-fitting Smart Garments
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Fig. 1. Overall MoCaPose concept from textile-integrated capacitive sensors and deep regression for pose reconstruction
towards design-centric smart garments.

We present MoCaPose, a novel wearable motion capturing (MoCap) approach to continuously track the wearer’ upper body’s
dynamic poses through multi-channel capacitive sensing integrated in fashionable, loose-fitting jackets. Unlike conventional
wearable IMU MoCap based on inverse dynamics, MoCaPose decouples the sensor position from the pose system. MoCaPose
uses a deep regressor to continuously predict the 3D upper body joints coordinates from 16-channel textile capacitive sensors,
unbound by specific applications. The concept is implemented through two iterations of prototypes to first solve the technical
challenges, then establish the textile integration through fashion-technology co-design towards a design-centric smart garment.
A 38-hour dataset of synchronized video and capacitive data from 21 participants was recorded for validation. The motion
tracking result was validated on multiple levels from statistics (𝑅2 ∼ 0.91) and motion tracking metrics (𝑀𝑃𝐽𝑃𝐸 ∼ 86𝑚𝑚)
to the usability in pose and motion recognition (0.9 F1 for 10-class classification with unsupervised class discovery). While
the sensor placement within the jacket is not fully arbitrary, the sensing requirements impose few constraints on the actual
fashion design. Overall, MoCaPose demonstrates that textile-based capacitive sensing with its unique advantages, can be a
promising alternative for wearable motion tracking and other relevant wearable motion recognition applications.

CCS Concepts: • Human-centered computing→ Ubiquitous and mobile computing design and evaluation methods;
• Computing methodologies→ Neural networks; Knowledge representation and reasoning.
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1 INTRODUCTION
Dynamic poses are fundamental sources of information in individual human activities and interactions. Fully
capturing dynamic poses requires information from all degrees of freedom of all joints in the upper or lower
body. Recent progresses from computer vision has led to systems that can robustly estimate full body dynamic
poses from monocular camera videos without special visual markers [93, 98]. In terms of solutions with wearable
sensors, most of the research focus on the intuition of inverse dynamics for pose reconstruction, for example,
calculating the pose from the joint acceleration with inertial measurement unit sensors (IMUs) [51] or angle with
proximity or stretch sensors [10]. Inverse dynamics requires reproducible, exact and mechanically stable sensor
attachment [86], despite recent attempts on IMU-based motion capturing in loose clothing [61]. The need for a
large number of sensing nodes firmly, exactly fixed to specific body locations makes wearable motion tracking
systems unsuitable for many real-life applications. This restricts further fashion-technology co-design towards
smart garments that can be welcomed by the broader public and professions, especially with soft textiles as
IMU sensors are rigid bodies. Problems such as error drifting also requires special algorithms which further
increases the computational complexity [3]. Consequentially, most established works were limited to sports or
rehabilitation analytic domains where it is acceptable to wear specialized sensing suits [12, 19, 77].
As a result, wearable systems, such as those aiming to track user activities throughout daily life situations

forego the dynamic pose information and instead depend on recognizing characteristic patterns in the signals
from isolated sensors (e.g. in the smart watch on the wrist) to match certain activity contexts [68, 76, 94]. While
such approaches have shown satisfying results in many areas in human activity recognition (HAR) and human
computer interaction (HCI), e.g. daily activities [30] and interactions [79, 100], health [8, 75, 83], sign language
[49], production and logistics [78], etc.; they fail to capture many relevant information and often struggle with
complex or subtle activities, particularly when intra-class or inter-subject variability is involved. There are strong
indication from the computer vision landscape that working with information on the motion capture level can be
beneficial in such situations [20, 36, 74], as from the human perspective, we rely on more intuitive visual cues
such as the natural movement of the body rather than the obscure sensor signals elusive to human intuition.
Capacitive sensing has received major attention in wearable sensing, mainly thanks to the sensor simplicity,

that the only sensing element required is conductive traces or patches, which can be easily integrated with the
fabrics of clothing [103, 104]. The sensing principle is also relatively easy to implement and has been widely
studied. However, capacitive sensing has been mostly used in proximity detection and classification tasks, such as
recognizing gestures or shape profiles [10, 13, 15, 34, 64, 95]. Our proposed method MoCaPose investigates using
capacitive sensing as an alternative to wearable motion capturing, that does not require individual sensors to be
fixed precisely according to a bio-mechanical model or rely on tight-fitting garments such as state-of-the-art
IMU-based motion capturing suits. On the countary, MoCaPose facilitates smart garments that fuse technology
and fashion, and can be worn in daily life settings.

1.1 Motivation
The intuition of solving motion tracking problems as mentioned above is usually placing the sensor directly
correlated with the node or joint that is being tracked, and inversely solve a bio-mechanical problem. In this
work, we introduce a paradigm shift that at the first glance, might be counterintuitive for motion tracking, but is
persistent in human activity pattern recognition tasks which have been dealing with different sensor placements
that might not be directly at the source of the motion [50]. We decouple the sensor placement from the points and
joints in the bio-mechanical system (e.g. body skeleton). Specifically, we use the multi-channel capacitive sensing
modality. The sensor signals might not be directly utilised to reverse-engineer the geometry information; however,
the signals are definitively influenced by the change in the overall 3D space geometry. This geometry-to-sensor
relationship indicate there might also be a definitive inverse sensor-to-geometry relationship. We utilize deep
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regression to model the relationship between the sensor signals and the pose joints, bypassing the problems of
complex 3D reconstruction or inverse dynamics with decoupled sensor placement and joints system.
This decoupling paradigm can largely benefit the wearable technology beyond the novel sensing modality

and deep learning algorithms. For activity recognition, moving from specific sensor signals of varying channels
and placements across different hardware prototypes, to the universal standard human pose system to describe
activities provides a common ground among the heterogeneity nature of wearable devices. Such a common
ground would help preserving knowledge from previous studies for the future studies. This also provides bridges
to trans-modality knowledge transfer with computer vision technologies.
For smart garment designs, our approach allows more cohesion during fashion and technology co-design.

For example, smart fashion designers can incorporate functional fabric patches into their designs that not only
consider the sensing technology but also aesthetics, garment structures and fashion trends. Then the deep
regression model can be trained or fine-tuned with data from the new design layout to realize motion tracking.
This changes the traditional smart wearable process where design is dictated by the requirements of technology,
to a design-centric approach that brings design and style forward with adaptive technology.

1.2 Hypothesis
Our approach can be summarized as the following hypothesis: there exists a complex yet definitive relation-
ship between the wearer’s body pose, and the multi-channel capacitive sensor’s values. This relationship is a
manifestation of the geometry of the body and tissues which influences the positioning and deformation of
the capacitors’ plates, and the dielectric’s micro composition inside the capacitors. Such a relationship can be
abstracted as a multi-input (pose joints) multi-output (capacitive signals) complex system. We currently lack
the necessary understanding to precisely model such a physics system at reasonable costs to either predict the
capacitive channels from poses or, inversely, reconstruct the poses from capacitive signals, especially when
the output sensor points are not physically placed at the input joint locations. However, we can leverage deep
learning, with sufficient observations data points of the system in sufficient states (poses and motions) to model
the behavior of such a system.

1.3 Novelty and Contribution
Our novel approach provides similar pose estimation results as state-of-the-art (SOTA) systems, but without
considering the complex inverse dynamics engineering. At the same time, it opens up more flexible possibilities
for smart garment designs. Through the deep interdisciplinary convergence of wearable sensing, smart textile
integration, deep learning, and computer vision, our contributions revolve around validating the above-mentioned
hypothesis:

(1) We developed two iterations of prototypes: the first iteration focused on building a viable sensing hardware
beyond the SOTA solutions, with the second towards a design-centric integrated smart fashion piece.

(2) To provide the validation data, we conducted one experiment with each prototype, in total containing 21
participants with 38 hours of recording, one of the larger datasets among the SOTA.

(3) The MoCaPose approach can predict poses from independent short time windows of capacitive signals
with a straight-forward yet appropriately designed deep convolutional regressor. From various statistical
and pose tracking metrics, we proved our hypothesis and placed our novel approach on par with SOTA
motion tracking methods from other modalities.

(4) We further validated the usability aspects relevant to smart wearables including classification tasks,
reducing channels, motion speed relevance, and interference.

(5) We open the access to our data, hardware design and the code to perform the core MoCaPose workflow
for new designs, to the wearable community to inspire future works in this direction.
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Table 1. Comparison of Related Work in Motion Tracking with Wearable Sensors and Capacitive-driven Activity Recognition

Study Sensing Modality and
Form Factor

Sensor and Tracking
Points

Algorithms Recognition Per-
formance

Tracking Performance Dataset
(p:participants)

DIP [43] IMUs 17 sensors for full body
pose

bi-directional RNN none 15.85° angular error 10 p + Total-
Capture

Teufl,
2019 [87]

IMUs 7 sensors for 7 joints
from the lower body

EKF, global translation and
inverse dynamics

none RMSE 2.28°– 2.58° 28 p

Boddy,
2019 [19]

IMU sensor (Motus-
BASEBALL TM)

1 forearm sensor for the
elbow baseball motion

proprietary none average 𝑅2 = 0.724, best
arm slot 𝑅2=0.975

10 p, 10 to 14
throws

TIP [46] IMUs 6 sensors for full body
pose

transformer model none root error 0.129 meters TotalCapture
(public)

HybridCap
[56]

IMUs and camera com-
bined

4 IMUs with 1 camera gated recurrent unit and in-
verse dynamics solver

none MPJPE 43.3mm AIST++ (pub-
lic)

EM-Pose
[48]

on-body EM field
transceivers

12 nodes for full body
pose

learnt gradient descent
with public dataset prior

none MPJPE 31.8mm, 13.3° 5 p, 36 min-
utes

Liu, 2020
[59, 60]

microflow sensor and
IMU on a wrist band

1 sensor for a single
joint angle

EKF, regression neural net-
work

none RMSE 0.4 ° 4 p

Atalay,
2018 [10]

capacitive strain sensor
on the knee

1 sensor for 1 knee joint statistical analysis none 𝑅2=0.997 1 p

PersiSense
[95]

capacitive ring-shaped
sensor

4 capacitive sensors on a
ring for all finger joints

LSTM based regression
model

none MAE 13.02° 17 p

Frediani,
2021 [34]

piezo-capacitive stretch
sensors

2 sensing strips on the
back of the trunk

statistical analysis none RMSE 8° ∼ 15° 5 p

C-Stretch
[7]

capacitive stretch-
sensitive sensor

2 sensors for transversal
neck rotation

statistical analysis none RMSE 5.86° 2 p

Zheng,
2018
[105]

capacitive 6 channels for forearm
motions

quadratic discriminant anal-
ysis (QDA)

16 motions 92%, 5
motions 98.7%

none 7 p

Bian,
2019 [17]

passive capacitive sens-
ing

3 sensors on wrist, calf
and in pocket

residual deep convolutional
neural network

63% for 7 exercises,
91% counting

none 11 p

MoCapaci
[13, 14]

capacitive sensors from
OpenTheramin

4 channels for 20 upper
body poses and gestures

Conv2D 97.17% none 14 p

Wong,
2021 [96]

capacitive textile sen-
sors

5 capacitive electrodes,
1 on each finger

bayesian classification 99% for 26 hand ges-
tures

none 10 p

TouchPose
[5]

capacitive touch screen capacitive touch screen
for hand pose

multi-task neural network finger detection
91.1%

20.7 mm depth error 10 p, 65,374
records

Ours multi-channel capac-
itive patches in 2
iteratively designed
jacket prototypes

16 channels, for 8 upper
body joints

deep convolutional regres-
sor, auto-encoder, gaussian
mixture clustering

79.2% F1 for 10
self-clustered
pseudo-classes
of poses and 90%
F1 for 10 pseudo-
classes of motions

𝑅2=0.892 (3D), 0.932 (hor-
izontal), 0.895 (vertical);
MPJPE 0.032 (pose nor-
malized), approx. 86mm ;
RMSE(P) approx. 89mm;
RMSE(A) 12.8°

21 p, 2 ex-
periments,
in total 154
recordings,
around 38
hours

Proc.ACM
Interact.M

ob.W
earable

UbiquitousTechnol.,Vol.1,N
o.1,A

rticle
.Publication

date:August2022.



181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

MoCaPose: Motion Capturing with Textile-integrated Capacitive Sensors in Design-centric Loose-fitting Smart Garments • 5

1.4 Paper Structure
Section 1 introduces the motivation and contribution. Section 2 reviews the related work from the aspects of
smart textiles, motion sensing and capturing with wearables, and capacitive sensing. Section 3 describes our smart
garment design process of Proto.1 and Proto.2 from the sensing hardware to the textile integration. Section 4
details the procedure of the data collection experiment for the two prototypes. Section 5 explains the algorithms
for the core pose estimation approach of MoCaPose, including data processing, establishing ground truth and the
deep convolutional regressor. In Section 6, we discuss the pose estimation results with the dataset of Proto.1, from
the signal level to the motion tracking metrics and statistical correlation. Section 7 presents the pose estimation
results of the improved Proto.2 with similar key metrics, together with some comparison with Proto.1 especially
on faulty signals and predictions. In Section 8, we evaluate our approach from various usability and practical
perspectives of human activity recognition and smart garment design. In Section 9, limitations and outlook
prospects are discussed with the focus on the wearable community. Section 10 concludes the entire paper.

2 RELATED WORK

2.1 Smart Textile Integration Techniques
As ubiquitous items, sensors integrated into clothing are always worn, and users do not need additional (hand-
held) devices [24]. To adapt the electronic components to the properties of the textile substrate, e.g. flexibility
and drapability, the electronic components or the sensing elements should also have textile-like properties if
possible. It therefore makes sense to use conductive textile materials as sensors. In addition to the properties that
match the substrate, this material has the advantage of wide area coverage and freedom of tailoring into desired
shapes. Techniques such as that proposed in [97] is easier and faster to implement than the conventional textile
processing techniques of sewing.
Other published papers use the integration of conductive textile elements at fiber level [102, 103], at yarn

level [4, 67, 84], or at surface level [10]. For the integration at fiber level, the conductive fibers are spun into the
yarn during the spinning process. In case of the integration at yarn level, conductive yarns are introduced into
the textile surface of the wearable using various techniques, e.g.: stitching. For the integration at surface level,
conductive fabrics can be cut into the desired shape and used as a textile sensor. This technique can be used with
or without a substrate during fabrication.

2.2 Motion Sensing and Capturing with Wearables
Pose tracking or motion capturing (MoCap) are usually implemented by computer vision methods including
digital cameras or depth sensor arrays. Because many methods including visual landmark detection, markers,
multi-camera, temporal dilation, optical flow, converge to provide high precision tracking results [31, 33, 72, 91, 93].
Computer vision solutions have several practical problems, however, including diverse clothes, arbitrary occlusion,
occlusion due to viewing angles in monocular camera settings, background, need of robust camera calibration
model in multi-camera settings, difficult to perform inference in the wild for multi-camera pose estimation, need
of time to set up, lighting conditions, etc.[82, 93].

Currently, most of the mature wearable pose tracking methods are based on IMU sensors [37, 69], with many
commercially available solutions for both general purposes and specialized applications [77]. Inverse dynamics is
the classical technology of pose reconstruction from wearable IMUs which is still being continuously improved
[21, 25, 61, 87, 106] with available open-source frameworks [6]. The pose is considered a bio-mechanical system
joined together by rigid bodies representing major body parts. Inertia and dynamic properties such as acceleration
and rotation from defined points on the bio-mechanical system can be used to derive the spatial positions of the
connected rigid bodies [12]. Error drifting is a major problem in pure IMU-based systems as the acceleration error
accumulates to the position errors with the progression of time. Both algorithmic solutions such as extended
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Kalman filters (EKF) [87], and hardware solutions such as sensor fusion with other sensors [59] are needed. A
method for resolving drift and instability problems of inertial measurement methods for limb motion detection
was proposed by Liu, et al. An IMU and an additional microflow sensor data was fused to gather precise velocity,
acceleration and attitude data by obviating mathematical integration before training an intra-limb coordination
neural network model [59, 60].
The motion capturing field from the computer vision society has built an archive of many publicly available

datasets, some of which contain multi-modal data including precision marker-based tracking systems, multiple
cameras, and even IMU sensors, such as AIST++ [53, 90] and TotalCapture [89]. With the wide availability of
millions of data points including synchronized IMU sensors and motion captures, wearable IMU-based pose
reconstruction has seen a major shift in the research directions. Instead of solving the inverse bio-mechanical
system approach, cutting edge deep learning methods such as recurrent or transformer models can leverage the
prior knowledge existing in the datasets and provide pose estimation results beyond what is possible through
inverse dynamics, especially in the error drifting problem [43, 46, 56]. In other words, the pose reconstruction
algorithm can learn the certain ways human moves from those datasets, and provide more reliable pose estimation.
The mean-per-joint-position-error (MPJPE) can be around 40mm or 15°[56, 63].

In the wearable sensing discipline, other sensing modalities were also investigated for recognizing or tracking
motions. Kaufmann, et al. used up to 12 electromagnetic (EM) field transceivers around the wearer’s body, to
estimate the pose with the help of prior knowledge from the public dataset AMASS[63] by learned gradient
descent, showing MPJPE of 31.8mm and 13.3°. However, the system is susceptible to EM distortion caused by
metal or electronic objects within 1.5 meters to the user. HybridCap[56] improved the tracking accuracy by
employing a hybrid solution fusing the data of a single camera and four wearable IMUs with 43.3mm MPJPE and
60 frames-per-second real-time performance.

2.3 Capacitive Sensing in Wearable, Ubiquitous and Mobile Computing
Capacitive sensing is well studied in wearable, ubiquitous and mobile computing, as the flexible nature of the
sensing element and the versatility to couple with various physical properties (e.g. touch, proximity, deformation,
etc.) enable an expansive landscape of possibilities of garment and gadget designs [9, 40, 62]. The sensing principle
can be categorized to measuring the variation of charge [18, 28] and the frequency [16, 29] caused by body
actions.
Charge-based capacitive sensing is relatively easier to implement, as the circuit only needs to measure the

current or voltage variation signal, which can be realized by common operational amplifiers (Op-amps) and
analog-to-digital converters (ADCs) with slow sampling rates. Choi, et al. integrated capacitive sensors inside a
driver’s seat, and showed statistical correlation between the voltage measurement and the drivers’ cardio and
body activities [27]. In [17], passive capacitive sensors were placed on three body positions (wrist, calf and in
pocket) to detect gym workouts exercises with a residual deep convolutional neural network. Al-Nasri, et al.
used two capacitive stretch sensors placed on each side of the neck and showed statistical correlation between
the measured voltage and the neck rotation angle [7]. CapGlasses [65], a sensing glasses prototype with several
passive metal capacitive electrodes placed around the frame and a transparent indium tin oxide (ITO) capacitive
plate covering the lens, demonstrated reliable recognition performance among 12 facial and head gestures.
It has been pointed out that frequency-based capacitive sensing is more robust against EM interference than

charge-based sensing in studies such as [64]. In [64] the circuit driver of the above-mentioned CapGlasses
prototype was upgraded from instrumentation amplifiers that measures current to a resonant circuit based on an
LC tank. This enabled the prototype to show robust performance while untethered from the ground, which is
important for smart wearable devices. Cheng, et al. [23] developed a neckband with conductive textile patches
driven by Colpitts oscillators to monitor nutrition intake. With 5 capacitive electrodes driven by 555 timers, one
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tied on each finger, 26 hand gestures could be recognized with Bayesian classification in [96]. In [39], 555 timers
were also used to drive capacitive proximity sensors to improve accelerometer-based daily activity recognition in
the form of a smartwatch.
Although frequency-based sensing requires more sophisticated resonant excitation signals and frequency

counting, modern integrated circuit (IC) technologies has already packaged most necessary electronic front-end
in miniaturized packages such as the recent chip models FDC1004 and FDC2214 (Texas Instruments, USA) [88].
Wilhelm, et al. integrated 4 passive capacitive electrodes driven by FDC1004 in a ring-shaped device PeriSense
placed on the middle finger to predict the finger angles with a regression model based on long short-term memory
(LSTM) [95], demonstrating 13.02° mean absolute error (MAE). Bian, et al. demonstrated a smart wristband with
4 single-end electrodes driven by FDC2214, which performs runtime gesture recognition with a lightweight
convolutional classifier in the micro-controller [15].
Atalay, et al. [10] used a capacitive strain sensor on the knee joint and showed strong correlation between

the bend angles and the capacitive values. While the method was performed on a single participant and a single
knee joint in lab settings, it reveals a promising idea that capacitive sensing may be scaled to estimate motions of
more body parts. Bello, et al. connected a theremin circuit to 4 capacitive textile antennas integrated inside a
MoCaBlazer prototype to recognize up to 20 different upper body movements with a deep convolutional classifier
[13, 14]. While MoCaBlazer was performing only classification for defined movements, the classification with
97.17% accuracy might have been supported by reproducible relationships between capacitive signals and the
body pose.
As further summarized in Table 1, the SOTA has shown a barrage of motion tracking with wearable sensors

and capacitive-driven activity recognition applications. However, to the best of our knowledge, no previous work
has shown a viable solution for continuous upper body pose estimation like our work, which can be brought on
par with other modalities such as computer vision and IMUs. Moreover, our approach welcomes design-centric
smart garment integration as the sensing pathes are not bound to precise locations, which is generally not a
concern of the SOTA solutions in wearable pose estimation.

3 SENSING HARDWARE AND SMART GARMENT DESIGN
We adopted an iterative technology-fashion co-design approach during the implementation of the hardware to
validate our hypothesis. Two prototypes, Proto.1 and Proto.2 were designed consequentially. Table 2 shows a
comparison of key aspects that we considered while choosing the capacitive sensing modality as opposed to
IMUs for designing our prototypes, that could provide reference for consideration for future garment designs. In
general, IMU based pose estimation has a strong algorithmic background support from inverse dynamics, EKF to
the recent deep inertial posers. But the IMU modality is still not as flexible for textile integration on the similar
level as smart textile based capacitive sensing, despite the recent attempt in loose fitting garments [61].

An alternative approach is the use of textile sensors. The use of textile materials as the carrier material (garment)
and as the sensor material offers several advantages. Due to the same or similar fiber-based structure, similar
properties can be derived in terms of elasticity, drapeability and breathability. These properties provide the basis
for a less noticeable adaptation of the textile sensor on the carrier material, compared to conventional sensors.
The use of textile-based sensors increases user acceptance, because the wearing comfort is not impaired even
with clothing that is close to the body. Furthermore, damage to the carrier material can be prevented. Due to
the textile structure of the sensor, processing with textile-typical machines and processes is possible to a large
extent. The size and shape of textile sensors can be individually adapted, so that large-area or spatially resolved
detection is also possible. [58]
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Table 2. Characteristic Differences Between IMU-based and Capacitive-based motion tracking wearables

Aspects On-body IMU Network Capacitive (MTCP)
Outputs acceleration, angular velocity, orientation capacitor value, or change in charge or frequency
Channel dependency 3 axis interrelated per sensor independent
Calibration factory calibration and runtime initial calibration

(e.g. rotation transformations between nodes)
not needed (all channels are normalized during
pre processing)

Influence factors value depends on motion proximity, dialectric, plate deformation
External interference susceptible to physical impact on the sensor rigid

body
physical contact from conductors (e.g. human
body) on the capacitive patches

Error sources transient, and error drifting with time progres-
sion

transient within independent short time window

Motion tracking algorithms inverse dynamics, or deep learning without
mechanics knowledge (e.g. transformer inertial
poser)

deep convolutional regressor (this work)

Pose prediction time window progressive sliding windows with context (tem-
poral integration)

independent short time window

Textile Integration formats rigid attachments or buttons soft conductive fabric patches, traces or threads
Attachment normally needs to be precisely fixed to the pre-

defined locations, even glued to the skin in some
cases

can be integrated with the fabric of different gar-
ment designs

Routing power, ground and digital bus lines (at least 4 in
total) from every node to the central controller

only a single unshielded line for connecting every
conductive patch to the CDC

3.1 Multi-channel Capacitive Sensing Implementation
Among the existing works, high channel count capacitive sensors can be implemented in a matrix or honeycomb
structure [35, 54], which increases the sensing nodes by multiplying the excitation and measurement channels;
or through time-interleaving multiplexing which reuses the same channel circuit for different electrodes [70].
However, these implementations do not fulfill our requirement due to drawbacks such as slower sampling rate
per sensing node, crosstalk between channels or the physical routing complexity between channels. We thus
require a sensing electronics system capable of driving multiple individual channels that are highly robust against
interference and matching the sampling rate of the video frames (usually 30 Hz). The sensing electronics should
also have as little physical footprint as possible and can operate wirelessly as the requirements from smart
garments.
As we discussed in Section 2.3, the most promising option for our design is the FDC2214 4-channel 28-

bit capacitance-digital converter (CDC). It has many industry-leading features such as adjustable low power
consumption and high sensitivity [88]. The features that interested us the most are that it has strong robustness
against interference since it operates with the frequency as we mentioned in Section 2.3 and supports both
single-end or differential sensing modes. It integrates the entire analog front-end of 4 channels to a miniaturized
package, requiring only one pair of external capacitor and inductor for every channel. We use the single-end
mode as it is easier from the garment geometry design perspective; differential mode requires pairs of conductive
patches which might complicate and restrict the design process. We configured it to sample at 30Hz, and with
an external inductor of 18uH and capacitor of 33pF. The inductor and capacitor forms an LC oscillation circuit,
which the CDC compares with the main 40MHz clock input to set the excitation frequency. These two passive
components are needed only to set the excitation signal’s frequency, thus small and low-cost selections (e.g. 0603
footprint and 20% tolerance) are sufficient, and other values are also possible. Our configuration operates with an
average frequency of 13.7Mhz, with variations of approximately ± 1MHz from channel to channel caused by the
passive components’ manufacturing tolerance.
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(a) Version 1 in Proto.1. (b) Version 2 in Proto.2.

Fig. 2. Capacitive sensing modules and enclosure.

We implemented our custom data acquisition unit (DAU) as shown in Fig. 2. We used the Feather Sense board
(Adafruit Industries) with the nRF52840 (Nordic® Semiconductors) as the microcontroller unit (MCU). Two
FDC2214 CDCs were connected to the same MCU through the I2C bus with two addresses. Every DAU thus
supports 8 individual single-end capacitive channels, or 16 differential channels. The realtime sampling data is
sent to receiving devices via Bluetooth Low Engergy (BLE), which is compatable with a wide range of devices
from smartphones and computers to other custom embedded systems. In our study, we use two DAUs to drive 16
single-end conductive textile patches as capacitive plates in a prototype. Both DAUs can be connected to the
same computer via BLE for synchronized data logging.

Fig. 2a shows the initial testing module of the DAU, which we used in Proto.1. It included two custom-designed
FDC2214 breakout modules which were connected to the MCU via jump wiring on a prototyping breadboard. For
Proto.2, we improved the design shown in Fig. 2b by integrating two FDC2214 CDCs into the backside of the host
printed circuit board (PCB) designed in KiCAD. We tested the power consumption of the DAUs with a HM7042-5
power supply (Rhode & Schwarz®) set to 3.70 Volt output with 0.100 Ampere fuse protection. During testing, the
DAUs were fully operational, connected to all 8 sensing patches in the prototype while streaming data with BLE.
The power consumption of a single DAU from Proto.1 is between 0.018 Ampere; and 0.016 Ampere in Proto.2.
With a LiPo battery of 250mAh capacity, the low power consuming DAU could operate for more than 12 hours
continuously. A custom-designed 3D-printed enclosure with screw-less clipping mechanisms protects the DAU.
To ensure better fit, the PCB with components were modelled together with the 3D enclosure in Audodesk®
Fusion 360™. We added usability features such as improved battery charging behavior, standard pin-headers
for sensor connections, and a latch-action power switch that sits flush with the enclosure when turned on and
extrudes when off.

3.2 Proto.1: Proof-of-concept
The first prototype was designed to test the hypothesis that multi-channel capacitive sensors in a smart clothing
can be used to reconstruct body poses. We thus referred to the pose joints system from the Human 3.6M dataset
[45], which considers hip, spine, thorax, shoulders, elbows and wrists of the upper body. We empirically placed 8
sensor patches on either side of the jacket as shown in Fig. 3a, based on observations that upper body motions
should cause as much displacement among the patches as possible. For either side, at the shoulder joint, we
placed three trapezoid shaped patches to cover the upper, front and back side (CH0, CH1, CH2). One long stripe
covered most of the length of the arm through the outer elbow (CH3). Another long stripe was placed from the
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(a) Proto.1.

(b) Proto.2.

Fig. 3. The smart textile schematic and photos of both prototypes.

chest to the waistline (CH4). Two shorter and wider patches were placed on the inner side of the triceps (CH6)
and lower arm (CH5). And one wide, long stripe was placed at the back (CH7).
For the functional sensor patches, we selected off-the-shelf conductive fabrics with nickel or copper threads

and coating, which were typically sold for blocking EM signals, such as those on the linings of some wallets or
car-key bags. The patches were fixed to a bomber-style jacket of men’s L size by simple stitching. We connect
the sensor patches to the DAU’s single-end inputs by standard unshielded electrical cables of 28 American Wire
Gauge (AWG). Since the conductive fabrics do not attach to solder, we used double-sided conductive tape Tesa®
60372 to establish stable electrical connection between the fabric and the cable. The capacitive patches were
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(a) the layer stack of the protected textile capacitive
sensor plate in the second prototype

Conductive Copper Fabric

solder joint Cable

(b) the layering technique of textile integration in the
second prototype

Fig. 4. Illustrations of textile integration techniques in Proto.2.

exposed and all other parts from the sensing functions, including the cables, DAUs and LiPo batteries were
attached to the jacket with Tesa® Eco Repair fabric tape.

3.3 Proto.2: Smart Textile Integration
The second prototype was a design-centric garment piece that fuses design and functionality as shown in Fig. 3b.
It was built on a slicker jacket template with breathable mesh materials. With Proto.2, we focus on a more
applicable jacket design ready for everyday usage. Therefore, DAUs are positioned on the center back to ensure
optimal routing paths from each sensor patch, causing the least disturbance in the wearability of the jacket.

A suitable layer system was developed to place the textile sensors on the surface of the garment as shown in
Fig. 4a. The conductive elements of the capacitive sensors and conductor tracks are made of conductive silver-
plated fabric [2]. To create the capacitive sensors, the fabric is tailored into patches and 5mm wide connection
traces to the DAUs(Fig. 3b). The garment fabric schematic followed the similar design for the first prototype, but
also included aesthetic aspects. The exact dimensions and placement of both prototypes are listed in Table 5. The
conductive panels and traces are prepared with double-sided adhesive material 1. The adhesive material used is
highly flexible and transparent. Due to its high flexibility, the material matches the typical textile properties of
the underlying textile substrate.
The process of integrating the layer stack onto the garment is illustrated in Fig. 4b. First, the positions of

the conductive patches were determined, and then gently fixed with an iron. Then the conductive traces were
ironed onto the garment to route from the patches to the designated DAUs. There was sufficient overlapping area
between conductive traces and conductive panels. Only then were the insulation fixed with a thermal transfer
press, thus creating a strong bond between the textile carrier material and the layers of the textile sensor patch
construct, as well as stable electrical connections with overlapping conductive textiles. The layers of the sensor
were covered with thermotransfer foil as protective insulation. After this process, the sensor patch is firmly
adhered to the textile and can only be separated again with strong heat of approx. 90 degrees Celsius.
Compared to the hand stitching in Proto.1, the method of thermal transfer pressing used in Proto.2 is more

efficient and durable [97], and all the layers were tightly bond in one textile stack together with the garment’s
fabric. In addition, compared to Proto.1, replacing cables with conductive textile traces with insulation creates
connections that are more robust against tearing and pulling of the garment piece. To connect the conductive

1https://www.lotustransfers.com/WebRoot/SageSMB/Shops/Lotus-YourOneStopShopForTextilePrinting/MediaGallery/Info_PDF/Products/
DatasheetFolien/SISER/PS-Adhesive-EasyWeed-Adhesive/PS-ADHESIVE-EASYWEED-ADHESIVE-DE.pdf

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: August 2022.



510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

12 • Anon. Submission Id: 3574

traces to the DAUs, small connecting cables of 30 AWG were soldered onto the terminal of the conductive traces.
A conductive copper textile stripe was used as a bridge between the conductive traces and the cables, as the
textile material used for the conductive traces and patches were not suitable for soldering.

4 EXPERIMENT DESIGN
To validate our approach and hypothesis, we designed an upper body motion capturing experiment which
would provide synchronized video and capacitive data from our MoCaPose jacket prototypes. SOTA marker-less
computer vision models were used to extract pose sequences from the video of a smartphone’s monocular
camera, that are also synchronized with the rest of the data sources, as attaching additional markers is not
easily compatible with custom smart garment designs. Being able to gather the ground truth via commercial
smartphone cameras also simplify the scalability and reproduction requirements of our approach. The purpose of
the experiment was to introduce as many variations of poses and motions as possible, to provide observations of
different system states of the multi-input multi-output system described in Section 1.2.

The experiment was set in a spacious room, where the participant would stand in front of a white wall wearing
the jacket prototype and follow along videos that showed various movements. The participants were instructed
that they did not have to follow the motions from the videos exactly, but rather perform them in the most natural
way for themselves. That is because the primary goal of our approach is to continuously track different poses
rather than to classify exact gestures. The instructive videos themselves were composed after discussion of typical
activities related with the upper body, which were segmented into two parts as listed in Table 4. The whole
protocol was followed for every recording session and participant. Additionally, we gathered body measurements
and their feeling about the fitting of the jacket to ensure a balanced set of participants representing different
body sizes. The participants gave informed consent in accordance with the policies of the Ethics Team of the
[Redacted], which approved the experimental protocol. More details for reproducible purposes are introduced in
Appendix A.

In total, our experiments were divided into two phases:

• The first phase was to gather enough data to verify our hypothesis with the first proof-of-concept
prototype. We have recruited 21 participants for this phase, consisting of eight women and 13 men.
We recorded on average six sessions per person, with some participants recorded less or more sessions
depending on their availability. Overall, we conducted 118 recording sessions with a total of 29 hours.
The set of participants has the following body dimensions: the height in a range of 170cm to 189cm with
a median of 180cm; the shoulder girth in a range of 95cm to 128cm with a median of 115cm; the bust girth
in a range of 80cm to 105cm with a median of 93cm; the waist girth in a range of 59cm to 112cm with a
median of 82cm. 14 participants reported comfortable fit and seven reported loose fit wearing the jacket.

• The second phase was to validate the second prototype with better textile and electronics integration. Six
participants from the participants pool of the first phase were invited back for this phase, consisting of one
woman and five men. Each of them recorded six sessions, in total 36 recording sessions and cumulatively
9 hours of data.

In either phase, both instruction videos were played for every participant.

5 POSE TRACKING WITH DEEP REGRESSION
The core algorithm that drives the MoCaPose jacket to perform upper body pose estimation from multi-channel
capacitive signals is a deep convolutional regressor. Fig. 1 summarizes the core workflow of training the deep
regressor.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: August 2022.



557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

MoCaPose: Motion Capturing with Textile-integrated Capacitive Sensors in Design-centric Loose-fitting Smart Garments • 13

5.1 3D Pose Ground Truth
The ground truth of the dynamic poses were extracted from the experiment videos by a computer vision pipeline
with public access state-of-the-art models. First, every video frame was processed by the Detectron2 library [98]
with its pose estimation model Keypoint R-CNN, which generates 2D poses according to the 17-keypoint pose
system based on the COCO dataset [57]. Then we used VideoPose3D [71] to interpolate the temporal sequences
of 2D poses into 3D poses with another 17-joint kinematics system based on the Human 3.6M dataset [45].
VideoPose3D was selected because the model leverages the time domain to interpolate the depth information
from 2D poses, which has been shown to provide superior 3D estimation than other models [93]. Our ground
truth for the 3D pose was thus the output of VideoPose3D.
The poses generated from this pipeline were scaled with the video frame. Thus, the sizes of the skeleton

and bones were influenced by how tall the person is, and how close they were to the camera. To reduce such
variation and have all the poses from the recording correspond to a relatively stable scale across different persons
and recordings, we normalize the joint coordinates with the following process. First, within each recording, we
calculate the average length 𝑎𝑣𝑔(𝑏𝑜𝑛𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑠) of the bones of hip-spine, spine-thorax, left-right-shoulder, left
shoulder-elbow, right shoulder-elbow, left wrist-elbow and right wrist-elbow. Then the pose joint coordinates are
normalized according to the following formula:

𝐽𝑜𝑖𝑛𝑡𝑛𝑒𝑤 (𝑥,𝑦, 𝑧, 𝑡) = (𝐽𝑜𝑖𝑛𝑡𝑜𝑙𝑑 (𝑥,𝑦, 𝑧, 𝑡) − 𝐻𝑖𝑝 𝐽𝑜𝑖𝑛𝑡𝑜𝑙𝑑 (𝑥,𝑦, 𝑧, 𝑡)) /(4 × 𝑎𝑣𝑔(𝑏𝑜𝑛𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑠)) (1)

So that the normalized poses are centered at the hips, and scaled according to the average value of the above
mentioned six bones.
Since our prototype only covers the upper body, we remove the joints that are below the hip and above the

neck and use hip as the center point (0.5, 0.5, 0.5) in the range between [0, 1] of the 3D space. In the end, 8 joints
were considered: {Spine, Thorax, Left Shoulder, Left Elbow, Left Wrist, Right Shoulder, Right Elbow, Right Wrist},
which we use as the ground truth for the pose estimation.

The pose normalization also provides the approximated scaling from the normalized relative unit to the absolute
meter measurements, even though the pipeline does not provide absolute distances. We select several participants
and compare their shoulder width measurements with the normalized pose joints and decided the global scaling
factor from the pose coordinates to meters to be 1 unit = 1.28 meters. However, since this pipeline was not
calibrated to provide precise absolute distance measurements, and our approach is aimed towards wearable
motion pattern sensing in HAR where relative units typically suffice; we refer primarily to the normalized units in
presenting the results, unless when explicitly mentioned otherwise. The approximated meter unit is referred to in
further discussions on the usability and comparison with the state-of-the-art. Furthermore, since the VideoPose3D
has a Mean Per Joint Position Error (MPJPE) of 0.046m, we will add this error to our results in approximated
distance error results. Thus errors (such as RMSE) in our normalized scale can be approximated to distance scale
of meters with the following conversion:

𝐸𝑟𝑟𝑜𝑟𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐸𝑟𝑟𝑜𝑟𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 × 1.28 + 0.046 (2)

5.2 Capacitive Data Pre-processing
The capacitive sensing chip FDC2214 in our prototype provides very high signal quality which does not require
extra signal conditioning. In rare conditions, we observed gradual drifting during a recording session, of which the
trend-line approximates a straight slope. Thus, we remove such drifting by subtracting the trend-line determined
by 1-degree polynomial fitting, which also centers the signal around zero. The capacitive values are essentially the
frequency. And in our case, we have fixed excitation frequencies below 2MHz for the channels, we normalize all
sensor values by dividing with 2000000 (2MHz) then plus 0.5, to place the values in the range of [0, 1]. In the first
prototype, there were rare faulty peaks in the sensor values due to unstable connected and exposed conductive
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patches. We removed those anomalies with outlier removal by manually setting the percentile threshold from
observing the data. In the second prototype, however, with improved textile integration and isolation, neither
drifting and outlier removals were observed.

Fig. 5. The model architecture of the MoCaPose deep convolutional regressor.

5.3 Deep Convolutional Regressor
The appropriately designed yet simple core regressor shown in Fig. 5 takes the task of modelling the complex
relationship between the dynamic capacitive sensor signals and the wearer’s body poses which we introduced
in Section 1.2. We consider a transformation from temporal sequences of multiple capacitive channels from a
short time-window to the pose at the end of the window. The time window was selected as 32 samples for the
ease of temporal pooling, equivalent to 1.07 seconds. The step between adjacent time windows is 2 samples.
However, different from IMU-based deep inertial poser solutions such as [43, 46], where the model requires
sequential input of the sliding windows; the windows in our approach are independent from each other. The
model generates prediction on individual windows alone and does not require recurrent operations with previous
windows. Since the capacitive channels were placed symmetrically between the left and right side of the jacket,
we also incorporate this placement into the neural network design by separating the capacitive channels into two
dimensions. The first dimension of 8 represents the placement (e.g. front shoulder, etc.) and the second dimension
of 2 represents the left or right side. Thus, the input to the model is shaped as (32, 8, 2) for every data point. For
the output, we consider pose estimation of the 8 joints in the upper body in the 3D space (8, 3).
Our design policy for the deep regressor is that it shall first combine the time, sensor channel and side

information into a single layer, then compress the channels of information to the desired output. The regressor
should hold enough information capacity to model the multi-input multi-output complex system as we described
in Section 1.2. And with enough observations of the system, the training progress would optimize the learnable
parameters to best approximate such system.
The deep regressor first use 3 iterations of 2D convolutional and 2D average pooling layers, considering the

last dimension of left and right sides as channels of the layer. We consider anisotropic kernels as the time and
sensor placement channels are different physical concepts. For the time dimension, we use a convolutional kernel
size of 5, in combination with the following 2D pooling size of 2. For the sensor placement dimension, we use
kernel size of 8 so that all sensor channels are considered in the input of the following layer, and without pooling
on this dimension (pooling size 1). The first temporal dimension of 32 is gradually reduced to 8, same as the
capacitive channels. Then we use isotropic pooling of (2, 2) and another 2D convolutional layer with a kernel of
(4, 4) and 64 filters. Till this point in the network, all the temporal and spatial information from the input are
compressed into an interrelated tensor of (4, 4, 64), where time and space are no longer isolated from each other.
We thus reshape this tensor to (16, 64), essentially flatten the first two dimensions. Then we use several layers
of 1D convolution to narrow down the information channels. Specifically, the dimension of 16 is reduced to 8
(representing 8 joints in the upper body) by 4 convolutions with a kernel size of (3) without padding; and the
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filter channels of 64 is gradually reduced by less filters in each consecutive layer. Ultimately the 1D convolutions
reach the output of (8, 3) for the pose coordinates.

6 POSE PREDICTION QUALITY WITH PROTO.1

6.1 Signal Examples
Fig. 6 shows some examples of the time sequences of the capacitive signal, video-extracted poses, MoCaPose
predicted poses and the errors between prediction and ground truth. The ’3D pose ground truth’ row of subplots
indicates the participant’s movement as extracted from the video recording. We can observe that the normalized
multichannel ‘capacitive sensor data’ change in accordance with the wearer’s motion. This is further reflected
in the ’Predicted 3D pose from the capacitive sensors’. The subplots at the bottom row are created from single
time steps in the ‘3D pose’ subplots (the 3D coordinates are projected onto the front-facing 2D plane). Overall,
Fig. 6 shows the first evidence that our approach can successfully extract 3D poses from multi-channel capacitive
signals from Proto.1 (Fig. 3a). In the remainder of this section, we further investigate the results representative of
the entire dataset.

6.2 Motion Capturing Specific Results
We converted our results to multiple motion tracking specific metrics used from state-of-the-art as listed in
Table 1 thus to investigate the precision of the joint tracking results. First of all, the standard Mean-Per-Joint-
Position-Error (𝑀𝑃𝐽𝑃𝐸) was used, defined as:

𝑀𝑃𝐽𝑃𝐸 =

∑𝑁
𝑝=1

(∑8
𝑗=1

(𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ) − ( ¤𝑥 𝑗 , ¤𝑦 𝑗 , ¤𝑧 𝑗 )

2

)
8𝑁 (3)

where 𝑗 denotes one of the 8 joints in the upper body; 𝑝 represents a single pose from the dataset 𝑁 ; (𝑥,𝑦, 𝑧) are
the predicted pose coordinates in the horizontal, vertical and depth directions; and ( ¤𝑥, ¤𝑦, ¤𝑧) are the corresponding
ground truth.
To compare with some other related work, we also converted our results to root-mean-squared-error of the

joint position coordinates 𝑅𝑀𝑆𝐸 (𝑃) and angles 𝑅𝑀𝑆𝐸 (𝐴). We also converted the𝑀𝑃𝐽𝑃𝐸 and 𝑅𝑀𝑆𝐸 (𝑃) values
from the normalized pose scale to the meters according to Eq. (2) which considers the inherent ground truth
error from the 3D video pose extraction pipeline.

During the training process of the deep convolutional regressor, we used mean absolute error (MAE) as the loss
function and early stopping metric, as it is provided by the Tensorflow framework and is common in regression
training tasks. Optimization with MAE while inspecting the results with MPJPE further avoids overfitting in our
case.

We first break down the results to separate joints. Fig. 7 shows the per joint results with the regressor learning
3D coordinates. Table 3 lists all of the above-mentioned metrics for every joint.
We can observe that the errors of the corresponding joints from the left and the right sides of all cases are

symmetrical. The prediction errors of the joints at the torso, including the spine, thorax and shoulders, are
significantly smaller than the wrist. The elbow joints also have higher prediction error in the 3D space. A cause
might be that the 3D pose is interpolated from temporal sequences of 2D poses by the VideoPose3D model, and
thus the depth information itself might not be accurate. This may be exacerbated by the fact that the joints on
the arms have more range of motion on the depth direction compared to the torso in our experiment, which can
also be observed from 𝑅𝑀𝑆𝐸 (𝑃) and 𝑅𝑀𝑆𝐸 (𝐴). However, if we consider the error proportionally with the range
of motion of the specific joint, we can see in Fig. 7b that the joints on the arm are comparable with the other
joints in terms of the error-range ratio.
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Fig. 6. The data examples from participant 1 including the input to the deep regressor - capacitive signals; ground truth and
prediction of the regressor output - 3D poses; and the mean-absolute-error (MAE) between the prediction and ground truth.
The Y axes are relative scales after normalization.

Fig. 8 shows the MPJPE per participant in both leave-session-out (LSO) and leave-person-out (LPO) cross-
validations. First of all, the average MPJPE of all participants is 0.031 for the LSO and 0.033 for the LPO. Consider
the scaling factor of meters and the VideoPose3D inherent error in Eq. (2), this is approximately 86mm and
88mm. For most participants, there is a slight performance degradation from LSO to LPO, which is expected as
the model is predicting on the data from a stranger. However, this degradation is not significant considering
both the magnitude of MPJPE values and the actual range of the joints in the pose. There are also no observable
correlation between the fit of the jacket and the prediction performance. Thus, the per person results demonstrate
our MoCaPose method remains robust when new users are being tested.

6.3 Statistical Correlation
Fig. 9 presents the results of the entire dataset with Proto.1 in the form of scatter plots between the predicted
joints and the corresponding ground truth with the LPO condition. We can observe the clusters are mostly on the
line of the diagonal, which represents a match between the prediction and the ground truth. In the horizontal
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(a) The MPJPE represented by the diameter of the blue
spheres, scaled with the pose system.

(b) The MPJPE-range ratio represented by the diameter
of the golden spheres, scaled of 1 is indicated at the
bottom.

Fig. 7. MoCaPose pose estimation results per joint in the 3D space.

Table 3. MoCaPose Results from Proto.1 According to Various Motion Capturing Specific Metrics

Metric Spine Thorax L-shoulder L-elbow L-wrist R-shoulder R-elbow R-wrist All

MPJPE-LSO 0.016 0.021 0.021 0.037 0.065 0.021 0.038 0.068 0.031
MPJPE-LPO 0.017 0.022 0.022 0.039 0.069 0.022 0.040 0.071 0.033
MPJPE-LSO (m) ∗ 0.067 0.072 0.073 0.093 0.130 0.073 0.094 0.133 0.086
MPJPE-LPO (m) ∗ 0.068 0.074 0.075 0.096 0.135 0.075 0.097 0.136 0.088

RMSE(P)-LSO 0.017 0.018 0.018 0.024 0.048 0.019 0.026 0.050 0.033
RMSE(P)-LPO 0.018 0.019 0.019 0.026 0.050 0.020 0.028 0.052 0.036
RMSE(P)-LSO (m) ∗ 0.067 0.070 0.069 0.077 0.108 0.070 0.079 0.110 0.089
RMSE(P)-LPO (m) ∗ 0.068 0.071 0.071 0.079 0.110 0.072 0.081 0.112 0.091

RMSE(A)-LSO (°) - +4.446 9.362 19.074 - 9.470 20.068 - 12.801
RMSE(A)-LPO (°) - +4.828 9.713 19.938 - 9.835 21.327 - 13.479
+ Averaged between the Spine ∼ Thorax ∼ L-shoulder and Spine ∼ Thorax ∼ R-shoulder
∗ Approximated to absolute meters including the ground truth error according to Eq. (2)

subplot of Fig. 9 specifically, we can also observe that the prediction performance is evenly distributed between
the left and right side of the jacket prototype.
Several clusters also exhibit the behavior of concentrations on a vertical direction centered at the cluster,

for example, in the 3D subplot of Fig. 9 of Spine, Thorax, Left and Right Shoulders. This means for various
actual positions of the joint, the regressor predicted them over-conservatively at the usual positions. These usual
positions of the above-mentioned joints compose the normal relaxed up-right torso frame, which occupy a larger
majority of the dataset. A lack of sufficient variations of these joints to train the regressor model might have
caused the error in the predictions. Such over-conservative predictions are not obvious for the other joints,
which might be contributed by that these joints do not have a typical position in our dataset. In other words, the
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Fig. 8. The MPJPE values of individual participants in LSO and LPO cross-validations, scaled to the normalized pose. Lower
is better. Green on the participants’ ID indicates a comfortable fit and red indicates the jacket was too loose.

participants were standing in an up-right position where their torso and shoulders were mostly limited in small
ranges of motion compared to the arms.
To quantify the performance of pose estimation, we use the standard statistical method, coefficient of de-

termination or 𝑅2 value, which is common in the relevant literature [11, 19, 73]. According to the literature,
the 𝑅2 values are usually defined as three levels: weak (𝑅2 ∈ [0, 0.5)), moderate (𝑅2 ∈ [0.5, 0.7)) and strong
(𝑅2 ∈ [0.7, 1]) correlation. We fit a linear regression model for each of the scatter plots in Fig. 9, the resulting 𝑅2

values are: 0.8230, 0.9145, 0.8344, 0.5133. This shows our approach predicts the poses from the 3D space, x and y
direction with very strong correlation from the ground truth, especially the horizontal direction with the 𝑅2 over
0.9. On the depth direction, however, the correlation is relatively moderate. This might be the result of several
factors. The depth information is beyond the video frame and is interpolated by the VideoPose3D model from the
temporal sequence of poses, which might introduce more error. The motion in the depth direction of a person is
limited compared with the other two dimensions, which can be observed in the depth distribution as the major
center cluster is the joints from the torso, and the smaller cluster closer to the origin is joints from the arm, as in
most cases only the arms might move closer to the camera during the experiment. But we argue that in many
application scenarios of human activities and interactions, the depth information is the least relevant compared
to the two frontal dimensions, as one can distinguish activities using 2D poses or through a monocular camera.

7 SCALABILITY VALIDATION WITH PROTOTYPE 2
With the outcome of the deep regressor from the concept validation dataset with Prototype 1 demonstrated in
Section 6, we further validate if the hypothesis of Section 1.2 would generalize to a second prototype following
appropriate smart textile integration techniques described in Section 3.3. As mentioned in Section 4, 6 out of the
21 participants from the Proto.1 experiment were invited back to record 6 sessions each with Proto.2 following
the same experiment prototol. We primarily focus on the MPJPE of the joint coordinates which is a common
metric in pose estimation as we listed in Table 1.
To establish baselines for comparison, we considered the following aspects:
(1) The leave-session-out (LSO) and leave-person-out (LPO) results of the dataset from Proto.1 from Section 6.
(2) The LSO result of training and validating the deep regressor with only the same six participants from

Proto.1 dataset.
(3) The best regressor model trained from the dataset of Proto.1 directly performing inference prediction

with the dataset of Proto.2 without further training (Inference).
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Fig. 9. The scatter plot of prediction and ground truth pose joint coordinates in the cases of vector norm to the origin in
the 3D space, and the horizontal, vertical and depth directions separately. The density and transparency were adjusted to
differentiate overlapping clusters from different joints.

(4) The same model architecture trained from scratch with the Proto.2 dataset following LSO and LPO
validations (Vanilla).

The experiment of 21 participants of Proto.1 provides two forms of knowledge: the model weights of the
trained deep convolutional regressor and the training data itself. We thus consider several approaches for passing
this knowledge from Proto.1 to Proto.2 through transfer learning which has shown effective in sensor-based
activity recognition [52, 85]:

(1) Transfer 1: model weight. The best model weight was loaded first to initialize the weight, and then the
model is trained again with the dataset from Proto.2.

(2) Transfer 2: data of the 6 participants in the Proto.1 dataset. The last four recordings from the Proto.1
dataset were selected since two of them recorded 4 and 5 sessions only. And we do not intend to overwhelm
the new data with the old data.

(3) Transfer 3: both model weight and the data of 6 participants from the Proto.1 dataset.
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(4) Transfer 4: both model weight and the entire dataset of 21 participants from the Proto.1 dataset.

Fig. 10. The MPJPE values of the Proto.2 validation results, scaled to the normalized pose. Lower values are better.

Fig. 10 shows the comparison among all the validation approaches of Proto.2. First of all, the baseline without
any knowledge of Proto.2 has the worst performance, with an average MPJPE of 0.074, more than twice that of
the Proto.1 results, equivalent to 0.14m. This is still on a similar level of magnitude with the work such as [46]. As
there is no training with the new data involved, the result can still be considered significant. Across all the results,
the trend that the joints on the elbow and wrist has higher median RMSE continues. However, as we mentioned
in Section 6, this is also related to the fact that the hands had significantly higher ranges of motion compared
with the torso in the dataset. Then comparing all the knowledge transfer results, only Transfer 2 has similar
results as the Vanilla method in both the LSO and LPO validations, with the remaining offering worse results. At
last, the best result from Proto.2 is on par with the Proto.1, which has significantly more data samples (more than
3 times the participants and the total recording duration). While we compare with the LSO-6 result, generated
by training the deep regressor with the same 6 participants in the Proto.1 dataset, Proto.2 shows significant
improvement. This may be the result of better textile integration techniques which offers much better stability.
As the Vanilla method does not require any prior knowledge from Proto.1, this hints that for a new design, only
the new data is sufficient to train a MoCaPose deep regressor, making it easier for continued adaptation.

Fig. 11. The scatter plot of prediction and ground truth pose joint coordinates in the cases of vector norm to the origin in the
3D space, horizontal and vertical directions separately.

With the best performing method, Vanilla LSO, the 𝑅2 values of the 3D vector length, and in the horizontal,
vertical and depth directions are 0.8916, 0.9323, 0.8950, 0.5676 respectively. We plot the scatter plots of the
prediction of ground truth in Fig. 11. The depth direction is skipped due to the low 𝑅2 value. Thus Proto.2 also
have the similar statistical metrics with Proto.1 from every aspect.
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(a) Proto.1. (b) Proto.2

Fig. 12. Comparisons between Proto.1 and Proto.2 of the capacitive signals and pose estimation of the same participant (P4)
following the same video instruction. A period of relatively high error was chosen from each dataset to emphasise on the
false estimations. The Y axes are relative scales after normalization.

Fig. 12 compares a segment of recording and prediction results from Proto.1 and Proto.2 with the same
participant following the same instruction video. In the case of Proto.1, an obvious burst in one capacitive channel
can be observed around t=86431, which causes a faulty pose prediction and peak in the MAE. Such signal artefacts
could have been caused by short circuit of the sensing patch with other patches or conductors, which happened
regularly in Proto.1 since the conductive patches were exposed. Proto.2 on the other hand, has addressed this
issue by isolating the conductive fabric under thermotransfer foils in the layer stack shown in Fig. 4a, and we
have not seen any similar signal artefacts. During the power consumption testing mentioned in Section 3.1,
moving Proto.1 or touching the exposed sensing pads sometimes trigger the fuse due to transient power surge,
which has never happened with Proto.2. The same phenomenon was likely the signal artefact seen with Proto.1,
while the LiPo battery is more tolerable with transient power surge and the DAU kept on operating after the
transient surge.

Also, one capacitive channel in Proto.1 is obviously drifting across the time window. Drifting happened very
rarely in Proto.1 and this recording was the only one that the drift removal from Section 5.2 was not effective,
which can be caused by combination of signal artefacts focused on part of the recording, thus dragging the
linear trend-line. Since FDC2214 during our test is robust against drifting, we suspected the drifting of individual
channels in Proto.1 was due to either unstable connections or exposed patches, as it was not observed in Proto.2.
With two prototypes, we tested four different types of conductive fabrics, and all of them produced similar signal
results. From the entire dataset of Proto.2, the signal and prediction quality were consistent with the segment
shown in Fig. 12b, which was apparently better than those of Proto.1. The unchanged or even slightly higher
median RMSE on some joints might be a result of the smaller dataset, and thus less training data.
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Overall, considering only 6 participants, Proto.2 has shown comprehensive improvement from Proto.1 from
garment design, sensing robustness, signal quality, and pose estimation results.

8 USABILITY EVALUATIONS
So far, we have developed a novel system for capacitive-based motion capturing which exhibits metrics on par
with the motion tracking SOTA with other wearable sensors. However, the purpose of such a system is beyond the
scope of motion capturing alone. Therefore, in this section we deep dive into several usability aspects including
context recognition, performance of reduced channels, motion speed relevance and the interference from external
factors.

8.1 Pose and Motion Recognition through the Natural Movement Common Ground
To explore the usability of our approach in classification tasks, we developed a workflow to define pseudo-classes
of poses or motions in our unlabeled dataset of continuous movements using self-clustering. The workflow
included an auto-encoder and unsupervised learning methods, and was implemented for both static poses and
dynamic sequences of poses (motions), including five processes:

(1) Process 1 AEC uses a convolutional auto-encoder to deconstruct the input (poses or motions) into a latent
vector with the size of 32, and then reconstructs the upper body poses or motions.

(2) Process 2 ULGM uses the unsupervised learning method Gaussian Mixture Model[80] with k-means
initialization, to locate 10 classes (cluster centers) in the latent feature space. We used the default settings
from scikit-learn for the Gaussian mixture model.

(3) Process 3 REG-ENC-CLGM uses the trained deep regressor we introduced in Section 5.3 to reconstruct the
pose from capacitive signals. Then the sensor-reconstructed pose is passed through the trained encoder
from Process 1 to extract the feature vector. Eventually, we perform inference with the optimized and
locked Gaussian mixture model from Process 2 as a classifier to predict the pose or motion.

(4) Process 4 GT-ENC-CLGM is similar as the encoder and Gaussian mixture steps. However, the input of the
process is the video-extracted pose or motion of the same data sample as in Process 3. This process thus
sets the classification ground truth (GT).

(5) Process 5 CAP-CL is our baseline comparison that follows the traditional activity recognition from sensor
signals. A deep classifier is created following the practices for similar capacitive sensors in [13–15].

Processes 1 and 2 constitute the class definition and training phase of the simulated classification workflow,
duringwhichwe use only the poses extracted from the videos following the process in Section 5.1. The latent vector
between the encoder and the decoder are unique values that can be used for decomposition and reconstruction
of the poses or motions, thus we consider them as features suitable for classifying different types of poses or
motion. The encoder part of the auto-encoder will then function as a feature extractor specialized for the poses
or motions. Similar approach has been evaluated for sensor data in activity recognition [41].

Processes 3 and 4 are the testing phase, during which we lock all the models, including the deep convolutional
regressor, encoder and decoder of the auto-encoder, and the Gaussian mixture model and use them for inference
(prediction). The Gaussian mixture model functions as a classifier during prediction operations. We set the class
ground truth of the samples by the locked encoder and the Gaussian mixture from video-extracted poses or
motions in the testing data partition. Since our experiment contains continuous motions, the samples with a low
confidence (below median) from the Gaussian mixture model were considered as transitioning motions between
the cluster centers and were removed.

In Process 5, a 2D CNN deep classifier was developed representing the state-of-the-art activity recognition with
capacitive sensors. Our pipeline from the capacitive signals via poses reconstructed by the MoCaPose regressor,
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Fig. 13. The validation workflow of using unsupervised learning in our unlabeled data to simulate a classification task.

and features extracted by the encoder, then classification by the trained Gaussian Mixture model provides an
alternative solution.
To avoid over-fitting, we observed several safeguarding rules:

• For the training and testing phases of the simulated classification, the data are strictly partitioned with
the leave-sessions-out scheme, and there are no common recordings that exist in both phases.

• All the classification ground truth for classes are determined by video-extracted poses and motions, and
all the prediction come from capacitive sensor signals.

• All the models from our proposed workflow, including the MoCaPose regressor, encoder and clustering
model, are locked in the testing phase and only perform inference operations.

At first glance, the unsupervised class definition seems leaning towards pose and motions rather than raw
sensor signals. However, this mimics the usual practice in HAR, where manual annotations rely on the natural
movements observed with human experts’ supervision. The classes in HAR categorizes the context of the activity
rather than the sensor signal patterns. Thus, we believe this workflow is unbiased between the motions and
sensor signals and is truthful to the consensus activity recognition practices.
Fig. 14 and Fig. 15 show the results of the simulated classification task. First, the determined classes from

Processes 1 and 2 are shown in Fig. 14a and Fig. 15a, which are cluster centers of the Gaussian mixture model and
reconstructed by the decoder. In other words, these poses or motions might not be from an actual experiment
recording, but represent the most representative poses or motions occurring in the dataset. Although this is
the probabilistic outcome, it might not cover all of the classes in the experiment and some classes might appear
similar for a human observer, such as Motion 6, 8 and 9 in Fig. 15a.

We then show the confusion matrix of Processes 3 and 4 in Fig. 14b and Fig. 15b. For comparison with classical
sensor based HAR approach, the confusion matrix of Process 5 is presented in Fig. 14c and Fig. 15c. In both pose
and motion classification tasks, going through the REG-ENC-CLGM process provides significant accuracy gains
compared with directly classification from the sensor data from the CAP-CL process. This shows promising yet
preliminary result that moving from the sensor signal level to the pose level might improve context recognition
applications. The limitations of this approach will be further discussed in Section 9.
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(a) The identified pose classes through unsupervised learning from the frame-based auto-encoder’s latent feature space.

(b) the confusion matrix of classifying these pose classes in
the test data with MoCaPose reconstructed poses.

(c) the confusion matrix of classifying these pose classes in
the test data following standard activity recognition process.

Fig. 14. The results of the simulated classification assisted by unsupervised learning for recognizing still poses and comparison
with classical sensor-based activity recognition.

8.2 Reducing Sensor Channels
In the fashion-technology co-design process of textile integration, it is important for the technology to impose as
little limitations on the garment design as possible. In our case, we investigated if less capacitive channels can
achieve similar efficacy in predicting the wearer’s pose. To determine which input channel has more significance
in the deep regressor, we added a single locally connected layer (LocallyConnected2D in Keras) with 8 neurons
and a kernel of (1,1), shared between the left and right side of the sensor patches. This locally connected layer
essentially adds an individual weight to each of the channels independently. We follow the same leave-session-out
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(a) The identified pose classes through unsupervised learning from the temporal-based auto-encoder’s latent feature space.
The time steps of the motion is represented by traces of the pose.

(b) the confusion matrix of classifying these pose classes in
the test data with MoCaPose reconstructed motions.

(c) the confusion matrix of classifying these pose classes in
the test data following standard activity recognition process.

Fig. 15. The results of the simulated classification assisted by unsupervised learning for recognizing short time window
motions and comparison with classical sensor-based activity recognition.

process of training the deep regressor, and then take the weight values of the locally connected layer as the
factor that indicates the importance of each channel. From such method, the ranking from the most to the least
important channels are determined as: {CH0, CH1, CH2, CH7, CH5, CH6, CH4, CH3}, the numbers match those
in Fig. 3a.
We then remove one channel at a time, from no channels removed to all channels removed, and replace the

sensor values of the removed channels with zero. With each iteration, a new regressor is trained from a blank
model and validated following the leave-sessions-out scheme. Fig. 16 shows an example of a time period of the
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Fig. 16. Example of predicted poses while gradually removing capacitive channels.

predicted poses, from which we can see a gradual degradation of the details of the predicted poses as less channels
are used. In the case of using zero channels, the model outputs constant zeros. To represent all the test data, we
plot the error-range ratio in Fig. 17b and R-squared values between the prediction and ground truth in Fig. 17b.
These results indicate that:

• Removing a single channel already degrades the prediction performance of pose prediction.
• The prediction performance degrades further as less channels are used.
• However, while keeping only half of the channels (4 channels each side), the R-squared values are still
above 80%, indicating strong correlations between the prediction and ground truth.

• Even with a single channel (CH0 at the front shoulder), the regressor can give some rudimentary pose
predictions, which might be useful for certain applications.

However, the reduction of channels should be considered together with the specific usecase and garment
design, which is beyond the scope of this study. Also, the limitation of our data-level channel reduction approach
is that: we cannot remove the physical sensor patch, and thus the influence of other active sensor patches cannot
be eliminated. However, the FDC2214 module has strong cross-channel isolation both from the sensing principle
and our test. Therefore, our data-level channel reduction discussion still offers useful guidance.
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(a) The Error-to-Range ratio of reducing capacitive chan-
nels from the data level.

(b) The R-squared value of predicted poses as capacitive
channels are reduced from the data level.

Fig. 17. The metrics comparison of gradually removing pairs of channels.

8.3 Influence of Different Motion Speeds
We further investigate the influence of the motion speed on the pose prediction results. We take the LPO results
(plotted in Fig. 9) and calculate the sum of the range of every joint’s coordinates of the ground truth within the 1
second window centered at every sample. This is thus defined as the transient range of motion. We then rank
the transient speed of motion and calculate the 𝑅2 value between the pose ground truth and prediction of the
3D vector length for every 5 percentile from slow to fast speed of motion. The result is shown in Fig. 18. We
can observe that the prediction is more reliable in the lower speed of motion, with an 𝑅2 value of over 0.9 at
the lowest 5 percentile. A majority of 60% of the data from the lower speed of motion has over 0.85 𝑅2 which is
generally considered very strong correlation.

Fig. 18. R-squared values between MoCaPose predicted poses and ground truth in different motion speeds sorted by every 5
percentile of the data in leave-sessions-out. The lower percentiles correspond to slower speed of motion
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8.4 Interference
Through discussions among the electronics engineers and smart textile engineers, we tested the possible interfer-
ence vulnerabilities of our prototypes that are of practical concerns for such smart garments.

In Proto.1, bending the wiring from the sensor patches generated small signal changes compared with bending
the patches. This is because the equivalent capacitor consisted mainly of the larger conductive patch surface.
When an external person or conductor, tested with a palm from another person and an ATX PC power supply
module, approached the sensing patch within 1cm distance, there was a signal change correlated with the
proximity; we did not observe more signal distortion for further than 1cm distances. Practically, this is smaller
than the socially acceptable personal distances within normal conditions. However, both the distortion by bending
the wire and by external conductor proximity were on less than 10% magnitude compared with the wearer
moving the body part with the sensing patch.

In Proto.2, the proximity of external conductors no longer caused any signal distortion. Distortion only occurred
when the external rigid object touched the patch surface regardless of the conductivity property of the external
object, and had much smaller magnitude compared to Proto.1. We also turned on both prototypes with the DAUs
in full operation mode, and we did not observe any interference between the two prototypes while they were
worn by two persons standing next to each other with 1cm distance. It is worth pointing out that all 32 channels
on all 4 DAUs were configured with the same capacitor and inductor values, setting the excitation frequency to
the similar range within the passive components’ factory tolerance.

While physical contact on the sensing patches generate large peaks, if the contact is from the user itself, and
the corresponding pose ground truth is provided to the regressor, the model could also learn those self-contact
poses. For example, the synchronization points involve the participants touching the patches on the belly, and the
regressor model could successfully predict those movements with the sensor signals that include these peaks.

9 LIMITATIONS AND FURTHER DISCUSSION

9.1 Results Comparison with Related Works
While the SOTA we listed in Table 1 use different metrics, we have converted our own results to all of those
metrics to provide a comprehensive comparison as detailed in Section 6 and especially in Table 3.

First of all, 𝑅2 of up to 0.915 with Proto.1 and 0.932 with Proto.2 shows strong correlation between the predicted
and ground truth coordinates according to the broader literature consensus of 𝑅2 standards. While the work from
[10] showed 𝑅2 close to 1, it was limited to only a single joint and 1 participant while the complexity and dataset of
our work is orders of magnitudes higher. MPJPE and RMSE(P) provide metrics of the coordinate position precision
in distance units. While our results of 86mm is larger than some results reported in the SOTA such as 43.3mm
from information fusion of 4 IMUs and 1 camera in [56], 31.8mm with 12 on body transmitters in [48]; our results
have truthfully included the ground truth pipeline error of 46mm in Eq. (2) according to appropriate measurement
instrumentation practices [42], which cannot be said for the SOTA results. This inherent ground truth error
accounts for than 50% of our distance results, which we will further discuss in Section 9.2. The EM-Pose [48] is
sensitive to external persons and electronics within 1.5m range, while our Proto.1 is only sensitive to those within
1cm and Proto.2 is not influenced by external non-contact conductive bodies. Many of the results reported in the
SOTA use angles as the metric. Our RMSE(A) of 12.8° is well in line with those reported in [34, 43, 47, 48, 95].
Teufl, et al. [87] has reported very small RMSE(A) of 2.28°; however, the IMU sensors were tightly fixed to the
skin in the lower body, and we also argue that the lower body has less ranges of motion during the activities
described in [87] of motion compared to the upper body in our experiments.

For the classification tasks, our result of 90% F1 for 10 pseudo-classes of motions is competitive with the SOTA.
While in works such as [14] and [96], above 97% accuracy values were reported, there is a significant distinction
that in those annotated activity recognition tasks, the data of different classes are well separated in the timeline of
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the recording with start and end timestamps of the activity, and the transitioning motions were discarded, which
is a common practice in supervised learning and HAR. However, in our process described in Section 8.1, we
discover classes from continuous video recordings where there were no disconnected motions within a recording,
thus all the transitioning motions were included. The only mechanism to reduce the transitioning motions were
removing those data points there were too far away from the cluster centers in the pose-specific feature space,
which is also an unsupervised process and might not be as effective as instructed and annotated data from the
SOTA. We thus refer to the baseline of Process 5 CAP-CL, where a deep classifier was used following the SOTA
model architecture reported in [14] for multi-channel capacitive signals. And the pipeline of first converting the
capacitive signals to pose through MoCaPose and then perform classification in the pose-specific feature space
shows 20% and 37% improvement for still poses and dynamic motions. This could be a reflection of the precise
pose estimation results discussed above: once the obscure capacitive signals are converted to pose, recognizing
the pose and motion are then trivial tasks.
Furthermore, MoCaPose only relies on the capacitive sensing modality integrated into a smart jacket that

deeply fuses technology and design, which cannot be said for any of the systems from the SOTA.

9.2 Ground Truth Limitations
From our results, the error was correlated with the speed of the activity, where slower speed generates better
results. It could be partially caused by imperfect synchronization between the video source and the DAUs, and
small errors in the sampling rate might accumulate to substantiated drift. While the DAUs data has a unix
timestamp for every sample, the video lacks such and was taken as a stable 30 frames-per-second (fps) data
stream and matched with the sensor data at the beginning of every recording. Although according to the video
pose extraction pipeline and the media metadata, the video footage was of 30 fps, a professional video editor
BlackMagic® DaVinci Resolve 18 reads some videos with not exactly 30 fps (e.g. 29.97 fps). Another contributing
factor might be delays introduced by the temporal convolutions in the deep convolutional regressor, which
takes a short time window of capacitive signals to produce a single pose frame. Such process can be sensitive to
imperfectly aligned input and output training samples. This can be further supported by the observation of the
MAE values from Fig. 6, Fig. 12, which exhibit patterns matching the motion. A shift by one time sample between
the ground truth and prediction, for example, would result in similar behavior. Although signal aligning methods
such as dynamic time warping may further improve our median RMSE results, we argue this is not truthful nor
practically useful for such a pose prediction system, as in runtime there will not be any ground truth template
to match. Moreover, state-of-the-art signal processing algorithms can easily handle such sample level temporal
shifts, from temporal neural network layers to temporal self-similarity [32].
The pose ground truth pipeline in our study utilizes the state-of-the-art markerless pose estimation models

from a low-cost smartphone camera, which simplifies the reproducibility of our work. However, the pipeline
introduces an inherent error of 0.046 meters. While marker-based motion capturing systems are not ideal for
garment design since rigid reflective markers need to be attached to the garment surface; to show the true
potential of pose estimation based on capacitive sensing, it would be necessary to reduce the ground truth error
and thus have the same golden standard as other pose estimation studies. Also the depth information of the
pose estimation might be improved by multi-angle cameras or with calibration background patterns from open
source projects such as EasyMocap[1] and freemocap[66]. Nevertheless, the motion tracking precision cannot
be directly translated to the usability in specific applications. Hence, we have explored the HAR classification
potential with our limited study in Section 8.1.
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9.3 Dataset Limitations
Another limitation in our dataset is that the participants were mostly in an upright standing posture, and thus
the deep regerssor was trained with an inherent bias towards such postures. This might explain the high torso
prediction accuracy. Similar dataset bias was observed in the computer vision society, for example, the MS-COCO
[57] dataset consisted mostly of upright positions as well, and vision-based pose estimation models trained with
it usually struggle with atypical postures [44].
It would also be interesting to develop a pipeline to investigate if larger errors are associated with certain

poses, which might help informing further patch geometry design improvements and validate the usefulness for
certain applications. For example, if an application considers a defined set of poses or motions, the garment does
not need to have high prediction performance on other poses or motions. This may be possible by leveraging the
autoencoder and the latent pose feature space from our usability study on simulated classification in Section 8.1.

Fig. 19. Proto.1 and Proto.2 side by side detailed comparisons.

9.4 Full-textile Sensing and Scalability
The placement of the textile sensor patches in our work were designed empirically by considering how the
motions would affect body poses. It would be interesting to see how other placement designs would compare with
our results. While the two prototypes followed the same patch placement, they were not precisely replicated. The
sensor patches in Proto.2 did not follow the exact measurement of Proto.1; and the position of the electronics and
the tracing are also completely different. Yet two prototypes produced comparable results as we demonstrated in
Section 7.

While the textile layer stack in Proto.2 provides a strong and reliable integration solution, it was more prone to
handmade production errors due to the heat press process. As detailed in Table 5 and Fig. 19, the patches in the
left and right side of Proto.2 were not exactly symmetric with up to 3cm of displacement error. However, the best
result shown in Fig. 10 (Proto.2 Vanilla LSO) exhibits symmetry between the left and right joints. Thus, the deep
regressor has already compensated the production error. These hint towards the scalability of our approach to
other designs that welcome creativity. On the other hand, it would also be interesting to see if the same design can
be precisely reproduced, i.e. whether the deep convolution regressor would produce reliable inference estimations
without adapting to every new replica, which would open the gate towards market scale production.
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9.5 The Common Ground of Pose in Wearable Sensing and HAR
Our approach is not specific to certain applications but rather focuses on the fundamental motion tracking. Our
contributions also emphasize on the decoupling between sensor placement and body joints, which is supported
by the common ground of the pose-level motions instead of raw sensor signals. By providing such a common
ground, our method can not only be adapted to different applications, but also creates a space for knowledge
transfer between designs and applications.

The state-of-the-art has explored more advanced unsupervised learning approaches in activity discovery such
as [38, 81]. However, since those works were mostly validated on data and features specific to wearable sensors,
mostly IMUs, the effectiveness for features specific to pose and motions were not clear. We thus followed the
rudimentary but well-established Gaussian mixture with K-means self-clustering approach. In the future it would
be interesting to see how the other algorithms can be adapted from sensor-specific data to the common pose and
motion representation. By discovering classes in the pose-specific feature space, we can also visualize the context
for human experts. It also provides a link with computer vision methods, such as image based self-clustering
[92] or image and video captioning [26, 55, 55, 99, 101]. For example, the class can be defined from the video
recording to train activity recognition models with MoCaPose enabled smart garments.

10 CONCLUSION
In conclusion, we have proven our hypothesis, and thus demonstrated that multi-channel capacitive sensors
made of conductive fabrics can be used for continuous upper body pose estimation. Two iterations of prototypes
designed with capacitive sensing technology beyond the SOTA in the wearable field and textile integration
techniques for robust and reliable sensing performance. We have collected a dataset of 21 participants and 38
hours, where they followed video instructions of various motions. A deep convolutional regressor was designed to
predict the 3D joints coordinates from independent short time windows of capacitive signals. The pose estimation
results were analysed according to statistical science, motion tracking metrics and usability in HAR and smart
wearable design. The R-square value between prediction and ground truth was up to 0.823 for the 3D space,
0.915 and 0.834 for the horizontal and vertical directions in leave-person-out (LPO) validation, demonstrating
strong statistical correlation. The error-to-range ratio was below 5% for every joint, and approximated MPJPE of
below 90mm for both leave-session-out (LSO) and LPO validations, indicating high tracking precision comparing
with the SOTA with other modalities. To validate the potential contribution to activity recognition, we also
used unsupervised learning and auto-encoder to discover representative pseudo-classes of pose or motion from
our dataset. In the case of 10-class classification, through the pipeline of capacitive sensor via reconstructed
poses and pose-specific features yielded 0.792 F1 score for still poses, and 0.9 F1 score for motions in short time
windows, outperforming the traditional pipeline of classification from sensor signals following state-of-the-art
classification models of the same modality, which gave 0.592 and 0.525 F1 score. Apart from sensing technology
and deep learning pose reconstruction, MoCaPose also emphasizes the scalability towards design-centric smart
garments where the technology can adapt to new designs. Instead of dictating the garment design process by
imposing strict technology requirements, MoCaPose promotes and inspires aesthetic and styling creativity by
using fully textile sensing materials and seamlessly adapting to new design implementations.
By converting from abstract sensor data to the natural movements, we can create a common ground across

physical sensing modalities and also a bridge between sensor based wearable activity recognition and computer
vision methods such as pose extraction, animation, and video captioning [22].
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A EXPERIMENT PROTOCOL DETAILS
The ground truth video data was recorded with an iPhone SE (MX9R2ZD/A) front facing the participant. We
recorded each participant in landscape mode to catch all movements within the field of view of the camera.
Further, each participant was asked to stand on a marked section of the floor to keep a distance to the camera of
4 meters and also a distance of 2.5 meters to the Mac Pro 2013 which was used to gather the capacitive data. Both
DAUs of the jacket were connected simultaneously via BLE to the Mac Pro, of which the clock was synchronized
through the internet. The recording itself was realized under the usage of a Javascript web application. The BLE
connection was implemented with theWeb Bluetooth API (experimental at the time of writing and only supported
in the Google Chrome browser). We used two instances within a Google Chrome browser to receive data from the
left and the right side of the jacket concurrently. The capacitive data as well as the camera footage was recorded
with a sampling rate of approximately 30 Hertz. Each recording involved the same start and end procedure with
the order of starting or stopping the camera, afterwards the capacitive recording and the instructing video at last.
Further, five consecutive touches of the left and right belly antenna by the participant at the start and the end of
each recording generated a unique signal pattern to simplify the later synchronization between the capacitive
data and the video footage.

B PROTOTYPE SENSING PATCH DIMENSIONS
The measurements of all the sensing patches are listed in Table 5. We set three origin points on each prototype
jacket as shown in Fig. 3. OG1 is a floating origin in the middle of the three trapezoid-shaped patches; OG2 is at
the inner terminal of the sleeve; OG3 is at the bottom of the front zipper. W and H stand for the width and height
of the sensor patch. The distance from OG1 to the edge of the sleeve is 67cm in Proto.1, and 61cm in Proto.2. For
the trapezoid-shaped patches (CH0, CH1, CH2), the minimum and maximum width were measured. The distance
from the edge of the patch to the closest origin is marked as 𝑂𝐺𝑛(𝑥,𝑦), where 𝑥 and 𝑦 are the horizontal and
vertical directions as indicated in Fig. 3. Sinch CH7 is tilted, we measured both the top and bottom ends of the
patch to OG3.

C DEEP LEARNING DETAILS
The deep convolutional regressor model from Fig. 5 and Table 6 was trained on a GPUHigh Performanc Computing
(HPC) clusterwithNVIDIA® RTXA6000GPUs andAMD® EPYC™ 7002 CPUs and the nvcr.io/nvidia/tensorflow:22.07-
tf2-py3 container. The batch size was set to 2048. It was trained with the Adam optimizer with an initial learning
rate of 0.01, which is reduced by half after every 50 epochs. The validation split was 0.2. The loss function was
Mean Absolute Error and the early stopping was set to track the minimum validation MAE with 100 patience. We
further list the details of the deep learning models for the temporal pose sequences (motion) used in Section 8.1
in Table 7 and Table 8.
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Table 4. Experiment Instruction Video Contents

Task Task Type Detailed Descriptions

Instruction Video I : Daily and casual movements
1 Upper body gestures from re-

lated work [13]
20 gestures including leaning or turning to different sides, shrugging, clapping, swinging...

2 Basic stretching exercises 19 body movements based on morning stretching exercises for school kids in the Asian
region 1

3 Beginner sign language tutori-
als

Various basic signs in standard and slow motion speed including for instance "Hello",
"Yes", "No" and names like "Ashley" 22

4 Dance videos from social media
platform (TikTok)

Four selected viral TikTok dances to add fluent and uncommon movements to the in-
structions, including for instance the Macarena dance move

Instruction Video II : Controlled movements
1 Shoulder movements Moving the shoulder joint up and down, front and back, forward rotation and backward

rotation

2 Arms down movements With arms down, curl individual elbow and then both elbows from the inside, neural and
outside tracks; rotate forearms clock wise and counter clock wise.

3 Arms flat movements with each arm flat while the other arm down, and then both arms flat, repeat the previous
elbow movements from Task 2

4 Arms up movements 1 with each arm raised while the other arm down, and then both arms flat, repeat the
previous elbow movements from Task 2

5 Arms up movements 2 with each arm raised while the other arm flat, repeat the previous elbow movements
from Task 2

1 Link: https://datanews.caixin.com/interactive/2019/guangboticao/
2 Link: Video Link: https://www.youtube.com/watch?v=Raa0vBXA8OQ

Table 5. The dimensions and positions of the patches from Proto.1 and Proto.2. (units= cm)

Proto.1 Left Proto.1 Right Proto.2 Left Proto.2 Right

CH0 W=12∼4, H=7, OG1(0, 2) W=12∼4, H=6, OG1(0, 2) W=13∼4, H=7, OG1(0, 5) W=13∼4, H=7, OG1(0, 4)
CH1 W=12∼4, H=7, OG1(4, 0) W=12∼4, H=7, OG1(4, 0) W=13∼4, H=7, OG1(3, 0) W=13∼4, H=7, OG1(4, 0)
CH2 W=12∼4, H=7, OG1(0, 2) W=12∼4, H=7, OG1(0, 2) W=13∼4, H=7, OG1(0, 7) W=13∼4, H=7, OG1(0, 4)
CH3 W=1.5, H=39, OG2(11, 14) W=1.5, H=39, OG2(11, 13) W=3, H=38, OG2(12, 12) W=3, H=38, OG2(10, 10)
CH4 W=2, H=38, OG3(7, 7) W=2, H=38, OG3(7, 7) W=3.5, H=30, OG3(8, 16) W=3.5, H=30, OG3(7, 16)
CH5 W=12, H=7, OG2(10, 0) W=12, H=7, OG2(9, 0) W=12, H=7, OG2(7, 3) W=12, H=7, OG2(8, 4)
CH6 W=12, H=7, OG2(31, 0) W=12, H=7, OG2(30, 0) W=12, H=7, OG2(28, 3) W=12, H=7, OG2(29, 4)
CH7 W=7, H=46, OG3-bottom(43,

16), OG3-top(38, 62)
W=7, H=46, OG3-bottom(43,
16), OG3-top(38, 62)

W=6, H=31.5, OG3-bottom(46,
20), OG3-top(34, 48)

W=6, H=31.5, OG3-bottom(46,
20), OG3-top(36, 50)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: August 2022.



1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778

38 • Anon. Submission Id: 3574

Table 6. Model Summary of the MoCaPose Deep Convolutional Regressor

Layer (type) Output Shape Kernel Parameters

Input layer (None, 32, 8, 2)
sequence of 32 (1s) 16-ch capacitive signals (8,2)

1: conv2d (None, 32, 8, 32) (5, 8) 2592
2: average pooling2d (None, 16, 8, 32) (2, 1) 0
3: dropout (None, 16, 8, 32) 0
4: batch normalization (None, 16, 8, 32) 128
5: conv2d (None, 16, 8, 64) (5, 8) 81984
6: average pooling2d (None, 8, 8, 64) (2,1) 0
7: dropout (None, 8, 8, 64) 0
8: batch normalization (None, 8, 8, 64) 256
9: conv2d (None, 8, 8, 96) (5,8) 245856
10: average pooling2d (None, 4, 4, 96) (2,2) 0
11: dropout (None, 4, 4, 96) 0
12: batch normalization (None, 4, 4, 96) 384
13: conv2d (None, 4, 4, 64) (4,4) 98368
14: dropout (None, 4, 4, 64) 0
15: batch normalization (None, 4, 4, 64) 256
16: reshape (None, 16, 64) 0
17: conv1d (None, 14, 32) (3) no padding 6176
18: conv1d (None, 12, 27) (3) no padding 2619
19: conv1d (None, 10, 9) (3) no padding 738
20: conv1d (output) (None, 8, 3) (3) no padding 84

Total params 439,441
Trainable params 438,929
Non-trainable params 512
All activation functions are ’relu’ when applicable
’None’ indicates batch size
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Table 7. Model Summary of the Autoencoder for Extracting Motion-specific Features

Layer (type) Output Shape Kernel Parameters

Encoder - decompose pose sequences
Input layer (None, 32, 8, 3)

sequence of 32 (2s) 3D pose coordinates (8,3)
1: conv2d (None, 32, 8, 32) (4, 8) 3104
2: average pooling2d (None, 16, 8, 32) (2, 1) 0
3: dropout (None, 16, 8, 32) 0
4: batch normalization (None, 16, 8, 32) 128
5: conv2d (None, 16, 8, 32) (4, 8) 32800
6: average pooling2d (None, 8, 8, 32) (2, 1) 0
7: dropout (None, 8, 8, 32) 0
8: batch normalization (None, 8, 8, 32) 128
9: conv2d (None, 1, 1, 32) (8, 8) no padding 65568
10: dropout (None, 1, 1, 32) 0
11: batch normalization (None, 1, 1, 32) 128
12: flatten (None, 32) 0
13: dense (None, 32) 1056
Latent motion-specific feature vector (None, 32)

Decoder - reconstruct pose sequences

14: dense (None, 64) 2112
15: reshape (None, 8, 8, 1) 0
16: conv2d transpose (None, 16, 8, 32) (4, 4) stride (2, 1) 544
17: conv2d transpose (None, 32, 8, 32) (4, 4) stride (2, 1) 16416
18: conv2d (None, 32, 8, 32) (4, 4) 16416
19: conv2d (None, 32, 8, 3) (4, 4) 1539

Total params 139,939
Trainable params 139,747
Non-trainable params 192
All activation functions are ’relu’ when applicable
’None’ indicates batch size
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Table 8. Model Summary of the Deep Classifier from Capacitive Signals in Section 8.1 Process 5 CAP-CL

Layer (type) Output Shape Kernel / Activation Parameters

Input layer (None, 64, 8, 2)
sequence of 64 (2s) 16-ch capacitive signals (8,2)

1: conv2d (None, 64, 8, 20) (8, 8) 2580
3: dropout (None, 64, 8, 20) 0
4: batch normalization (None, 64, 8, 20) 80
5: conv2d (None, 64, 8, 40) (8, 8) 51240
6: average pooling2d (None, 16, 4, 40) (4, 2) 0
7: dropout (None, 16, 4, 40) 0
8: batch normalization (None, 16, 4, 40) 160
9: conv2d (None, 16, 4, 80) (4, 4) 51280
10: average pooling2d (None, 4, 2, 80) (4, 2) 0
11: dropout (None, 4, 2, 80) 0
12: batch normalization (None, 4, 2, 80) 320
13: conv2d (None, 4, 2, 160) (2, 2) 51360
14: average pooling2d (None, 2, 1, 160) (2, 2) 0
15: dropout (None, 2, 1, 160) 0
16: batch normalization (None, 2, 1, 80) 640
17: conv2d (None, 2, 1, 20) (2, 1) 12820
18: flatten (None, 40) 0
19: dropout (None, 40) 0
20: batch normalization (None, 40) 160
21: dense (None, 40) 1640
22: dropout (None,40) 0
23: batch normalization (None, 40) 160
24: dense (None, 10) *sofmax 410

Total params 172,850
Trainable params 172,090
Non-trainable params 760
All activation functions are ’relu’ when applicable except for Layer 24
’None’ indicates batch size
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