
Knowledge Forcing: Fusing Knowledge-Driven
Approaches with LSTM for Time Series

Forecasting

Muhammad Ali Chattha1,2,3[0000−0002−3336−5677], Muhammad Imran Malik3,
Andreas Dengel1,2, and Sheraz Ahmed[0000−0002−4239−6520]2

1 Rheinland-Pfälzische Technical University Kaiserslautern-Landau, RPTU,
Kaiserslautern, 67663, Germany

2 German Research Center for Artificial Intelligence, DFKI, Kaiserslautern, 67663,
Germany

3 National University of Science and Technology, NUST, Islamabad, 44000, Pakistan

Abstract. Long Short-Term Memory (LSTM) typically relies solely on
historical data for training and although, they excel at modelling se-
quential series and finding hidden patterns in the data, they are unable
to utilize expert knowledge. Knowledge-driven systems (KDS), on the
other hand, rely on domain knowledge and consist of rules explicitly
defined by human experts. Both LSTM and KDS offer unique advan-
tages, hence relying on a single approach can be suboptimal. However,
currently there is a lacking of frameworks that can concurrently utilize
explicit information in the KDS and hidden features in the data. In this
paper, we propose a novel fusion mechanism, knowledge-forced LSTM
(KF-LSTM), that combines knowledge-driven approaches with LSTM
for time series forecasting. KF-LSTM employs LSTM in an encoder-
decoder setting, where the decoder utilizes KDS predictions in a residual
connection. This enables the decoder to utilize sequential relations in the
historical data passed on by the encoder as well as information present
in KDS in a complementary manner. We tested KF-LSTM on 4 real-
world datasets in a multi-horizon forecasting setting. Even with utilizing
relatively shallow single layered LSTM, KF-LSTM achieves State-of-the-
Art (SotA) performance on almost all of the datasets, highlighting the
information fusion capabilities of the framework. On average, knowledge
forcing improves over previous SotA by 20%.

Keywords: Time series forecasting · Knowledge fusion · Knowledge-
driven system · Neural Networks · Hybrid Systems.

1 Introduction

Time series forecasting is an important problem as it has great impact on many
crucial domains such as demand prediction, financial forecasts, traffic flow pre-
diction, weather forecasts, etc. Having an accurate estimate of future prospects
allows for better planning, which is pivotal for efficient resource management
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and profit generation. As a result, a great deal of importance is laid on time se-
ries forecasting and any improvements in forecasting approaches are highly sort
after.

Time series forecasting approaches can be broadly categorized into two main
categories: Knowledge-driven and data-driven approaches. Knowledge-Driven
Systems (KDS) consists of explicitly defined rules that are made up by human
experts who have substantial domain knowledge about the problem. These rules
make up the knowledge base of the KDS and are used in a predefined manner
for inference. As a result, KDS system can utilize the knowledge of human ex-
perts when performing the forecasting task. These expert rules are typically in
the form of logical expressions such as first order logic [18, 32], or mathematical
expressions such as statistical methods [2, 9]. Statistical methods normally con-
sist of mathematical operations predefined by human experts and have shown
great performance [17, 16]. In contrast, data-driven methods rely on historical
data from which they learn to extract hidden patterns that are useful for the
solution. Long Short-Term Memory (LSTM) have shown considerable efficacy
in modelling time series and sequential data. Both of the approaches, although
used for the same goal, operate on very different underlying information. Both
KDS and LSTM have different and unique strengths, and relying on a single
approach can be suboptimal.

However, there is a severe lacking of frameworks that can combine the strengths
of both KDS and LSTM. Current hybrid methods, for forecasting problem,
mostly rely on ensemble methods, where two or more methods are combined
after the inference by taking the average of their individual predictions. While
ensemble methods do improve the overall result in some scenarios, they are
limited by the accuracy of individual models [26]. Any inaccurate model can
negatively impact the performance of the overall ensemble since, regardless of
their accuracy, every model contributes to the final prediction. We believe that
in an ideal fusion mechanism, the framework should be aware of the strengths
of constituent models and should utilize these strengths accordingly, rather than
simply taking an average.

Based on the above motivation, we propose a novel fusion framework, knowledge-
forced LSTM (KF-LSTM), that fuses knowledge-driven approaches with LSTM
in a way where their strengths are combined, and individual inaccuracies are
catered for. KF-LSTM framework accesses the efficacy of predictions given by
KDS and the utilizes information present in the historical data to offset any
missing or incorrect information. This is achieved by using an encoder-decoder
LSTM architecture, where KDS predictions are connected in a residual connec-
tion setting with the decoder. As a result, the decoder takes in information from
KDS via the skip connection and information from historical data via the inter-
nal states of the encoder. Since the decoder calculates the residual function, it
can offset and correct any missing or inaccurate information in the KDS, which
current ensemble based hybrid methods are incapable of. We test knowledge
forced LSTM on 4 real world forecasting datasets in a multi-horizon forecasting
setting. Although, we utilized a single layered LSTM model, the proposed frame-
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work outperformed recent transformer based forecasting models and achieved
SotA performance across most of the datasets. On average, knowledge forcing
framework improved over previous SotA by 20%. In particular contribution of
this paper are as follows:

– We introduce a novel fusion framework, KF-LSTM, that combines knowledge-
driven approaches with LSTMs in a constructive manner.

– KF-LSTM achieves 20% relative performance improvement over previous
SotA on 4 real-world benchmark datasets.

– We show that KF-LSTM is agnostic to underlying KDS and can work with
wide array KDS approaches.

– We show that KF-LSTM dynamically combines information from constituent
models based on their individual efficacy.

– We show that KF-LSTM outperforms current ensemble based hybrid frame-
works, highlighting its superior information fusion capabilities.

2 Related Work

In the context of time series forecasting, Hybrid schemes mostly revolve around
ensemble-based methods. Syml et. al. [22] utilized ensemble of DNN models with
different parameters to obtain final forecast. Similarly, Larrea et.al. and Kaushik
et. al.[13, 10] also employed ensemble technique for the forecasting task. Ensem-
ble technique combines different models in time series forecasting, but issues such
as model diversity and accuracy can affect overall predictions. Highly inaccu-
rate models can negatively effect the accuracy of the overall ensemble. Recently,
attention-based models such as transformer networks, have gained interest for
better forecasting performance [14, 28, 27]. The attention mask is computed by
utilizing covariates in the dataset, which can be considered as knowledge from
an additional source. Graph-based forecasting network aims to capture spatial
dependencies among different time series in the dataset along with temporal
modelling [6]. Both attention maps and spatial information can be considered
as additional information that improve the overall forecasts; however, such tech-
niques suffer when dealing with data that lacks mutual dependence or spatial
information among time series.

Incorporating logic rules directly into neural network architecture has also
been proposed [24, 25]. Here, elements of the rule-set are considered as a unit in
the neural network and their weights are pre-computed using relations defined
in the rule-set. Some additional units that are not part of the logic rule-set
are also used in the neural network to learn relations from the data as well.
Such methods incorporate the knowledge base directly into the model, but this
also limits flexibility and requires strong hierarchical coherence between the rule
base and neural network layers. Although knowledge distillation is not directly
applicable to the forecasting problem, it is still worth mentioning as a knowledge
sharing framework [7, 29]. Knowledge distillation is used for knowledge transfer,
specifically in classification tasks. The method involves training a smaller model
(student network) to mimic the predictions of a larger, more complex model
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(teacher network). Although it improves the classification capabilities of student
model, however, scenarios when teacher network is inaccurate is not catered.

3 Multi Horizon Forecasting

The main objective of a forecasting framework is to learn a parametric function
that maps Xw values from the past to Ŷh, where w and h represents input
window size and the output size, horizon, respectively. Xw represents list of
values xt, xt−1, ..., xt−w and Ŷh represents list containing h predicted values
x̂t+1, x̂t+2, ..., x̂t+h. This can be mathematically expressed as:

[x̂t+1, x̂t+2, ..., x̂t+h] = Φ([xt, xt−1, ..., xt−w];W) (1)

Ŷh = Φ(Xw;W) (2)

where W = {Wl, bl}Ll=1 encapsulates the parameters of the network comprised
of L layers and Φ : Rw+1 7→ Rh defines the mapping from the input space to
the output space. The optimal parameters of the mapping function W∗ are com-
puted by optimizing over the loss curve using gradient descent. Typically, Mean
Squared Error (MSE) is used as a loss function, and hence, the optimization
problem for regression can be mathematically stated as:

W∗ = arg min
W

1

h

h∑
i=1

∥Yt+i − Φ([xt, ..., xt−w];W)∥22 (3)

W∗ = arg min
W

1

h

h∑
i=1

∥Yt+i − Ŷt+i∥22 (4)

where Yt+i and Ŷt+i denotes the ground truth and the predicted value at time
t+ i respectively.

4 Knowledge Forcing Framework

Fig. 1 shows the overall architecture of the knowledge forcing framework. The
input sequence is first passed to KDS, which comes up with forecasts according
to the rules defined in its knowledge base. The input sequence is also passed
on to the LSTM encoder, which computes a fixed latent representation, v of
the input sequence. This encoded representation given by the last hidden state
of the LSTM is used to initialize the internal state of the decoder. Instead of
sequentially using the output of the decoder at the previous time step as an
input for the next time step, we utilize predictions given by KDS as input to the
decoder. These KDS predictions are also added to the output of the decoder,
making a residual connection. This enables the knowledge forcing framework to
encapsulate information from both KDS and LSTM in a complementary manner.
In the following subsections, we further elaborate on the constituent KDS and
LSTM architecture, along with the knowledge fusion mechanism.
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Fig. 1: KF-LSTM framework architecture.

4.1 Constituent KDS and LSTM models

Knowledge forcing framework is agnostic to the underlying KDS model, however,
for evaluations we utilize statistical methods 4Theta [23]. 4Theta is based on the
original Theta [1] method, which models time series by decomposing it into theta
lines. The theta lines are obtained by utilizing a parameter θ, which controls the
curvature of theta lines. 0 < θ < 1 leads to less fluctuating lines, modeling
the long term linear dependencies in the time series and higher-order θ > 1
models the fluctuation, modeling the short-term attributes of the time series.
For simplicity, we mathematically present a theta estimator using two theta
lines in Eq. 5

Yt = ωθ1Y
θ1
t + ωθ2Y

θ2
t (5)

where ωθ1 and ωθ2 are the weights of the two theta lines. θ1 and θ2 model the long-
and short-term characteristics of the original data, respectively. Y θ1

t represents
the theta line at point t and can be obtained by the following equation Eq. 6

Y θ
t = θY

′′

t = θ(Yt − 2Yt−1 + Yt+2) = θYt + (1− θ)(b+ at) (6)

where Y
′′

is the second difference of the data and b and a are the intercept and
slope of simple linear regression in time Y 0.

We employ a single layered LSTM model with 64 hidden units as our data-
driven model. LSTM employs gating mechanism namely: input it, forget ft, and
output ot gate which determines which long-term information to store and which
short-term memory is to be read from the memory cell. This allows LSTMs to
retain key information in the input sequence while ignoring less important parts.
These long- and short-term information are preserved using internal state vectors
Ct and ht respectively. This can be represented mathematically by

Ct = ft.Ct−1 + it.C
′
t, ht = ot.ϕ(Ct) (7)

where ϕ represents tangent function i,e., tanh.
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4.2 Knowledge fused optimization

The input Xw is first given to KDS that makes an inference about future h values
based on information explicitly defined in its knowledge base. The same input
is also passed to the encoder of the KF-LSTM that encodes long- and shot-term
information in the historical data in its latent representations. We represent this
vector containing latent representations as v, which consists of vector Ct and
ht from Eq. 7. The main difference of KF-LSTM from vanilla LSTM is in the
decoder, In KF-LSTM, the KDS predictions are given as input to the decoder
instead of giving the output of previous time stamp as an input to the decoder of
the next time stamp. In addition to this, the predictions given by KDS are also
added to the output given by the decoder, This makes a residual connection,
where the decoder is connected in the residual connection whereas the KDS is
connected via the skip connection. This changes the objective function learned
by the decoder. The decoder now learns the residual function instead of learning
input sequence to output sequence mapping. The residual function basically off-
sets any information that is either missing or incorrect in KDS predictions. This
not only allows information to flow from KDS but enables KF-LSTM to correct
inaccuracies in KDS predictions by utilizing hidden information contained in
the historical data. As a result, KF-LSTM combines information in KDS and
in historical data in a complementary and constructive way, where inaccuracies
are suppressed and corrected. Let Y LSTM

h is the output of the LSTM decoder.
Mathematically, this is calculated by

Y LSTM
h = Φ(p(Yt|v, Y KDS

h )) (8)

where Y KDS
h are the predictions given by the KDS. Since the final output of

KF-LSTM is a summation of Y LSTM
h and Y KDS

h . The optimization equation 4
can now be written as

W∗ = arg min
W

∑
x∈Y

∥Y − (Y KDS
h + Y LSTM

h )∥22

= arg min
W

∑
x∈Y

∥(Y − Y KDS
h )− Y LSTM

h ∥22

= arg min
W

∑
x∈Y

∥ξKDS − Y LSTM
h ∥22

(9)

where Y is the ground truth and ξKDS represents error in KDS predictions .
As evident from the Eq. 9, KF-LSTM modifies the objective learned by the
underlying LSTM, which is to minimize the error contained in KDS predictions.
This is done by information contained in the historical data, which is encoded in
vector v and is passed to the decoder and is used to initialize the internal states
of the decoder. As a result, the overall KF-LSTM framework tries to combine
the best of both world, which is not the case in other hybrid schemes.



Title Suppressed Due to Excessive Length 7

5 Experiments and Results

5.1 Datasets

We evaluate knowledge forcing framework on 4 benchmark datasets belonging
to different real-world applications. The datasets utilized are as follows: (1)
PeMSD7(M) [31] dataset contains vehicular traffic information of District 7 of
California containing data of 228 sensors from May to June 2012, (2) Nasdaq
[21] dataset contains stock price (NASDAQ 100 index) information of 81 corpo-
rations, recorded every minute for 105 days, (3) Energy [3] dataset is made up
of 26 different attributes related to energy consumption of different appliances
in a single household, (4) ETTm2 [28] datasets contains readings of electrical
transformers like load and oil temperature, recorded every 15 minutes from July
2016 to July 2016.

5.2 Baseline Methods

We compare knowledge forcing framework against more than 8 baseline methods
including recent transformer based methods: ETSformer [27], Autoformer [28],
Spatial-Temporal Transformer Networks (STTN) [30], Informer [33], Reformer [11],
LogTrans [14], graph-based networks: Graph-Wavenet [20], Spatio-Temporal Graph
Convolutional (STGCN) [31], Convolutional and Recurrent Neural Networks:
LSTM [8], Diffusion Convolutional Recurrent Neural Network (DCRNN) [15],
Long- and Short-term time series network (LSTNet) [12], Multi-level Construal
Neural Network (MLCNN) [5], Neural basis expansion (N-BEATS) [19]. How-
ever, we only report the results claimed by the authors of individual methods
and do not reproduce results except for ETSformer [27], Autoformer [28] and
Nbeats [19].

Table 1: Results of KF-LSTM framework along with baseline methods on all the
datasets. A lower MSE and MAE value represents better forecasts. Best results
are written with green, while second best are written with blue color.

Methods KF-LSTM ETSformer Autoformer Informer LSTnet Nbeats MLCNN STTN
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

3 13.26 1.96 21.34 2.78 19.27 2.72 - - - - 23.04 3.71 - - 16.32 2.14
6 25.17 2.63 28.52 3.24 31.36 3.41 - - - - 40.20 4.54 - - 28.84 2.70PeMSD7(M)
9 19.94 2.37 25.10 2.91 32.26 3.21 - - - - 64.80 5.22 - - 36.60 3.03
3 0.011 0.029 2.22 0.780 1.85 0.45 - - 0.134 0.093 10.18 1.11 0.133 0.091 - -
6 0.022 0.041 3.03 0.830 3.50 0.53 - - 0.272 0.135 10.76 1.13 0.266 0.130 - -Nasdaq
12 0.052 0.061 3.06 0.850 1.93 0.46 - - 0.569 0.195 6.864 0.78 0.546 0.186 - -
3 174.0 2.70 209.38 2.42 259.85 3.86 - - 240.56 1.82 236.85 2.76 228.92 1.88 - -
6 188.40 1.43 234.09 2.82 289.00 4.00 - - 249.64 2.39 258.57 3.02 255.68 2.38 - -Energy
12 251.30 2.03 262.44 3.32 314.71 4.35 - - 285.27 3.11 291.38 3.12 281.57 3.04 - -
96 0.187 0.301 0.189 0.28 0.255 0.34 0.365 0.45 3.142 1.37 - - - - - -
192 0.251 0.355 0.253 0.32 0.281 0.34 0.533 0.56 31.54 1.37 - - - - - -ETTm2
336 0.746 0.582 0.314 0.36 0.339 0.37 1.363 0.89 3.160 1.37 - - - - - -
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5.3 Results

Table 1 shows results obtained by knowledge forced LSTM along with baseline
methods. Knowledge forced LSTM consistently achieves SotA results on all the
datasets except ETTm2, where it achieves second-best result on MAE metric
but still manages SotA result on MSE metric except for the horizon of 336.
Averaging across all the prediction lengths, knowledge forced LSTM achieves
23% reduction in MSE and 22% reduction in MAE compared to previous SotA
on PeMSD7(M) dataset. 91% reduction in MSE and 68% reduction in MAE
on Nasdaq dataset and 14% and 10% reduction on MSE and MAE on Energy
dataset. On ETTm2 dataset, knowledge forced LSTM achieves 9% reduction
in MSE for horizon 96 and 192, while it achieves second-best results on MAE
metric except for the forecasting horizon of 336, where knowledge forced LSTM
achieves third-best result overall. We believe that this is due to an extremely
long forecasting horizon, which a shallow LSTM was unable to model properly.
Nevertheless, average across all the dataset and evaluation metrics, knowledge
forced LSTM achieves 20% improvement over the previous SotA.

Figure 2 shows plots of forecasts made by KF-LSTM and recent transformer-
based methods, Autoformer [28] and ETSformer [27]. KF-LSTM not only follows
the trend more accurately, but also models subtle variations and extremas more
accurately, which is of real importance in domains such as finance.
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Fig. 2: Prediction of KF-LSTM, Autoformer and ETSformer on PeMSd7(M),
Nasdaq, and energy dataset for horizon 3
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5.4 Ablation Study

Table 2: Comparison of MSE and MAE metrics of vanilla LSTM and KDS with-
out the fusion mechanism for PeMSD7(M) dataset. Percentage improvement
given by the KF-LSTM over the vanilla LSTM and KDS is also given.

Metric (Horizon) Vanilla LSTM KDS KF-LSTM
MSE (3/ 6/ 9) 14.44/ 30.7/ 35.4 15.9/ 30.7/ 47.5 13.26/ 25.17/ 19.94

Percentage
Improvement

in MSE (3/ 6/ 9)
8%/ 18%/ 44% 16%/ 18%/ 58% -

MAE (3/ 6/ 9) 2.24/ 2.73/ 3.50 2.13/ 2.90/ 3.44 1.96/ 2.63/ 2.37
Percentage

Improvement
in MAE (3/ 6/ 9)

13%/ 4%/ 32% 8%/ 9%/ 31% -

In this section, we study the impact of knowledge forcing by evaluating the
underlying KDS and LSTM models in isolation without the fusion mechanism.
Table 2 shows the result of LSTM and KDS model along with the results ob-
tained by KF-LSTM. Additional rows highlighting percentage improvement over
constituent LSTM and KDS models are also included. As evident from the table
2, employing the proposed knowledge forcing mechanism improves the overall
accuracy, with improvements as high as 58% over constituent knowledge and
data domains.

Moreover, table 2 also highlights the ability of knowledge forcing mecha-
nism to dynamically adapt based on the information contained within respec-
tive modalities since percentage improvement is not constant for each of the
constituent domain, but infact varies according to the efficacy of each domain.

5.5 KDS Model Independence

Table 3: Results of KF-LSTM framework with different KDS model on
PeMSD7(M) dataset for forecasting horizon of 3

KDS model MSE MAE
Rule-based KDS 13.36 2.04

Statistical method as KDS 13.26 1.96

In this section, we verify the agnostic nature of the knowledge forcing mech-
anism towards the underlying KDS model. This is important because the knowl-
edge base of KDS can take different forms like rule-based relations, mathemat-
ical formulations etc., and it is desirable that the knowledge fusion framework
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is flexible enough to incorporate different KDS models. For this, we change the
underlying KDS from a statistical based method to a rule-based model. The
rules for forecasting are made from the scheme proposed in [4], which borrows
concepts from graph-based network by considering each time series observations
as a node of the graph and calculating relations between the nodes with correla-
tion functions. Table 3 shows the results of knowledge forcing with a rule-based
KDS model.

5.6 Comparison with Ensemble Methods

In this section, we evaluate the knowledge forced LSTM framework against the
ensemble technique, that is a commonly used method in the literature for com-
bining predictions of two or more models. Table 4 shows the comparison of
KF-LSTM with the ensemble method. For every dataset, KF-LSTM gives sub-
stantially superior performance compared to the ensemble. This is primarily due
to the error correction capabilities of KF-LSTM that in a way mitigate some of
the inaccuracies in the final output.

Table 4: Comparison of ensemble methods with KF-LSTM on all the datasets.

Dataset Horizon MSE MAE
Ensemble KF-LSTM Ensemble KF-LSTM

PeMSD7(M)
3 13.70 13.26 2.04 1.96
6 24.90 25.17 2.64 2.63
9 30.01 19.94 3.00 2.37

Nasdaq
3 0.032 0.011 0.052 0.029
6 0.035 0.022 0.054 0.041
12 0.107 0.052 0.086 0.061

Energy
3 208.83 174.00 2.75 2.70
6 245.50 188.40 1.76 1.43
12 272.58 251.30 2.40 2.03

ETT
96 0.32 0.19 0.31 0.30
192 0.35 0.25 0.36 0.36
336 0.76 0.75 0.60 0.58

6 Conclusion

In this paper, we present a novel hybrid framework, KF-LSTM, that combines
KDS approaches with LSTM in a way, where not only useful information con-
tained in the constituent domains are integrated but their inaccuracies and
shortcomings are also catered for in the final output. We evaluate KF-LSTM
against recent SotA baseline methods on 4 time series benchmark forecasting
datasets. Despite being a relatively shallow network, KF-LSTM outperforms re-
cent transformer and graph-based models handsomely and establishes new SotA
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on almost every dataset. This highlights the effectiveness of the proposed fu-
sion framework. We also show that KF-LSTM in flexible towards different KDS
models. This will prove useful in applicability of KF-LSTM in real-world appli-
cations, where KDS may comprise of different and diverse knowledge bases. We
also compare KF-LSTM with current ensemble based hybrid schemes. KF-LSTM
significantly outperforms ensemble technique in terms of overall accuracy. The
ability of KF-LSTM to constructively utilize knowledge and data domain will
prove useful in unlocking the true potential of artificial intelligence especially in
cirtical applications where domain knowledge is also crucial.
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