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Quali-Mat: Evaluating theQuality of Execution in Body-Weight
Exercises with a Pressure Sensitive Sports Mat

BO ZHOU, SUNGHO SUH, VITOR FORTES REY, CARLOS ANDRES VELEZ ALTAMIRANO,
and PAUL LUKOWICZ, German Research Center for Artificial Intelligence, Germany and University of
Kaiserslautern, Germany

While sports activity recognition is a well studied subject in mobile, wearable and ubiquitous computing, work to date mostly
focuses on recognition and counting of specific exercise types. Quality assessment is a much more difficult problem with
significantly less published results. In this work, we present Quali-Mat: a method for evaluating the quality of execution (QoE)
in exercises using a smart sports mat that can measure the dynamic pressure profiles during full-body, body-weight exercises.
As an example, our system not only recognizes that the user is doing push-ups, but also distinguishes 5 subtly different types
of push-ups, each of which (according to sports science literature and professional trainers) has a different effect on different
muscle groups. We have investigated various machine learning algorithms targeting the specific type of spatio-temporal data
produced by the pressure mat system. We demonstrate that computationally efficient, yet effective Conv3D model outperforms
more complex state-of-the-art options such as transfer learning from the image domain. The approach is validated through
an experiment designed to cover 47 quantifiable variants of 9 basic exercises with 12 participants. Overall, the model can
categorize 9 exercises with 98.6% accuracy / 98.6% F1 score, and 47 QoE variants with 67.3% accuracy / 68.1% F1 score. Through
extensive discussions with both the experiment results and practical sports considerations, our approach can be used for
not only precisely recognizing the type of exercises, but also quantifying the workout quality of execution on a fine time
granularity. We also make the Quali-Mat data set available to the community to encourage further research in the area.

CCS Concepts: •Human-centered computing→Ubiquitous andmobile computing design and evaluationmethods;
• Computing methodologies→ Neural networks; Knowledge representation and reasoning.
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1 INTRODUCTION

1.1 Motivation
Monitoring physical exercises is a well studied topic inmobile, wearable and ubiquitous human activity recognition
[21, 59, 70]. It can help athletes to track their performances, and the broader consumers to document their activity
levels and achieve their fitness goals. It also enables professional trainers to better understand the trainee’s
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progress, and social network competitions among friends to promote a healthy and active lifestyle. Fitness tracking
based on inertial measurement unit (IMU) sensors is among the most studied methods, which have already
found their entry into commercial applications in the forms of fitness trackers, and smartphone / smartwatch
apps. Sensors are also integrated into fitness equipment such as treadmills and cycling bikes to provide users
realtime information about their workouts (e.g. Technogym®, NordicTrack®, and Pelaton®). With the recent
global pandemic and public gathering restrictions, some of the smart workout equipment have also found an
increasing market in private homes [1], as physical exercise has significant positive impact on people’s quality of
life during the pandemic period [58]. However, such equipment is typically restricted to a certain type of exercise
and requires physical space at home (e.g. stationary bikes or treadmills), which is not accessible for everyone.
According to a recent survey [91], body-weight exercises are among the most popular home workouts thanks
to the flexible choices of exercise types, location (e.g. both indoors and outdoors), and low cost, light weight
equipment (e.g. resistant bands, mobile weights, fitness mat, etc.). While wearable devices such as smartwatches
with IMUs can be used for detecting some body weight exercises [52], more comprehensive monitoring requires
sensors to be placed on multiple body locations. This can be cumbersome in everyday settings.
Computer vision based methods can effectively extract poses and motions from typical upright positions.

However, they provide poor results with non-typical positions such as horizontal and upside-down poses [15].
For applications inside private homes, the uncertainty of restricted camera ranges and angles, and poor indoor
lighting conditions further increase the difficulty and complexity for computer vision based approaches as have
been found in a recent study [35]. While it can be finicky to set up the proper camera angle before every workout;
laying down a smart fitness mat is very intuitive and unobtrusive from the usability perspective, as it is an
item that is typically already required for the exercises. As an alternative, Sundholm, et al. [83] has proposed
using unobtrusive pressure mapping sensors in a sports mat format to detect body weight exercises that people
commonly perform on sports mats such as push-ups, crunches, etc. The work was focused on categorizing and
counting exercises.
In this work, we take this research a step further by moving from mere categorization or counting towards

evaluating detailed quality of execution (QoE) during the exercises. This is in contrast not just to previous works
on pressure sensing mats but also to much of the existing work in sports activity recognition in general. Most
previous works in this area stay on the level of coarse analysis restricted to exercise categorization and counting
as we further discuss in Section 2. On the other hand, in the sports science discipline, quality of execution has
been proven to be more important than mere quantity [13, 33]. QoE evaluation of physical exercises outside the
sports science and biomechanics disciplines still largely relies on subjective methods such as personal coaching
and questionnaires [74]. This is partially due to the fact that the definition of quality is often ambiguous. For
example, a verbal description of engaging a certain group of muscle is subjective to personal perception biases.
However, most aspects of QoE can be quantified such as range of motion, stance and postural correctness, and
minor variations (e.g. side or bilateral variations) of certain exercises [26, 34, 39].

1.2 Novelty and Contribution
In this paper, we have developed a method to automatically detect the quality of execution (QoE) thus beyond
categorization in a wide range of popular full-body, body-weight exercises with appropriately selected and
designed ubiquitous sensing hardware and machine learning models. To the best of our knowledge, the extent of
category variety combined with the level of subtlety to differentiate the QoE we have targeted is beyond the state
of the art which still largely remain on the categorization level. Specifically, we make the following contributions:

(1) We have designed and conducted an experiment involving subtle differences in the execution of common
body weight exercises that sports science literature identifies as important for the quality and type of
stimulation of various muscle groups with 12 participants and a smart fitness mat prototype. Overall, we
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considered 9 exercise categories with a total of 47 variants. The recorded data set is not only used in the
paper but is also made available to the community for further research.1

(2) We have explored a range of state-of-the-art machine learning algorithm candidates from classical curated
features with probabilistic classifiers to various state-of-the-art deep learning models with respect to their
performance on the specific type of signals produced by pressure mats in our application domain.

(3) Through the same leave out validation criteria, we have identified an appropriately adapted, efficient
Conv3D model that outperforms all other methods. It can recognize the 9 exercise categories with 98.6%
accuracy and macro F1 score, and 47 QoE variants with 67.3% accuracy and 68.1% macro F1 score in the
leave-recording-out setting; and in the leave-participant-out setting, 96.9% accuracy and macro F1 score for
categorizing 9 exercises and 56.1% accuracy and macro F1 score for differentiating 47 QoE variants.

(4) We demonstrate that the proposed methods can be used for evaluating the quality of execution in most
cases with detailed discussions of both machine learning results and real-world sports considerations.

1.3 Paper Structure
Section 1 introduces the motivation and contribution. Section 2 reviews the related work in modalities and
algorithms involving pressure sensors for activity recognition, and specifically sports activity recognition in
the broader mobile, wearable and ubiquitous technologies. Section 3 explains the data acquisition procedure to
produce a dataset for evaluating the QoE in body weight exercises. The implementation of machine learning
algorithms are discussed in Section 4 with an exploratory approach. Section 5 presents the machine learning
results of recognizing the exercises and variants, with discussions related to practical sports science concerns.
Section 6 further discuses the results on the broader level of ubiquitous and wearable computing. The ablation
considerations during the model design process and limitations are also discussed in this section. Section 7
concludes the entire paper.

2 RELATED WORK
To the best of our knowledge, our contributions stated in Section 1.2 offers novelty beyond the existing state of
the art, specifically in detecting the quality of execution in sports exercises with mobile, wearable or ubiquitous
technologies. Most existing works stay on the level of recognizing the category (e.g. push-up, sit-ups, etc.), not
quality of execution (e.g. range of motion, stance, etc.) The few on evaluating QoE are not as comprehensive (e.g.
7 variations of push-ups in [6]) or lack scientific support from sports science knowledge, which we adhere to
while defining the experiment protocols in Section 3.2.

Table 1 lists comparable studies in ubiquitous sports exercise recognition concerning categorization and QoE
analysis. While higher accuracy numbers have been reported with random k-fold in [6, 32, 52, 82], we consider
only proper leave-out splits in Table 1, as in [83] it was pointed out for repetitive exercises random k-fold with
sliding windows introduces over-fitting; and classification based on time granularity during a small period in
repetitive actions is over optimistic. For example, people tend to perform a cyclical motion with little variation
during a few seconds, while the motion may be carried out differently in another recording session. Such splits
would not represent practical recognition performance when the system is being tested with a new session or
new user.

2.1 Activity Recognition with Pressure Sensors and Related Algorithms
Since high performance robust pressure mapping hardware with large scale (covering 1-by-2 meters), high
resolution (<2cm pitch), high dynamic range (24bit) and high refresh rate (>20 frames per second) is scarce until
recent commercially available development kits, there has not been much work investigating human activity
1The dataset is available on https://github.com/drbz-zhou/Quali-Mat.
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Table 1. Comparable Work in Ubiquitous and Wearable Sports Categorization (Cat.) and Quality of Execution (QoE)

Study Sensing Modality Activities Recognition Algorithms Cat.
Acc.(%)

QoE
Acc.(%)

Smart-Mat pervasive pressure ma-
trix (80x80cm)

10 full body exercises statistical features, probabilistic
classifier

88.7 none [83]

W8-Scope pervasive IMU on weight
stack

10 gym exercises statistical features, probabilistic
classifier

93.8 none [69]

Leg-Band wearable pressure matrix
(16x8cm)

5 gym leg exercises and
non-workout

statistical features, probabilistic
classifier

93.3 none [100]

Capacitance wearable passive capaci-
tive sensors

7 gym exercises neural network (TCN) 54.7 none [9]

MM-fit wearable IMUs (4) and
RGBD camera

10 full body exercises neural network (Autoencoder) 96.3 none [82]

MyoGym wearable IMU and sEMG 30 upper body exercises statistical features, probabilistic
classifier

71.6 none [51]

IMUTube wearable IMUs and video 11 and 7 mostly upper
body exercises from 3
datasets

neural network (multi-modal
pipeline) and virtual IMU aug-
mentation

62∼73 none [52]

Sonar active sonar from smart-
phones

8 full body exercises plus
idle

neural networks (CNN, VGG16,
LSTM)

81.3 none [30]

GymCam RGB camera 5 common weight lifting
exercises

optical flow and statistical fea-
tures

93.6 none [48]

Push-ups wearable IMUs 1 push-up exercise with 7
variants

statistical features, probabilistic
classifier

none 7 classes
80.3

[6]

Rep-Penn RGB camera 7 weighted and body-
weight exercises

pose joint heatmaps and neural
networks

95.7 none [96]

This Work pervasive pressure ma-
trix (1x2m)

bodyweight exercise 9 cat-
egories and 47 variants

neural networks (3D CNN and
other models)

98.6 47 classes
67.5

recognition with pressure sensor matrix. A fine-grain array of force sensitive resistors (FSRs) were placed inside
gloves to recognize exercise activities in [3]. Textile pressure sensors were integrated inside a leg band to recognize
gym leg exercises in [100]. In [67], a tactile floor covering 4 square meters (96×96 points at 2cm pitch) was used
for detecting human and robot’s positions in a smart factory setting. In [80], a pressure mat was used to analyse
healthy cats’ gait and jumps by statistical analysis on the signal characteristics.
As previously mentioned, using a prototype sensing mat of 80cm × 80cm with 1cm pitch between pressure

sensitive points, Sundholm, et al. detected 10 exercises with 88.7% accuracy in leave-session-out settings [83].
The exercises defined were mostly drastically different from each other, and the machine learning algorithms
were based on statistical features and probabilistic classifiers. Singh, et al. developed a transfer learning approach
for identifying footsteps with a pressure mapping carpet in [78]. An InceptionV3 model with the trained weights
from the ImageNet dataset was used as the feature extractor, and the last classification layer was replaced with a
new blank dense layer for the specific classification tasks. However, the transfer learning approach with ImageNet
models does not address the temporal nature of the dynamic pressure mapping data. In the mentioned work of
[78], the time domain was simply collapsed by calculating the average over time per pixel, or selecting the frame
with the highest average pixel intensity during the time window. In [17], Clever, et al. used a pressure mat on
an adjustable hospital bed to estimate 3D poses of the patient lying in the bed using 2D convolutional neural
networks. However, the study was limited to static, face-up lying poses without temporal sequences.
To extract useful information from pressure sensors that create an imagery of the surface pressure profile,

image processing methods have been the general option. In statistical features, shape descriptors like image
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moments were used such as in [83]. With deep learning, 2D convolutional layers, or transfer learning with
models pre-trained with RGB pictures were investigated. For dynamic human activities, however, the time domain
sequence is also very important. Temporal features such as fast Fourier or wavelet transforms were introduced for
this aspect in [98]. In the broader activity recognition field, combinations of convolutional layers for the sensor
channels and long short-term memory (LSTM) layers for the temporal domain were evaluated for motion sensors
[64]. However, these methods isolate the spatial domain and temporal domain in different processes and the
characteristics that involve simultaneous spatial-temporal domains are ignored, such as a ‘ pixel’ of a repetitive
temporal pattern moving within a spatial region. In the video recognition discipline, 3D convolutional models
were developed to address this problem, such as the C3D network [29], which could be a promising option for
the dynamic pressure mapping sensor data.

2.2 Broader Mobile, Wearable and Ubiquitous Technologies in Sports Activity Recognition
Wearable motion sensors such as IMUs have been extensively studied in the sports activity recognition field
especially in categorizing exercises [6, 21, 37, 40, 52]. However, studies with IMU-based systems have not yet
provided such performance on body weight exercises. For example, in [52], with 13 exercises related with arm
motions, wrist-worn IMUs achieve less than 70% accuracy with data augmentation from video-generated virtual
IMU data. With filtering techniques to remove aspects like noisy postures, occlusion, foreground and background,
the accuracy is still less than 80%, while those filtering layers may have removed crucial quality metrics such as
incorrect postures. In [6], a quality of execution study focused on variations of push-ups with smartphone and
smartwatch IMU sensors were able to distinguish the variations with above 80% accuracy. However, this study
contains data only from push-ups, i.e. the accuracy is based on the assumption that the system can recognize
push-ups with 100% accuracy, which is not realistic as other studies have suggested [52].
On the broader sports activity recognition landscape, except for approaches based on pressure mats and

well-studied wearable IMUs, many novel sensing systems have been proposed as reviews such as [84, 89] showed.
In [9], 3 passive capacitive sensors were placed on the body to recognize and count gym exercises. Surface
electromyography (sEMG) is the golden standard to investigate muscle activation in sports science, in which
high quality medical grade instrument is usually used [22, 79, 87]. Commercial sEMG devices have also been
used to recognize physical exercises, such as the upper-body exercise data set recorded with the MYO®armband
in [51]. Combinations of different sensors can also help recognize physical sports activities such as IMUs with
photoplethysmography [8]. [82] presented a dataset combining RGB-depth camera, multiple on-body IMUs and
heart rate during full-body workouts. In [69], a smartphone is used on the weight stacks of gym equipment to
recognize different types of exercises using its built-in IMU. Smart textiles can also be combined with wearable
garments to detect sports activities such as capacitive pressure sensors [38] or stretch sensors [7]. In [30], a
smartphone was modified as an active sonar with the doppler effect, placing next to the user. Image recognition
deep learning models were used to analyse the spectrogram and classify 8 types of exercises plus an idle state.
Estimating body poses from images has seen rapid improvement from early research on convolutional pose

machines [90] to the current ready-to-deploy pose estimator models such as OpenPose[15]. Temporal relationships
from video streams have also been evaluated with VideoPose3D [66] to improve the temporal consistency
compared to individual frame-based methods. In [32], the OpenPose estimator was used to recognize five body
weight exercises (Push-up, Squat, Plank, Forward Lunge, Sit-up). While 98% accuracy was reported with 10-fold
cross-validation (without leave-out splits), the experiment requires a camera setup that the entire person is clearly
visible during different exercises, which requires considerable empty space between the camera and the user, as
well as equipment such as a tripod. Similar solutions based on computer vision and pose estimation are already
commercially available in the form of smartphone apps (e.g. Onyx Home Workout [45], VAY Fitness Coach [2],
etc.), which was evaluated in a user study with private home settings in [35]. The study found that inherent
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limitations of computer vision significantly discourages the users, with all participants reporting pose detection
issues and most participants complaining the space at their homes was not enough to accommodate the visibility
needed for continuous pose tracking. In the research field of computer vision based pose tracking, atypical
postures usually lead to false pose estimations, which often occur during body-weight exercises. This may be due
to the fact that the mainstream datasets such as MS-COCO [56] consist mostly of upright and standard postures;
and in atypical postures, self-occlusion often occur, that the users’ own body part would block the view of the
other parts. To date, atypical pose tracking is still a challenge for pose estimation [42, 43, 68]. While dedicated
datasets and machine learning models in clearly defined spaces can solve niche scenarios such as pose estimations
inside a car with wide angle cameras [61, 71]; it is unclear how such approaches can be implemented in the the
unpredictable private home settings [96]. Apart from pose detection approaches, other computer vision methods
such as optical flow have been used to detect motions. In the work GymCam [48], with such an approach, a
camera overlooking a gym is used to recognize multiple users’ weight lifting exercises. However, the method
is restricted to moving the defined weights at the prescribed locations, which does not include exercises such
as body weight exercises unconstrained by gym bench surface and weights. A combination of inertial sensors
and computer vision methods was used to evaluate the key performance indicators during home exercise in [4],
examining the movement range during kicking exercises.

3 STUDY DESIGN

3.1 Apparatus
The sensing hardware was a research prototype based on the system found in [99] which was designed by
implementing the architecture proposed in [97]. It was developed during the EU project SimpleSkin (2013-2016).
We describe the sensing principle in the following paragraph, while the open-access hardware resource can be
used to reimplement our hardware. 2 On the other hand, a more cost-effective way to replicate our experiment
setup is to procure a similar commercial product solution such as the fitness mat dev kit from SensingTex®(Spain),
which has different technologies and specifications from our prototype but the same physical information.

The pressure sensing materials are pressure sensitive electrical resistance fabrics, produced by Sefar AG
(Switzerland). The pressure sensitive middle layer is a carbon polymer fabric Carbotex®(Sefar®). It is sandwiched
between two perpendicular layers of parallel conductive lines with 0.7cm width and 1.3cm spacing (1.5cm pitch).
The thin fabric sensor matrix is protected with a thin felt layer (0.7mm). The pressure sensor matrix covers an
area of approximately 1m-by-2m. A normal commercial foam yoga mat (standard 183cm-by-61cm size, 6mm
thickness) is placed on top of the felt protection layer to provide user with a softer surface. Since our experiment
is conducted in an open indoor space with hard ceramic tiles, the pressure mat is placed on top of a larger layer
of normal soft foam sports floor mat, so that the participants can perform all activities on the foam surface
comfortably. There are 128×64 points with 1.5cm pitch, each is sampled at 25 frames per second by eight parallel,
24-bit 16-channel high performance ADCs ADS1258, controlled by an FPGA EP3C25Q240. For the scanning
process, the FPGA uses its GPIO output pins to turn on one of the 64 columns at a time, and the parallel ADCs
sample the voltage of the 128 rows via a voltage divider structure. The scanning result is sent to a computer by
an USB cable with the FTDI®8-bit FIFO protocol. The USB cable also supplies the power to the entire system. A
C++ driver program was created to receive and reconstruct every 2D frame on a Windows computer.

3.2 Activity Definitions
We designed an exercise routine based on sports science literature and recommendations of the fitness trainers
from the gym Unifit (Kaiserslautern, Germany) who gave out courses of body weight exercises. We focused on
2The hardware design sources can also be found in the online repository.
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Table 2. Quality of Execution in Workout Class Definitions (Part 1)

VariantExercise Variation and Descriptions

Category I : Crunches
1 Reference: Lie Down knees up, feet down
2 Crunches I lower range of motion, regulated by hands pointed to the sky with arms straight
3 Crunches II medium range of motion, regulated by hands reaching to the knees with arms straight
4 Crunches III higher range of motion, regulated by elbows reaching to the knees with arms straight
5 Side Crunches I lower range of motion, regulated by hands pointed to the sky with arms straight
6 Side Crunches II medium range of motion, regulated by both hands pointed to each knee alternatively
7 Side Crunches III higher range of motion, regulated by elbow touching the opposite knee alternatively

Category II : Push-ups
8 Reference: Hold Push-up hands shoulder wide
9 Push-up I hands shoulder wide and half range of motion, regulated by not fully extending elbows
10 Push-up II hands shoulder wide and full range of motion, regulated by having elbows fully extended
11 Push-up III hands wider than shoulder, full range of motion
12 Alternating Push-up alternating single side push-up, hands wider than shoulder

Category III : Planking
13 Reference: Standard Plank depending on the person, either feet or knees can be on the floor, thighs and torso keep on a

straight line
14 Slack Plank torso not engaged so the spine bends downwards naturally
15 High Hip Plank raise hip higher than standard straight plank
16 Plank Dip Standard Plank but move body forward and backwards around the elbow support
17 Plank Push-up hands are chest wide, change between plank position and push-up position
18 Chest Wide Plank Push-up hands are chest wide (same as 17), only push-up without placing elbows on the mat

Category IV : Only Back Visible
19 Reference: Back lift legs and elbows, place hands on the back of the head
20 Leg-up Crunches lift legs, crunching exercise till elbows touch the knees
21 Alternating Cycling lift legs, alternately touch one elbowwith the opposite knee, while the other opposite elbow-knee

pairs are extended
22 Leg-only Cycling lift elbows, empty cycle with only leg motions
23 Leg-lift I raise legs from flat position to vertical position, with lower back pressing on the mat, this

variation engages the abdominal muscles more effectively
24 Leg-lift II same leg motion as 23, but have lower back suspended with an arched spine, and instead use

hip as the anchoring point, this variation engages the abdominal muscles less effectively

9 categories of exercises in this study. The 9 categories were generalized groups within which the body print
on the mat looks similar: I crunches, II push-ups, III planking, IV only back contacting the mat, V back and
arms contacting the mat, VI standing, VII arch, VIII bridge and IX side planks. Within each category, we defined
finer variations of the exercise, which in the real world can reflect details from correct exercise techniques to
qualities, as well as a reference position where the participants stayed static. In total, 47 variants were defined
for the 9 categories, as listed in Table 2 and Table 3. Overall, all variations in each exercise category were decided
as they lead to different levels of core muscle activation according to sports science studies with sEMG data
[12, 14, 27, 63].
(1) Category I crunches mainly exercises the rectus abdominis muscles, with the side variations also exercising

the oblique muscles. we defined a static pose of lying down with knees up, and 6 variations of 3 levels of
height of the upper body position combined with either central motion or side motion [27]. The range of
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Table 3. Quality of Execution in Workout Class Definitions (Part 2)

VariantExercise Variation and Descriptions

Category V : Back and Arms Visible
25 Reference: Hold Leg-up with arms and back relaxed on the mat, while thighs are raised up vertically
26 Leg-raise I raise legs vertically and upwards from the relaxed horizontal position with lower back suspended
27 Leg-raise II similar as 26, but always keep thighs upwards without lowering legs to the horizontal position,

this variation engages the torso muscles more than Leg-raise I
28 Leg Swing I swing legs from the left and horizontal, then upwards vertical, to the right horizontal positions,

with knees bent
29 Leg Swing II similar as 28, but knees are extended straight

Category VI : Standing Up
30 Reference: Stand feet shoulder width, feet angle is decided by squeezing glutes
31 Shallow Squat empty squat, half range of motion, regulated by the hands reach the knees with relaxed arms
32 Deep Squat empty squat, full range of motion, regulated by the elbows reach the knees with folded arms
33 Toe Touch bend downwards and reach toes with fingers repetitively, heels may leave the mat
34 Tip Toe raise the heels repetitively

Category VII : Arch Step
35 Reference I alternately step forwards and then back, with one foot staying behind
36 Reference II alternately step backwards and then front, with one foot staying in front
37 Lunge Forwards step similar as 35, but with the knee behind bent downwards
38 Lunge Backwards step similar as 36, but with the knee behind bent downwards

Category VIII : Bridge
39 Reference: Bridge with feet or heels, upper back, shoulders, arms and head staying on the mat, suspend the hip

and lower back so that the thighs and torso are on the same slope line
40 Hip Thrust same pose as 39, but move hip up and down with the help of glutes
41 Single Hip Thrust same motion as 40, but with only one leg supporting the body and the other leg extended

Category IX : Side Plank
42 Reference: Side Plank body face to one side, with one foot or knee and one elbow of the same side supporting the body,

torso and legs are straight on the same line
43 Slack Side Plank similar pose as 42, but with the torso relaxed
44 Side Hip Thrust similar pose as 42, and move hip up and down
45 Side Leg Raise similar pose as 42, and raise and lower the leg that is not supporting the body
46 Arm Swing I similar pose as 42, and swing the free arm from below the body to the vertical upwards position,

face the front of the body
47 Arm Swing II similar motion as 45, but face the moving hand

motion does not necessarily scale with muscle activation. The medium variant is considered to have more,
sustained rectus abdominis muscle activation as the muscles are constantly supporting the upper body’s
weight. In the high range of motion, the abdominis muscle is at rest at the high-end position, but the high
range requires more short burst muscle activation from the low-end position [81].

(2) Category II push-ups are well known for exercising the chest muscle groups (pectroralis major and deltold)
and triceps, we defined wide or narrow hands positions as the narrower position is observed with more
muscle activation [18]. The alternating variant has a similar effect of even narrower hand positions, and
focuses more body weight on one side at a time[23]. While muscle activation also differs with different
ranges of motions [6, 55], the variant we introduced is without fully extending the elbow, which exerts
constant muscle activation, especially triceps, compared with when the arms are fully extended [72].
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(3) Category III planking focuses on the stability of many trunk muscles from lumbar muscles, rectus abdominis
and obliques to serratus muscles. Slack planking has little exercise effect on those muscles due to the
lack of engagement [95]; while a high hip plank with a posterior pelvic tilt increases muscle activation
[75]. Animated planking (plank dip) with contracting ankles introduce up to 60% more effective isometric
contraction [16]. The combination of planking with push-ups were recommended by the licensed fitness
trainers, which is an advanced exercise emphasising the serratus muscles and triceps in addition to all the
benefits of push ups and planking.

(4) Category IV contains several different exercises with back supporting the whole body. Exercises involving
raising the legs train mostly the lower rectus abdominis and transversus abdominis muscles [62]. Leg-up
crunches and lying position cycling involve both the upper body and lower body for a higher level of core
stability [44]. The fitness trainers suggested that leg lift can often be performed incorrectly if there is too
much transverse plane rotation on the pelvis and the work from lower abdominal muscles is replaced
by hip flexion, failing to reach the exercise goal [41]. And the common coaching recommendation is to
perform Variant 23 Leg-lift I to keep lower back pressed on the ground as listed in Table 2.

(5) Category V contains more leg raising exercises when it is necessary to use arms on the side for ground
support. The leg-raise exercises are different from the leg-lift variants in Category IV, as leg-raise involves
raising the hip with the support of lumbar, thoracic, abdominal and serratus muscles. Leg-raise without
lowering the legs to resting position exerts constant muscle activation of the above mentioned muscle
groups, while lowering the legs will introduce more rectus abdominis muscle activation [41]. Leg swing
mainly activates the oblique muscles [62].

(6) Category VI involves standing pose exercises. The muscle activation, mostly gluteus maximus and quadri-
ceps, is stronger in deeper squats when unloaded [19]. Toe touch is a stretching exercise that improves the
flexibility of the hamstrings, calves and lumbar spine [31]. Tip toe mainly exercises the calf muscles [53].

(7) Category VII contains lunge exercises, which have been shown to have more effective leg muscle activation
than squats during body weight exercises [25]. Specifically, forward lunge is found to be even more effective
than backward lunge [65]. We use stepping forward and backward without the lunge action to differ from
the actual effective exercise.

(8) Category VIII bridges are common body-weight exercises for the gluteus maximus muscles [94]. The muscle
activation intensity increases from static bridge to animated hip thrust, to single leg hip thrust [49].

(9) Category IX side planks work on the trunk muscles, especially the oblique muscles [5]. The static variants
focus on isometric contraction, while the moving variants are intended for dynamic strengthening and
stability of these muscles [20, 57].

The pressure map examples of every category and variant are shown as summary frames in Fig. 10, Fig. 11 and
Fig. 12. Therefore, there are several classification goals of this study: recognizing the 9 categories (similar with
the work in [83]), 47 variants, or the variants within each category.

We emphasise that the variants are designed to be meaningfully different while having only trivial differences
to distinguish the workout QoE. The 9 categories are similar with the 10 exercises from the work by Sundholm et
al. [83]. While the pressure maps of variants within a category can look indistinguishable for the average human
observer, such as the examples we show in Fig. 1.

3.3 Data Collection Details
Twelve healthy participants aged between 24 and 33 took part in the data collection, out of which four were
female and eight were male. The heights of the participants were between 162cm and 189cm. The experiment
was set up in an indoor and spacious environment. Every participant performed three recording sessions across
different days. Each recording session consisted of a routine of 47 exercises directed by the instructions in Table 2
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(a) Class 2: Crunches I. Lower range of motion, regulated by hands pointed to the sky with arms straight.

(b) Class 3: Crunches II. Medium range of motion, regulated by hands reaching to the knees with arms straight.

(c) Class 4: Crunches III. Higher range of motion, regulated by elbows reaching to the knees with arms straight.

Fig. 1. Pressure map examples of 3 exercise variants of randomly selected 2-second windows. The photo depicts the end
position of the range of motion from lying down. The first pressure map is the summary of the time window, and the
following pressure maps are frames inside the selected window. Only every other frame, and only 19 of the 50 frames of the
window are shown so that most of the time window can be fit in the page.

and Table 3. For each of the dynamic movements, the participants performed 10 continuous repetitions; for
static classes (e.g. reference poses of each category and static planking), the participants were asked to remain in
position for at least 10 seconds, holding it up to 30 seconds if possible. Before the first recording, the experiment
conductor showed recorded video instructions of each exercise. The participants started with the exercise while
fully rested and could take breaks at any time during the recording, to make sure each exercise was properly
conducted in the sense that their movement was not distorted by fatigue. They wore appropriate sport apparels
without shoes during the experiment.

The participants were of different fitness levels from beginner to enthusiast. We accepted different levels of
execution depending on the participant’s level. For example, a beginner participant could do all the exercises that
require hips up in the air with knees touching the floor, instead of the supposed feet touching the floor, such as
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push-up and planking. The enthusiast and intermediate participants could complete the entire routine without
breaks; while the others required a long period of breaks in the middle of the recording session. Each recording
session lasted between 25 minutes and 1 hour, depending on the participants’ skill level and the resting time.

Personal and equipment hygiene procedures were carefully observed. The participants gave informed consent
in accordance with the policies of the Ethics Team of the German Research Center for Artificial Intelligence
(DFKI), which approved the experimental protocol. The dataset was manually annotated according to the video
recordings to mark out the starting and finishing timestamps of each variant.
Without invading the participants’ privacy, we show their body shape differences as pressure map examples

from three selected activity variants in Fig. 2. We can see for example Participant 3 (189cm) and 4 (185cm) were
the two tallest while Participant 10 (162cm) was the shortest. Participant 3 and 6 needed to have their shin and
knee on the floor during side plank exercises due to their beginner level. Some participants (2, 3, 7, 12) also
needed to use their knees to support instead of feet during the push-up exercises.

Fig. 2. Pressure map examples of every participant performing activity variant 1 lie down (first row), 9 push-up I (second row),
47 arm swing (third row). The participant’s head aligns towards the top of the pressure map in the first row, and towards the
bottom of the map in the second and third rows. Pressure maps are shown as summary frames within a time window.

4 EXPLORATORY APPROACH FOR MACHINE LEARNING ALGORITHMS
In this section we describe our exploratory approach for developing the machine learning classification algorithms.
The data format of pressure mats is unique among other sensors: the output at every time step resembles an
image; yet they are different from digital images from many aspects as listed in Table 4. The most fundamental
difference is that for pressure maps, every pixel is a valuable sensor that contributes information on both its
location and the point in time; while in digital images, individual pixels are much less significant. In addition, this
work concerns time sequences of pressure maps which can be approximated as videos. However, the temporal
sequence of pressure maps is in nature closer to physical sensors than to digital videos. For example, the time
sequence of average value in a fixed region on the pressure map can be treated as a sensor channel [100], while
this is typically not applicable for videos. Specifically, there has not been an established deep learning method for
processing dynamic pressure maps.
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Table 4. Characteristic Differences Between Pressure Maps And Digital Images

Aspects Pressure Maps Digital Images

Background clean background (no pressure contact) cluttered background

Content pressure profiles with contours (of body parts) details of local features within the shape

Occlusion immune to soft material occlusion (e.g. clothing) prone to opaque soft material occlusion (e.g. clothing)

Pixel value single channel ADC readout (8-bit to 24-bit), every
pixel offers valuable information

typically 8-bit 3-channel RGB, removing single pixels
loses almost no information

Granularity 1.5 cm (this work) <1mm

Scope the object/person are usually only partially visible;
the visible parts of the same object/person may not
be connected

the object/person can be easily covered entirely in the
image

Time series individual pixels can be treated as sensor channels,
more similar to multiple parallel channel sensors

objects/persons usually move to different pixels be-
tween frames, frames offer more useful information
than time series of individual pixels

4.1 Dataset Preparation
The signals were pre-processed by standard spatial and temporal filtering to smooth out the jitters in the signal.
Then within each frame, the raw 24-bit ADC output values of every pixel were normalized so that the mean
value and standard deviation (SD) were both 0.5, thus mean + SD = 1 and mean - SD = 0. The data was saved
with single precision floating point (FP32). The total dataset of 12 participants, each 3 sessions took 114GB of
computer storage.

We first use leave-recording-out as the standard training and testing separation scheme. This would evaluate
the system’s performance on known users, which is suitable for private items, or shared items among a group of
users such as gym members. To avoid over-fitting caused by action similarity in a short period of time, every
session from a participant was recorded on different days and the participant wore different sport clothes. We
targeted classifying both among the 9 categories and among the 47 variants. The time sequence of pressure
maps were segmented with sliding windows, with lengths of 2 seconds (50 samples) and strides of 0.4 second (10
samples) within the continuous repetition period of every exercise variants. Event-based recognition is common
in human activity recognition [11] after the prediction results on individual windows to smooth out the results in
adjacent time windows, or majority voting within a longer event to improve the accuracy, with the assumption
that people usually do not switch activities quickly every second. For example, in a similar work of detecting 10
exercises with a pressure mat [83], the event-based majority voting improved the accuracy by approximately
5%. However, we argue that this is not suitable in our use-case, as we want to distinguish minor variants and
evaluate the quality of workout, which can happen spontaneously during the event in the real world. Therefore,
instead of random K-fold, leave-recording-out validation with individual windows were evaluated: one recording
session from every participants were left out, a random 10% portion of which was reserved for validation and
early stopping, and the remaining 90% of the left out session was used for testing and generating the confusion
matrix. No event-based or short period grouping was used. Since not all exercises lasted for the same duration,
the dataset was balanced by randomly re-sampling the windows from the under-represented classes within each
recording session.
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4.2 Curated Features
Previous works for pressure mapping data classification [3, 60, 83, 99] have established a workflow with conven-
tionally calculated features and probabilistic classifiers. The features would abstract information from the spatial
domain (e.g. image moments) and the temporal domain (e.g. frequency features). We implemented the feature set
proposed in [98] of 17 spatial descriptors times 39 temporal features in Matlab. The details of each feature can be
found in [98], here we only briefly list the features. The spatial descriptors include average value, variance, range,
entropy, mean absolute deviation, the center of mass coordinate, the centroid coordinated of the contour shapes,
area, and Hu’s seven image moments. They are calculated for each frame, and every window is converted to time
sequences of the 17 spatial descriptors. Then the 39 temporal features are applied on the time sequence: average,
variance, range, skewness, kurtosis, waveform length, sum of values grater than mean, power spectrum density
mean frequency, average spectrum density of 5 equally divided frequency bands. Also, wavelet transform with 4
filterbank iterations was calculated and for each filterbank, the mean, variance, range, skewness and kurtosis of
the coefficient vectors were calculated as the last temporal features. In the end, 17×39=663 features are calculated
for each window. Through leave-recording-out cross-validation trial with the Matlab’s Classification Learner app,
we decided the bagged tree classifier offers the best performance of 73.5% for 9 categories (chance level 11.1%)
and 38.7% for 47 variants (chance level 2.13%).

4.3 Deep Learning Models
In our exploratory process, we designed several deep neural network candidate models through examining the
problem task (recognizing 9 exercise categories and 47 variants) and the data format (3-dimensional, spatial-
temporal dynamic pressure imagery). The models were designed according to explainable architectures and the
state-of-the-art that are suitable for the task and data format. They were tested with the same leave-recording-
out validation scheme and the best candidate is a simple yet effective 3D convolution model (Conv3D). A
leave-person-out validation was also carried out to evaluate how the models would perform for strangers.

All deep learning models were trained with the Adam optimizer [50] and the binary cross-entropy loss function.
We followed the procedures and best practices to help avoid over-fitting, as recommended by [10]. The initial
learning rate is 0.001 for the first 20 epochs, and is decreased by a multiplier of 0.1 for every 10 more epochs. Early
stopping is used with a patience of 50 epochs to avoid over-fitting. The deep learning models were evaluated with
a dedicated workstation, with an AMD Ryzen 9 5950X 16-Core Processor, 128 GB of system RAM, and NVidia
RTX A6000 GPU with 48GB VRAM. The software environment was Tensorflow version 2.4.0 with Python version
3.8.11, on the Windows 10 operating system.

4.3.1 3D Convolutions (Conv3D). 3D convolution has been used for machine learning in the video domain [28].
We use 3D convolution layers to correlate the temporal and spatial hierarchical information, and 3D average
pooling layers to condense the spatial-temporal dimensions. The model architecture is illustrated in Fig. 3 and
summarized in Table 6. Since the spatial dimensions and the temporal dimension originate from different physical
concepts, the 3D kernels and pooling size tuple can be different for the two spatial dimensions and the time axis.
We add increasing numbers of filters as the pooling layers decrease the data dimension to avoid information loss.
This process is iterated 4 times until the original input shape (128, 64, 50) is reduced to (8, 4, 5, 80) with the last
number 80 as the channels from the convolution filters.

Normally at this stage, the layer output will be flattened and taken by a fully connected layer as the classifier [86]
or several fully connected layers [64]. Fully connected dense layers dramatically increase the hyper-parameters
with large input shapes, which is usually not a concern for limited channels of sensor data. However, since our
spatial-temporal data is relatively large, flattening the layer output at the stage of (8, 4, 5, 80) in size will result
in dense layers of millions of learnable parameters, making the model more difficult to train with a relatively
small dataset. Therefore, we further reduce the layer output to construct an efficient model. An additional 3D
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Fig. 3. Architecture illustration of the Conv3D model.

convolution layers with 5 filters is used to gradually simplify the latent features into less neuron outputs and
reduce the channel size from 80 to 5. The outputs of the last 3D convolution layer can be considered linear
combinations of the previous larger layers. The resulting intermediate tensor of size (8, 4, 5, 5) is flattened and
a dense layer of 128 neurons with ReLu activation, and another dense layer with the number of classes and
soft-max activation are used as the final classifier.
This way we can contain the model size under 1 million learnable parameters. In comparison, the smallest

ImageNet models listed on Keras Applications is currently the MobileNetV2 [73], which has approximately 3.5
million parameters. Notably the Conv3D model deals with not only spatial image-like information, but time
sequences of 50 consecutive frames. There are several benefits of smaller and efficient models such as the energy
consumption savings and the possibility to be deployed on embedded microprocessors. For the validation process,
the key benefit is that the model is easier to train with limited and niche dataset. 3

4.3.2 Conv3D-Transformer4D. Transformer encoders with multi-head attentions [88] have gained much attention
in the machine learning field thanks to its recent breakthroughs in natural language processing, out-performing
LSTM based models for temporal sequences. With properly designed positional encoding, they are also suitable
for spatial images [24] or temporal sequences of spatial coordinates [93]. We can also adapt the transformer model
for our dataset. However, there is a problem to be solved first: following standard transformer encoder models,
the (128, 64, 50) input will be encoded with 3D positional encoding, flattened, then fed to the inputs of the Q/K/V
of the transformer encoder layer. However, matrix multiplication operations on the flattened vector with the size
of 409600 will be performed inside the attention block, creating tensors with the size of 409600×409600. This is
not a concern for text or image tasks as the input sizes are usually much smaller. But the matrix multiplication
cannot be performed on the NVIDIA A6000 GPU with 48GB VRAM.
Therefore, we first reduce the input size through a few iterations of 3D convolution and pooling layers to

support a realistic transformer encoder layer, resulting in a tensor size of (8, 4, 5, 5), with the last number 5 as
the number of last convolution layer channels. Then we apply 4D sin/cos positional encoding, which is a direct
extension of the 2D sine encoding methods from [93]. The transformer encoder layer is implemented according

3Although our dataset is 114GB, comparatively the 64×64 format of the ImageNet dataset is 6GB; our dataset is still very limited in terms of
observation samples and negative classes.
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Fig. 4. Architecture illustration of the Conv3D-Transformer4D model including the 4D sine encoding scheme.

to [88]. Through trials, we have located the best performing configuration of the transformer encoders to be 4
heads, d_model = 32, d_ff = 32, and 5 encoder layers. The Conv3D-Transformer4D model is illustrated in Fig. 4.

4.3.3 TConv-ImageNet. In [78], a transfer learning approach was proposed for pressure maps to utilize image
classification models with weights pre-trained by the ImageNet dataset to bring knowledge for spatial feature
calculation, out-performing the curated spatial features such as image moments. However, transfer learning with
image classification models does not solve the temporal characteristic of the data. In [78], the time dimension is
simply collapsed by calculating the pixel-wise average in the time window, resulting in a single image per time
sequence.
We propose to amend this transfer learning method by attaching a series of time-wise convolution-pooling

operations to reduce the 50 time steps to 3 channels. So that instead of simple averaging, the information on the
time domain can be extracted and preserved through learned convolution kernels. Then we use MobileNetV2
[73] as the base image classification model.

4.3.4 Time-Distributed ImageNet-TConv (TDImageNet-TConv). Instead of first condensing the time dimension,
we can also first extract spatial features with image classification models, and then process the temporal sequence
of these features with temporal models such as temporal convolution networks (TConv) [54] or LSTM. To realize
this, we need to activate the image model for every time step to feed the pressure map of each time slice and
generate the feature vector. We implemented a time-distributed layer to repeat the base image model while
sharing the parameters across all time steps. The base image model was MobileNetV2 (without the last layer),
which started with ImageNet weights and was also trained together with the rest of the network. The time axis is
down sampled from 50 to 25 through average pooling to contain the model size. Within each time step, the image
model output is flattened and fed to a dense layer of 128 neurons, which generates the feature vector of that time
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Fig. 5. Architecture illustration of the TDImageNet-TConv and TDImageNet-LSTM models.

step. Then the 128 features of 25 time steps are processed by a series of 2D convolution and pooling operations to
reduce the information complexity before the last classification soft-max layer.

4.3.5 Time-Distributed ImageNet-LSTM (TDImageNet-LSTM). Instead of temporal convolution after the time-
distributed feature vector outputs, we also implemented a model with a bidirectional LSTM layer to replace the
temporal convolution as shown in Fig. 5.

4.3.6 ConvLSTM. 2D convolutional LSTM layers [77] are compatible with 3D convolutional layers as both
can be used for 3-dimentional input data. We use the ConvLSTM2D layers provided by Tensorflow through
Keras. ConvLSTM2D essentially uses 2D convolution kernels to extract spacial information in a recurrent LSTM
structure for the temporal information. We simply replace the 3D convolution layers in Conv3D model (Layers
1, 4, 8, 12, 15, 18 in Table 6) with bidirectional ConvLSTM2D, with the spatial dimensions aligned with the 2D
convolution kernels and the temporal dimension aligned with the LSTM sequence axis. All except the last of the
ConvLSTM2D layers return the sequences while the last ConvLSTM2D returns the last time step output.

5 RESULTS AND DISCUSSION

5.1 Distinguishing 9 Categories
First we present the results of the best performing model Conv3D against the curated feature set with bagged
tree classifiers.
The classification results for 9 categories are presented in Fig. 6. It is clear that the combination of curated

features and probabilistic classifiers struggle mostly between Category I (crunches, Fig. 10a) and IV (only back
visible, Fig. 11a), Category II (push-ups, Fig. 10b) and III (planking, Fig. 10c). Category VIII (bridges, Fig. 12b) is
misclassified with III (planking, Fig. 10c), IV (only back visible, Fig. 11a), IX (side plank, Fig. 12c) These misclassified
pairs have the common characteristics that the overall global shapes are similar, and the further distinct visible
traits are finer local details. For example, when the users are performing crunches (Category I), their back and
feet are visible from the pressure map. But as the feet only takes very small area, the feature value may be
overwhelmed by the larger back area, resulting in being misclassified as only back visible classes (Category IV).
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(a) Curated Features with Bagged Tree classifier (b) Conv3D

Fig. 6. Confusion matrix of recognizing 9 exercise categories.

This can be expected as the statistical spatial and temporal features are mathematically less sensitive to local
variations.

On the other hand, the tiered convolution model Conv3D achieves recognition accuracy, macro F1, precision
and recall of 98.6%, with some categories reaching 100% metrics. Notably the validation is performed as sliding
windows without event based smoothing to boost the accuracy by considering adjacent time windows. We
consider this result as highly accurate in the field of sensor based human activity recognition. The Conv3D model
does not suffer from the globally similar, locally distinct problems described above for the conventional machine
learning method. This might have been due to the fact that, the first levels of 3D convolution layers can learn
local spatial-temporal characteristics, such as the shapes of the hand or back. This is because the kernel size
(5, 5, 5) is much smaller compared to the data tensor size (128, 64, 50, 1). As the tensor size decreases in the
spatial-temporal dimensions after several layers of average pooling, the kernel size (5, 5, 5) is then comparable
with the tensor size, e.g. (8, 4, 5, 80). Thus the later 3D convolution layers can learn more global characteristics
across the whole area of the mat.

When we leave one participant out in every validation iteration, the average accuracy and macro F1 score are
reduced to 96.9%. This still outperforms every related work reported in Table 1.

5.2 Distinguishing 47 Variants and Comparing Different Deep Learning Models
Since any of the deep learning models we have implemented can easily reach over 90% accuracy for recognizing
the 9 categories during our testing period, the task may have already been too simple for them. We use the 47
variants as the standard for comparing different deep learning models, because the differences are more obvious
in the accuracy percentage.
For 47 variants inside the 9 categories, the curated features with the probabilistic classifier yield only 38.70%

accuracy as listed in Table 5. Yet this is still an encouraging result considering:
(1) The chance level of 47 classes is 2.13%.
(2) The classification is window based, without event based smoothing among adjacent windows, as we

assume for evaluating the quality of execution in exercises, the minor changes can happen during a bout of
repetitions.
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Fig. 7. Confusion matrix for 47 classes with the Conv3D model.
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(3) The variants inside a category are designed to be very similar motions with only minor changes such as:
range of motions; bent or straight knees. And often the difference are not in contact with the pressure
sensor. For example, even though Variant 26 and 27 are both leg raises; the difference is in Variant 27 the
legs are kept upward, while in Variant 26 the legs flip up and down without touching the floor.

Table 5. Model Comparison for Classifying 47 Exercise Variants

Model Accuracy (%) Epoch Time (s) Parameters Size (MB)

Conv3D 67.50 417 686,088 7.9
Conv3D-Transformer4D 52.97 637 506,476 7.8
TConv-ImageNet 48.71 340 2,690,443 28.2
TDImageNet-TConv 51.22 2670 4,857,092 56.4
TDImageNet-LSTM 48.17 2660 4,990,447 57.5
ConvLSTM 52.85 5915 2,631,609 30.3
663 features + bagged trees 38.70 - - -
chance level 2.13 - - -

Table 5 shows the comparison of accuracy andmodel complexity. First of all, all models have shown significantly
better accuracy than the baseline probabilistic method with curated features and bagged tree classifiers. The
time-distributed models TDImageNet-TConv and TDImageNet-LSTM need significantly more time for each
training epoch. This is because the base image recognition models are activated 25 times for every window.
Overall we can observe that although models trained with ImageNet can offer better accuracy than conventional
features, they are significantly inferior to the Conv3D model. We attribute the improvement from conventional
features to the fact that MobileNetV2 is better at extracting local information. However, since our data has both
the spatial and temporal domains, the separation of using image classification models for extracting spatial
information and other layers for temporal information seem to be the drawback. It is also possible that our dataset
does not have enough activities and observations compared with ImageNet to train the models of millions of
parameters, which is a common problem in sensor-based human activity recognition.
On the other hand, 3D convolution layers overcome the above mentioned possible roadblocks for image

classification models. The 3D convolution kernels combine the spatial dimensions and temporal dimensions in a
single operation. This will also benefit in situations like when a body part slides on the mat surface. Although
transformer encoder is a promising and trending solution with a smaller model; our data format cannot fully utilize
its potential without further separation of the images into patches and deeper exploration of spatio-temporal
transformer architectures. The raw input size of (128, 64, 50), after flattening 409600, cannot fit inside the matrix
multiplication with existing GPU hardware. If we put that into the context of natural language processing, this
input size would mean the transformer encoder will process 409600 words in one shot, which is unrealistic. In
order to fit the tensor inside, we need several layers of 3D convolution and pooling, which already are capable of
extracting both local and global, spatial and temporal information.

ConvLSTM model also follows the idea of building a model dedicated to analyse the spatial-temporal format of
this dataset, with the recurrent LSTM for the time sequence and the 2D convolution kernels inside the recurrent
layer for the spatial information. Although ConvLSTM provides better accuracy (52.85%) than models involving
pre-trained image classification components, it takes the most time to complete a single training epoch. It appears
that the recurrent operation is not fully utilizing the parallel computing power of the GPU efficiently, which is
common for recurrent models. [47]

The best performing deep learning model Conv3D yields 67.5% accuracy and 68.1% macro F1 score, with one
of the smallest training epoch time and model size. Thus through our exploratory approach, we have located
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Fig. 8. The distributions of precision, recall and F1 scores of 47 variants (Conv3D model).

a simple, efficient yet effective model for this specific type of data and use case, without any transfer learning.
Even though the Conv3D-Transformer4D has less parameters, is has longer epoch time. This is mostly due to
the matrix multiplications inside the encoder layer. Thus, Conv3D-Transformer4D has more resource footprint
than Conv3D. The confusion matrix of Conv3D with 47 classes is presented in Fig. 7. First of all, there is no
noticeable cross category misclassifications, which is significant because the model for 47 classes does not have a
pre-trained component to classify the 9 categories separately, as the model is summarized in Table 6. This implies
that (1) a parallel model with 9 categories is not going to improve the result of the 47-class model and a single
model for 47 classes is effective enough; (2) a single Conv3D model with 47 variants prediction output can also
be used for classifying the exercise categories.
We also plot the detailed distributions of the precision, recall and f1 scores of every single variant in Fig. 8.

Combining the confusion matrix previously shown in Fig. 7, some variant classes yield more than 80% in the
metrics of concern, mainly from Categories IV (Only Back Visible), V (Back and Arms Visible), VII (Arch Step)
and VIII (Bridge).
For some variant classes, the precision and recall may differ quite significantly, for example Variant 4, 26, 36,

38, etc. which is usually caused by that one class is often misclassified as other classes, but not the other way
around. Since our dataset is balanced, this unequal precision and recall eventually cancels each other and thus
the macro precision, recall and F1 score are similar with the overall accuracy.
The unilateral misclassification usually happens between two classes, such as Variants 36 Step Backwards

and 38 Lunge Backwards., causing one class has high precision and low recall, while the other has the reversed
metrics. The usefulness of such cases depends on the specific activities. In practice, for these two variants, Step
Backwards is the lower quality of execution, and the focused error to correct from the fitness trainers’ perspective.
Thus a high recall (95%) would benefit the use case as most of the poor quality of execution exercises can be
identified. As for the resulting lower recall of the correct variant Lunge Backwards, the trainers think there is no
harm for reminding the trainee of the correct execution even if it is redundant. The same can be said for the
pairs Variant 28 Leg Swing I and Variant 29 Leg Swing II, with Variant 28 as the lower quality of execution to be
improved and Variant 29 to be promoted.
If the relationship is reversed, where the poorer quality variant has higher precision but lower recall against

the desired variant, the result would be less desirable. Such as Variant 26 Leg-raise I (bad quality) and Variant 27
Leg-raise II (good quality). Since the system would misjudge some of the poor executions as of better quality.
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With the leave-participant-out validation scheme for 47 variants, the performance metrics of the Conv3D
model dropped significantly by around 11% to 56.1% for the accuracy, macro F1, precision and recall. Despite
the performance drop, the metrics are still well above chance level and every other methods under the more
optimistic leave-recording-out scheme listed in Table 5. The performance drop could be caused by the intrinsic
behaviour difference across participants, especially with the diversity in our participant pool, combined with the
activity definition that is meant to introduce and quantify minor differences. As we further discuss in Section 6,
the leave-participant-out result is less significant in our envisioned use case.

5.3 Knowledge Recycling
We then take a closer look at the variants within each categories. Apart from examining the confusion matrix in
Fig. 7, we also trained the Conv3D model with variants from every single categories separately, by changing
the last dense layer size to the number of variants in a category. To save training time, and at the meanwhile
reducing the carbon footprint of our research, we devised a knowledge recycling process.
(1) We divide the Conv3D model into feature encoding layers (layers 1-16 in Table 6 and the classifier layers

(layer 17-22 in Table 6).
(2) The feature encoding layers are reused by keeping the parameters from the previous task as initialization

with different classification task. For a different classification task, the classifier layers aremodified according
to the number of classes and are initialized randomly without prior weights.

(3) The order of classification tasks are: (1) 9 categories, (2-10) variants in individual categories, (11) 47 total
variants.

Fig. 9. Validation accuracy example during the training epochs of 47-class Conv3D with and without reusing the feature
convolution layers.

From our trials, the knowledge recycling approach and fresh initialization approach (vanilla) eventually reached
similar accuracy in the final task; but with knowledge recycling, the models reached the best accuracy much
earlier than those without recycling. For example, Fig. 9 shows the epoch validation accuracy values of two
Conv3D models for 47 classes with and without knowledge recycling. The feature encoding layers from the
model with recycling have already been trained previously with other classification tasks from 1-10 mentioned
above. Benefiting from better weight initialization, this model reached the best performance within the first
10 epochs while the vanilla model needed more than 100 epochs to search for the optimal parameters. In the
practical context, such a smart mat powered by AI could be provided as a service with the equipment to bridge
fitness trainers and users, such as the current commercial solutions Peloton®bikes, VAHA®fitness mirror, etc.
Knowledge recycling would bring the benefit of fast retraining a model when the coaches define new exercises
and the corresponding data are added to the service. Reduced training time also directly lead to faster service
update to the end users and less wasted resources (e.g. computation infrastructure and electricity) caused by
training a blank network [76, 85].
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(a) Category I: Crunches

(b) Category II: Push-ups

(c) Category III: Planking

Fig. 10. Confusion matrix of recognizing variants inside individual Categories I-III and the pressure map examples shown as
per-pixel sum over the time window.

5.4 Variants within Categories
Fig. 10, Fig. 11, and Fig. 12 show the confusion matrix and pressure map examples for individual categories. The
distributions of misclassifications of individually trained models are similar with those from the single model
trained with total 47 variants. Thus we will mostly refer to the confusion matrix of individual categories. The
following part of discussions should be considered together with the class definitions in Section 3.2, and the
overall confusion matrix in Fig. 7.

5.4.1 Category I: Crunches. In Fig. 10a, the static reference pose is clearly distinguished from other classes. The
participants’ head points upwards in the pressure maps. There are misclassifications between low and medium
range of motion (Crunches and Side Crunches I and II), but are well separated from the high range of motion
variants (Crunches and Side Crunches III). The samples of Side Crunches are sometimes misclassified as the
neutral crunches of corresponding range of motion, but the neutral crunches are not misclassified as side actions.
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This is most obvious for the highest range of motion side crunches, which can be expected as the upper body
does not touch the mat at the end position. The fitness trainers suggested that detecting the range of motions
itself despite the misclassification between neutral and side actions is helpful. The trainees are typically aware
of the differences between neutral and side actions; while for the range of motion they typically need external
assistance such as a mirror or training partners to verify.

5.4.2 Category II: Push-ups. The participants’ feet are in the upper part of the pressure maps in Fig. 10b. The
shoulder-wide (Variant 8, 9, 10) and wider placements of hands (Variant 11, 12) are clearly separated from each
other. The misclassifications may be attributed to the height differences of our participants, that some shorter
participants’ wider placements may be closer to the normal hands placements. Although the half (Variant 9) and
full (Variant 10) range of motions are separated from each other, a major part of those samples are misclassified
as the static hold push-up. Due to the difficulty of the last alternating push-up (Variant 12), some participants
could not fully perform this exercise and some samples may end up similar with the wide push-up (Variant 11).

5.4.3 Category III: Planking. Similar with Category II, the participants’ feet point upwards in the pressure maps
in Fig. 10c. The dynamic activities Plank Dip (Variant 16), Plank Push-up (Variant 17), and Wide Plank Push-up
(Variant 18) are well separated from each other. Although the static planking are often misclassified, Slack Plank
(Variant 14) is still recognizable with 62% accuracy, which is often the wrong pose the fitness trainers try to correct.
The slack plank is by design difficult for current vision based pose estimation models including OpenPose[15]
and VideoPose3D [66] as their skeleton systems have only one single vector to represent the torso.

5.4.4 Category IV: Only Back Visible. As shown in Fig. 11a, the model can very well distinguish all the exercise
variants in this category. The least recognizable exercise is leg-only cycling (Variant 22), without motion from
the shoulders. It is mostly misclassified with the static reference pose, which in practice is still helpful because
this variant is considered the less effective exercise without engaging much of the core muscles according to
the fitness trainers. For the two leg-lift variants 23 and 24, it was also pointed out by the trainers that pressing
the spine to the floor during the exercise provides better muscle engagement compared to leaving the lower
back off the floor, and is often difficult to observe externally as the lower back is obstructed by the user’s own
body and clothing. This is again a weakness for video-based pose estimators because of their over-simplified
torso representation. Our approach can distinguish these two quality of execution variants with a relatively high
accuracy over 70%, which can be helpful in improving exercise QoE.

5.4.5 Category V: Back and Arms Visible. The variants in Fig. 11b were all exercises with leg motions when the
users’ legs were not on the floor, with no intended motions from the body parts that were touching the floor.
Considering this, the model can still recognize these variants with 67.4% accuracy. For the two variants leg-raise I
and II, the fitness trainers commented that in general keeping the legs up during the leg-raise exercise (Variant
27) requires more constant engagement of the core muscles. Thus, it is helpful in practice that these two variants
can be well distinguished. Also leg swings with bent knees (Variant 28) is considered the easiest of all these
exercises. This variant with high accuracy but also high false positive can also be useful for an fitness assistant
application to encourage users to push themselves. In Fig. 7, however, when the model is trained with the entire
dataset with all 47 variants, leg swing variants and leg raise variants are clearly separated from each other.

5.4.6 Category VI: Standing Up. Fig. 11c shows the variants performed with a standing position. Except for Tip
Toe (Variant 34), the sensing system and model have reached their limit in recognizing any minor differences as
all of the relevant motions are not directly connected to the floor. Tip toe is clearly recognizable because the
heel leaves the floor during a repetition. This then may require the combination with further kinematic sensing
approaches such as IMUs or videos. However, in Fig. 7, Variant 30 can still be recognized with 74% precision and
72% recall when the model is being trained with all variants together. This may be contributed by the fact that
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(a) Category IV: Only Back Visible

(b) Category V: Back and Arms Visible

(c) Category VI: Standing Up

Fig. 11. Confusion matrix of recognizing variants inside individual Categories IV-VI and the pressure map examples shown
as per-pixel sum over the time window.

the data samples within Category VI is not enough to have the model learn temporal differences between static
and dynamic activities, while the entire dataset from other categories can help the model learn such information.

5.4.7 Category VII: Arch Step. In Fig. 12a, we can observe that the motions of stepping forwards (Variants 35, 37)
and backwards (Variants 36, 38) are clearly separated from each other with zero misclassifications. The physical
difference between stepping (Variants 35, 36) and lunges (Variants 37, 38) is that in lunges, the knee of the leg
behind should bend towards the floor, forcing the leg muscles to engage more to keep the balance. This then
explains the misclassifications between these two types of motions as the major difference is not in direct contact
with the floor. However, in Fig. 7, these misclassifications are improved and more equally balanced.

5.4.8 Category VIII: Bridge. Fig. 12b shows the results of the bridge exercises. Single hip thrust (Variant 41) is
clearly separated from the other activities, as only one foot is visible at a time. The dynamic hip thrust samples are
sometimes misclassified with the static bridge variants. The fact that these motions were mostly off the ground,
and not sufficiently propagated to the pressure mat might have cause this misclassification. Overall, the model
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(a) Category VII: Arch Step

(b) Category VIII: Bridge

(c) Category IX: Side Plank

Fig. 12. Confusion matrix of recognizing variants inside individual Categories VII-IX and the pressure map examples shown
as per-pixel sum over the time window.

can distinguish the static bridge, hip thrust and single leg hip thrust with high precision and recall for evaluating
the quality of execution.

5.4.9 Category IX: Side Plank. This category is the most difficult to recognize as shown in Fig. 12c. It was expected
during the design of the experiment as all of the relevant motions are off the ground. The body parts that are
touching the ground are rigid elbows and feet on very small areas, and the variations are trivial. For example, the
only difference between Variant 46 and Variant 47 is whether the face of the user is following the moving hand.
Although side plank as a whole can be distinguished from other categories with 98% accuracy as shown in Fig. 6,
the system can no longer distinguish further quality of execution details. The fitness trainers also noted that the
relatively high precision of Variant 43 Slack Side Plank as shown in Fig. 7 and Fig. 8 (74%) is quite helpful as this
is the most common mistake they will look for from the trainees during side plank exercises.
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6 FURTHER DISCUSSIONS AND LIMITATIONS

6.1 Further Results Discussion
We have investigated the variants in every exercise category to discuss the effectiveness of QoE evaluation such
as posture correctness and range of motion in Section 5. Some of the mis-classifications in the models trained
with only the data samples from individual categories were significantly reduced when the model was trained
with the entire dataset, such as Variant 28 and 30. This might be due to the fact that, although the data from
another category are visually different, they may still contribute low level information that are not sufficient or
obvious in the smaller scope of the category. Although ensemble learners or hierarchical deep learning models
[92] have been shown to be effective for structured class distributions such as our dataset, our results imply
that this is not needed in this application. Thus, with a single monolithic Conv3D model, it is not necessary to
design a nested structure of smaller learner models. In practice, this will be useful as the model can evaluate the
quality of execution and categorize the exercise type at the same time, while the users are performing a variety
of exercises, which is common in body weight exercises performed on sports mats.

Although transfer learning from the image domain has previously proven helpful for limited pressure sensor
data [78], in this work we have shown that a smaller network built specifically for the spatial-temporal pressure
maps data significantly outperforms transfer learning implementations. The fundamental differences of pressure
matrix data from digital images and videos as we listed in Table 4, together with the larger dataset than previous
works with pressure matrix [78, 83], may have contributed to the better performance of the Conv3D model.

6.2 Further Use Case Discussion
The fitness trainers involved in the study design process gave further comments apart from the specifically
targeted suggestions on individual categories in Section 5.4. We envisioned a scenario where their trainees can
use such a smart mat at their home, in combination with directed personal training sessions at the gym; and the
coaches can access their home workout data to plan for new training sessions. Overall, the trainers thought the
accuracy of 67.3% of detecting 47 variants is sufficient for them to have a statistical idea of how the trainees are
keeping to the personal training programs on the quality of execution level. Furthermore, the variants within
some categories can be recognized with much better precision and recall (above 80% or 90%), those categories
mostly cover exercises while the person is lying on the back, stepping or lunging. The trainers thought this can
be very useful in detailed performance and quality analysis. Although the variants of crunches in Category I
yield less than 60% classification metrics, the trainers agreed that most of the misclassifications are between side
and neutral crunches of within the same range of motion. It might have been overly aggressive in designing the
variant details; while in practice, identifying the range of motion in this category alone is already quite useful.
The trainers also noted that being able to detect the slack torso poses from correctly engaged torso in various
exercises is very significant, as (1) these are the common mistakes the trainers seek to correct, (2) the slack can
be difficult to visually spot due to angle, self obstruction and clothing draping from the body.

When asked about their opinions regarding the prediction performance degradation from leave-recording-out
to leave-person-out, the fitness trainers expressed the leave-recording-out result could be more suitable for
their envisioned use cases, where the trainees would attend personal training sessions to provide the training
data needed for leave-recording-out to evaluate their home workout outside the coaching sessions. The similar
setting is also suitable for their fitness classes where the members are known to the gym and trainers. The 96.9%
categorization accuracy and F1 score are sufficient for high level exercise logging. While exercise category logging
such as the fitness tracking functions on current smart watches can utilize leave-person-out results; we consider
quality of execution shall still involve professional coaches on an individual basis. Even in the traditional fitness
coaching models, the trainers usually tailor personalized training programs for individual trainees instead of a
single program that fits all.
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However, the trainers emphasised in the end that their opinions may be restricted by various factors such as
region and the scope of their trainees, and thus suggested us to primarily refer to the sports science literature
as we did in Section 3.2 and Section 5. Our envisioned use case is also subject to the actual consumer market,
profitability, interactions and user experience design, and many other factors. Therefore, we would leave gauging
the usefulness of our approach in evaluating the quality of execution to the broader sports science and ubiquitous
computing communities with our objective findings.

6.3 Towards Effective Machine Learning Models
The knowledge recycling can be helpful in practical use cases when new exercises are introduced into a growing
dataset. The models can be retrained without many epochs and thus reducing the total machine learning carbon
footprint. During our model exploration, using max pooling instead of average pooling has lead to worse
performance. This may be also due to the characteristic of the pressure matrix data, that every pixel is a valuable
sensor. While in digital images, individual pixels are often manipulated without causing information loss on
the total image. On the other hand, max pooling is more aggressive, as it picks only one input from the pooling
kernel; it may not be as suitable for pressure matrix as average pooling, which uses all the input values from the
pooling kernel.
In our model, the last classifier layers have approximately 100,000 parameters thanks to Layer 15 which

significantly reduces the tensor size. If we remove Layer 15 and directly add the classifier layers after Layer 14,
the classifier layer would have over 1.6 million parameters, most of which is from the second-last dense layer.
And the model would have totally 2.17 million parameters. As mentioned above, the larger model will be more
difficult to train considering the limited dataset. Layer 15 does not necessarily reduce information, as each output
is a linear combination of a learned kernel from the previous layer with the output shape of (8, 4, 5, 80). We have
tried further reducing the tensor dimension before attaching the dense layers by adding another conv3d layer
after Layer 16 with 1 channel and output shape of (8, 4, 5, 1), then reshaping this tensor to (8, 4, 5) and adding
another conv2d layer with 2 channels, with the output shape (8, 4, 2). This way, the classifier layers have less than
4000 parameters and the total model has 100,000 less parameters compared to the model in Table 6. However, this
even smaller model yields approximately 5% less accuracy than the Conv3D model (which still outperforms any
other alternatives). This might be a point for compromise between efficiency and accuracy, which is relevant for
edge or mobile machine learning in the future.

6.4 Advantages and Limitations
Overall, we can observe that the accuracy for a certain variant is less when the relevant motions of the exercise
variant is away from the pressure mat. This is also observed by the study in [17] using pressure maps to estimate
poses, that the pose estimation uncertainty increases when the body part is off the pressure sensing surface.

Although pressure sensors, motion sensors and computer vision all have their corresponding advantages in the
sports recognition domain; the physical information derived from the ground surface is fundamentally different
from either the motion on a person’s body or the visuals from external angles. Humans’ interaction with the
supporting surfaces is one of the fundamental physical aspects. This aspect is especially important in our targeted
use case where most of the exercises are carried out with many parts of the body in contact with the ground.
Apart from the practical concerns that we have discussed in Section 1.1, some activities and motions of interest
that wearable motion or vision methods might be prone to errors, are trivial tasks for the floor pressure mat. For
example, whether the lower back is suspended or pressed on the floor during the leg raise exercise (Variants
26 and 27) is difficult to observe even with human eyes, and the current vision-based pose estimation skeleton
models do not have joint points in the torso. As another one of its trivial capabilities, the pressure mat also
provides the absolute measurement of distance with the granularity of the sensing point’s pitch to evaluate the
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hands or gait widths for example. On the other hand, approximating distance is still a difficult task for either
motion sensors and monocular cameras, which might involve complex inverse kinematics and 3D projections.
A combination with computer vision methods might offer complimentary coverage, as vision-based pose

estimation is more suitable for upright positions, which are difficult to distinguish from the floor pressure. While
floor based pressure mat shows reliable result in most flat oriented positions and when many parts of the body are
in contact with the floor, as these postures often cause self occlusion by the user[42]. It could also be interesting
to investigate if the lying pose estimation methods with pressure mats introduced in [17] can be expanded with
poses related to exercises and fused with synchronized video streams to improve the pose tracking results.
Our classification results were based on individual windows, treating them as independent from each other.

While time order based or event based smoothing between adjacent windows usually improves the recognition
results such as the work in [83], we consider this not applicable in practical quality of execution evaluations, as
quality can change during a series of repetitive movements. It may still be applicable if short period window
smoothing is applied across a few seconds without considering an event of defined starting and finishing time,
which may help further improve the accuracy. But this will be difficult for other future studies to compare with
our study. Thus we adhere to the standard leave-out data split scheme.

The knowledge recycling process showed we can reduce training epochs by better weight initialization when
new exercises are being added to the overall learning task. However, the scale of the dataset from our experiment
is not enough to investigate problems such as catastrophic forgetting which could happen when a deep learning
model is reused and new learning tasks are added [46].

While we designed a study that mimics a normal, complete body weight exercise routine so that the participants
could finish each recording within one hour, there are many more categories of exercises, or variants of the
exercises defined in this work beyond our dataset. For example, Dhahbi et al. [23] analysed 46 variants for
push-ups alone in a sports mechanics study. In [36], several variations of hip thrust exercises were investigated,
involving positions and angles of the feet. There are also other exercise categories such as quadruped positions.
The dataset contains mostly medium tempo exercises. We would like to further investigate the quality of

execution in faster exercises such as high-intensity interval training (HIIT) in our future work. One challenge of
faster paced exercises is the difficulty to establish a quality oriented data collection protocol. For example, at the
planning phase of our dataset, we have considered variants of different speeds such as fast or slow push-ups,
which were investigated in [6]. However, through trials we have found it was difficult for the participants
to control the speed while performing the exercise variant correctly according to the desired quality metrics,
especially for beginners.

Quality of execution in physical sports is a vast topic, and our Quali-Mat is only a beginning towards evaluating
the quality of execution based on sensor and machine learning.

7 CONCLUSION
In conclusion, Quali-Mat explored evaluating the quality of execution (QoE) in body weight exercises with a
pressure sensing sports mat and efficient machine learning models. A Quali-Mat dataset containing 12 participants,
with each 3 recording sessions were gathered, performing 47 variants of 9 categories from common full-body
exercises, which were defined according to quantifiable quality metrics. Quali-Mat showed that an appropriately
designed neural network model specifically for the spatial-temporal pressure mat data can achieve 98.6% accuracy
and macro F1 score for recognizing the 9 exercise categories outperforming the state of the art mobile, ubiquitous
and wearable sports activity categorization studies. Beyond the scope of the categorization among the majority
of the state of the art, Quali-Mat achieved 67.3% accuracy and 68.1% macro F1 score for distinguishing the 47
QoE variants, which were designed to have only trivial differences within a certain type of exercise. Overall,
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Quali-Mat allows quantifying workout quality, even for some variants that the relevant motions are not on the
floor.
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A APPENDIX

A.1 Model Details
The details of the best performing model are listed in Table 6.

A.2 Leave Person Out
While leave session out emulates the system’s performance within a known group of users, it does not provide
insight on how the system will perform on new users that were not included in the training dataset. We thus
performed leave-person-out validation with the best performing model (Conv3D), following the similar leave-out
preparation procedure described in Section 4.1, but change leaving a recording out to leave a person’s data out.
Every participant’s data was kept in the testing data in every iteration. The process was repeated once for each
participant. The accumulated confusion matrix, precision, recall and F1 score of every class from 9 categories and
47 variants are shown in Fig. 13 and Fig. 15. The individual’s accuracy distribution is also shown in Fig. 14.

Compared with the leave-recording-out results from Section 5, the metrics including accuracy, macro precision,
recall and F1 score remain highly accurate, with slight degradations of less than 2%, and still outperform every
state of the art listed in Table 1. Therefore, even when tested with strangers, the system can classify the exercise
categories with 96.9% accuracy.

When it comes to distinguishing 47 variants concerning the quality of execution of exercises, the performance
metrics have dropped significantly by around 11% to 56.1%. We suspect this is caused by the combination of
two factors: (1) the classification task is to distinguish minor variations that is already difficult to distinguish by
human observers; (2) in activity recognition, cross-person validation is known to introduce similar variations
caused by differences from personal behaviour, body shape, etc.

Despite the performance degradation for 47 classes, the misclassifications are still mostly contained within every
category. This can be considered significant since the model for recognizing 47 variants were not exposed to the
information about the 9 categories. The miscassifications and the distribution of individual class precision, recall
and F1 also reflect the trend shown in the leave-recording-out result in Fig. 7. This result sill outperforms every
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Table 6. Model Summary of Conv3D for 47 classes

Layer (type) Output Shape Kernel Parameters

Feature Encoding Layers
1: conv3d (None, 128, 64, 50, 10) (5, 5, 5) 1260
2: average pooling3D (None, 64, 32, 16, 10) (2, 2, 3) 0
3: dropout (None, 64, 32, 16, 10) 0
4: conv3d (None, 64, 32, 16, 20) (5, 5, 5) 25020
5: batch normalization (None, 64, 32, 16, 20) 80
6: average pooling3d (None, 32, 16, 5, 20) (2, 2, 3) 0
7: dropout (None, 32, 16, 5, 20) 0
8: conv3d (None, 32, 16, 5, 40) (5, 5, 5) 100040
9: batch normalization (None, 32, 16, 5, 40) 160
10: average pooling3d (None, 16, 8, 5, 40) (2, 2, 1) 0
11: dropout (None, 16, 8, 5, 40) 0
12: conv3d (None, 16, 8, 5, 80) (5, 5, 5) 400080
13: batch normalization (None, 16, 8, 5, 80) 320
14: average pooling3d (None, 8, 4, 5, 80) (2, 2, 1) 0
15: conv3d (None, 8, 4, 5, 5) (5, 5, 5) 50005
16: batch normalization (None, 8, 4, 5, 5) 20
Classifier Layers
17: dropout (None, 8, 4, 5, 5) 0
18: flatten (None, 800) 0
19: dense (None, 128) 102528
20: dropout (None, 128) 0
21: batch normalization (None, 128) 512
22: dense (None, 47) 6063

Total params 686,088
Trainable params 685,542
Non-trainable params 546

other method we have explored in Table 5 which reports the metrics with the more optimistic leave-recording-out
validation scheme.

A.3 Visual Differences of 47 Variations
In this section we include visual examples of all the exercise variants listed in Table 2 and Table 3. Class 2-4 are
already presented in Fig. 1, therefore they are excluded here. The static poses, especially the reference classes of
each category (Cat), are shown in Fig. 16. For the dynamic motions, the first pressure map is the summary of the
time window (as in Fig. 1), and the following pressure maps are frames inside the selected window. Only every
other frame, and only 19 of the 50 frames of the window are shown so that most of the time window can be fit in
the page. For some exercise variants, while the pressure imagery does not have significant changes, the motion
can be distinguished from the overall pressure changes caused by he momentum transferred from the user to the
mat. In such cases, a time plot of the average pressure during the 50 frames window is presented replacing the
second row of pressure maps. An illustration video can also be found on the online repository.
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Fig. 13. Confusion matrix of Leave-Person-Out for 9 exercise categories with the Conv3D model.

Fig. 14. Boxplot of the test individual’s accuracy distribution in Leave-Person-Out
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Fig. 15. Confusion matrix of Leave-Person-Out for 47 classes with the Conv3D model.
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(a) Class 1: Cat I f ref. Lie Down (b) Class 8: Cat II ref. Hold Push-up

(c) Class 13: Cat III ref. Standard Plank (d) Class 14: Slack Plank

(e) Class 19: Cat IV ref. Back (f) Class 25: Cat V ref. Hold Leg-up

(g) Class 30: Cat VI ref. Stand (h) Class 39: Cat VIII ref. Bridge

(i) Class 42: Cat IX ref. Side Plank (j) Class 43: Slack Side Plank
Fig. 16. Pressure map examples of the static reference and variant poses.
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(a) Class 5: Side Crunches I. Lower range of motion, regulated by hands pointed to the sky
with arms straight.

(b) Class 6: Side Crunches II. Medium range of motion, regulated by both hands pointed to
each knee alternatively.

(c) Class 7: Side Crunches III. Higher range of motion, regulated by elbow touching the
opposite knee alternatively.

(d) Class 40: Hip Thrust. Same pose as Class 39, but move hip up and down with the help of
glutes.

(e) Class 41: Single Hip Thrust. Same motion as 40, but with only one leg supporting the
body and the other leg extended.

Fig. 17. Pressure map examples of Classes 5-7 from Cat I Crunches and Class 40-41 from Cat VIII Bridge.
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(a) Class 9: Push-up I. Hands shoulder wide and half range of motion, regulated by not fully
extending elbows.

(b) Class 10: Push-up II. Hands shoulder wide and full range of motion, regulated by having
elbows fully extended.

(c) Class 11: Push-up III. Hands wider than shoulder, full range of motion.

(d) Class 12: Alternating Push-up. Alternating single side push-up, hands wider than shoulder.

Fig. 18. Pressure map examples of Classes 9-12 from Cat II Push-ups.
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(a) Class 15: High Hip Plank. Raise hip higher than standard straight plank.

(b) Class 16: Plank Dip. Standard Plank but move body forward and backwards around the
elbow support.

(c) Class 17: Plank Push-up. Hands are chest wide, change between plank position and push-up
position.

(d) Class 18: Chest Wide Plank Push-up. Hands are chest wide (same as 17), only push-up
without placing elbows on the mat.

Fig. 19. Pressure map examples of Classes 15-18 from Cat III Planking.
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(a) Class 20:Leg-up Crunches. Lift legs, crunching exercise till elbows touch the knees.

(b) Class 21: Alternating Cycling. Lift legs, alternately touch one elbow with the opposite knee,
while the other opposite elbow-knee pairs are extended.

(c) Class 22: Leg-only Cycling. Lift elbows, empty cycle with only leg motions.

(d) Class 23: Leg-lift I. Raise legs from flat position to vertical position, with lower back pressing
on the mat, this variation engages the abdominal muscles more effectively.

(e) Class 24: Leg-lift II. Same leg motion as Class 23, but have lower back suspended with an
arched spine, and instead use hip as the anchoring point, this variation engages the abdominal
muscles less effectively.

Fig. 20. Pressure map examples of Classes 20-24 from Cat IV Only Back Visible (to the mat).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 89. Publication date: June 2022.



89:42 • Zhou et al.

(a) Class 26: Leg-raise I. Raise legs vertically and upwards from the relaxed horizontal position
with lower back suspended.

(b) Class 27: Leg-raise II. Similar as 26, but always keep thighs upwards without lowering legs
to the horizontal position, this variation engages the torso muscles more than Leg-raise I.

(c) Class 28: Leg Swing I. Swing legs from the left and horizontal, then upwards vertical, to
the right horizontal positions, with knees bent.

(d) Class 29: Leg Swing II. Similar as 28, but knees are extended straight.

Fig. 21. Pressure map examples of Classes 26-29 from Cat V Back and Arms Visible (to the mat).
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(a) Class 31: Shallow Squat. Empty squat, half range of motion, regulated by the hands reach
the knees with relaxed arms.

(b) Class 32: Deep Squat. Empty squat, full range of motion, regulated by the elbows reach
the knees with folded arms.

(c) Class 33: Toe Touch. Bend downwards and reach toes with fingers repetitively, heels may
leave the mat.

(d) Class 34: Tip Toe. Raise the heels repetitively.

Fig. 22. Pressure map examples of Classes 31-34 from Cat VI Standing Up.
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(a) Class 35: Arch Step Reference I. Alternately step forwards and then back, with one foot
staying behind

(b) Class 36: Arch Step Reference II. Alternately step backwards and then front, with one foot
staying in front.

(c) Class 37: Lunge Forwards. Step similar as 35, but with the knee behind bent downwards.

(d) Class 38: Lunge Backwards. Step similar as 36, but with the knee behind bent downwards.

Fig. 23. Pressure map examples of Classes 35-36 from Cat VII Arch Step.
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(a) Class 44: Side Hip Thrust. Similar pose as 42, and move hip up and down.

(b) Class 45: Side Leg Raise. Similar pose as 42, and raise and lower the leg that is not supporting
the body.

(c) Class 46:Arm Swing I. Similar pose as 42, and swing the free arm from below the body to
the vertical upwards position, face the front of the body.

(d) Class 47: Arm Swing II. Similar motion as 45, but rotate head and face the moving hand.

Fig. 24. Pressure map examples of Classes 44-47 from Cat IX Side Plank.
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