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ABSTRACT

For planetary robotics autonomous prospecting, robust,
long-term navigation becomes crucial. The goal of the
research project PerSim is to develop technology to ad-
dress some of the challenges of active perception for re-
source identification and long-term navigation strategies
in an integrated architecture. The fist assessment ad-
dressed autonomous selection of regions for inspection,
combined arm-base approach, close range data acquisi-
tion and categorization of the acquired spectral data us-
ing Deep Learning. Furthermore, autonomous naviga-
tion including potential failure prediction and avoidance
are also scoped. The following targets are pursued in
the second assessment: an internal simulation to enhance
the system safety and provide means for autonomous on-
board safe testing, an episodic memory representation to
serve as basis for the implementation of long term adap-
tation and finally a repertoire of behaviors to enable dif-
ferent motion modalities. The paper provides insights on
the approaches and initial results.

Key words: Planetary Exploration; In-Situ Resource Uti-
lization; Robot Autonomy.

1. INTRODUCTION

Technologies for identifying space resources will play a
very important role in the future Moon and Mars mis-
sions. In this context, the capabilities of planetary explo-
ration robots will become crucial for the discovery, col-
lection and transportation of natural resources to Earth.

Resource Characterization (RC) is an essential prerequi-
site for efficient In-Situ Resource Utilization (ISRU) in
order to secure and extend planetary missions and its sig-
nificance was presented in [23]. Another advantage of
RC technology development comes from the implemen-
tation of innovative scientific advancements to space ex-
ploration.

To evaluate the contributions in PerSim, two robotic plat-
forms with similar mechanical characteristics are being

used: Asguard IV1 and Coyote III [29] (1). These
are examples of hybrid rovers, where the advantages of
wheeled and legged locomotion are combined. The rim-
less wheels allow the rover to overcome larger obstacles
than normal wheels would. On the other hand, the mech-
anism is not as complex as an articulated leg, reducing
the points of failure and the complexity associated to the
control. One of the challenges that these systems pose
is the minimization of vibrations on the rover body due
to the impact timings of the wheels, specially on non-
deformable surfaces. One main difference between As-
guard IV and Coyote III is the arm that can be attached to
Coyote III. On the end effector of such arm is planned to
install a camera module incorporating 3D and hyperspec-
tral imaging for close range resource analysis.

The goal is to develop integrative software modules that
create a highly realistic representation of the environ-
ment with data relevant for RC gathered autonomously
by a planetary rover. This data will help identify the
mineralogical composition of materials such as stones,
regoliths, water or ice. In particular close range 3D
and hyperspectral measurements are targeted since these
can provide higher precision localization of desirable re-
sources than orbital data.

(a) Asguard IV (b) Coyote III

Figure 1: Rovers used in the project to test the com-
ponents (photos by Thomas Frank and Florian Cordes,
DFKI)

Multi-Level Surface Maps (MLS) for autonomous navi-
gation are generated based on the environment represen-

1Asguard IV: https://robotik.dfki-bremen.de/en/
research/robot-systems/asguard-iv

https://robotik.dfki-bremen.de/en/research/robot-systems/asguard-iv
https://robotik.dfki-bremen.de/en/research/robot-systems/asguard-iv


Figure 2: PerSim architecture overview.

tation [32]. In addition, a more detailed version of the
MLS, which includes surface inclinations, is used to in-
stantiate Internal Simulations. Another goal is to leverage
such virtual environments on-board to enable the nav-
igation software to foresee as precisely as possible the
effects of potential actions. This will both enhance the
safety in critical autonomous operations and minimize
the risk when using learning approaches. Finally, the nav-
igation experiences are stored in an Episodic Memory as a
foundation to support the long-term learning techniques.
A graph representation, currently in its first version, is
used for recurring situations.

Previous research [24] has primarily focused on the im-
portance of ISRU in space exploration and introduces
RESOLVE, an innovative rover sensor/sampler concept
designed to explore potential resources. The work by
[16] addressed a cooperative multi-robot solution devel-
oped for National Aeronautics and Space Administration
(NASA)’s Space Robotics Challenge Phase 2, focusing
on the autonomous operation of robots for lunar resource
utilization. It underscores the potential of such systems
for lunar missions while addressing challenges related to
mobility, localization, and coordination. For the ”Com-
mercial ISRU Demonstration Mission Preparation Phase”
of the European Space Agency (ESA), the work by [33]
emphasizes the importance of robot-assisted characteri-
zation and potential resource extraction and utilization
from lunar surfaces. A team of legged robots equipped
with advanced locomotion, perception, and measurement
capabilities was introduced to successfully conduct mis-
sions in challenging planetary analog environments [1].
This technology showcased the use of mobile manipula-
tion using legged robotics for RC and exploration. Most
recently, the Indian Space Research Organization (ISRO),
with their Chandrayaan III mission [11], demonstrated
RC using a rover equipped with a spectrometer and spec-
troscope, allowing to determine the composition of ele-
ments in the vicinity of the landing area.

The project PerSim will develop and evaluate software

components that pursue an increase in the degree of au-
tonomy and reliability of navigation for planetary rovers.
This includes components to: 1) control rimless rovers
based on its specific dynamic models, 2) avoid haz-
ards such as tip overs through terrain identification and
tailored prediction-based approaches, 3) bring maturity
and system independence to existent mobile manipula-
tion and 4) investigate into long term adaptive capabili-
ties. In addition, modules that enable strategies for RC
as part of ISRU are pursued. These include RGB-Image
based rock detection and close-range hyperspectral data
characterization for material identification. These differ-
ent contributions will be integrated into a main algorithm
designed for the scenario of prospecting a target region.
This paper presents the architecture and algorithms under
development and the results from the first two outdoor
tests.

2. ARCHITECTURE DESIGN

From a structural perspective, the diagram in Figure 2
shows a simplified overview of the components and con-
nections that form the architecture. The components dis-
played in blue have been already developed for similar
scopes in previous projects but they require adaptations
for the rovers and scopes of this project, e.g. training of
new models. The modules pictured in yellow are new.

From the behavioral perspective, the diagram in Figure
3 shows the final activities integrated as pursued by end
of the project. The described cycle of activities represent
the main algorithm in which the different modules will be
integrated to address the scenario of prospecting a region
on a planetary surface. The pursued activities can be di-
vided into two main cycles: the exploration of an area as
long as energy is available and the acquisition of the most
relevant close range sensor data in the visible area.



Figure 3: Proposed activities for the autonomous
prospecting of a region of a planetary surface.

2.1. Resources Identification

The resource identification subsystem encompasses three
primary objectives. Firstly, it aims to identify objects
of potential interest in the context of planetary explo-
ration with a specific focus on rocks. Secondly, it co-
ordinates manipulator and rover motions designed to ap-
proach these objects autonomously. The third and final
goal is to employ a hyperspectral camera mounted on the
rover’s end effector to acquire and classify the mineral
composition of these rocks.

Rock Detection On the task of object identification, the
goal is to implement a Neural Network (NN) that seg-
ments rocks from the planetary landscape. A scene seg-
mentation Convolutional Neural Network (CNN) archi-
tecture was selected that is good for this task based on
the U-net framework implemented by [21]. This network
is a modified version of a fully CNN consisting of en-
coding and a decoding paths. The first repeatedly applies
two 3x3 convolutions, a Rectified Linear Unit (ReLu),
and a 2x2 max pooling operation. These operations pro-
gressively reduce the spatial dimensions of the input im-
age to help extract high level features and capture con-
textual information. The second performs a symmetric
set operations as the encoding path in an inverse manner.
This up-sampling allows the network to use select details
from the encoder path while recovering spatial informa-
tion. Spatial recovery is also performed via the skipped
connections that connect the encoder to decoder path and
supports in preserving localization details in the image.

In addition, images from the Devon Island Navigation
dataset [10] were selected to train the network. This

Figure 4: Camera module with hyperspectral camera,
RGB+ToF-camera and wide-emission range LEDs.

dataset contains rover traverse data including stereo im-
agery. The images have captured many areas with
vegetation-free planetary-analogue terrains with rocky
canyons, boulder and sand fields with diverse topogra-
phy.

Training the networks on these images will allow for the
real-time rock detection as the rover follows its naviga-
tion trajectory. Subsequently, the locations of these rocks
of interest will be recorded based on specific attributes,
such as size, texture or shape. These still need to be eval-
uated for accuracy. The subsequent section provides an
in-depth description of these sensor systems used for this
purpose.

Sensors A camera module as shown in Figure 4
is developed. It contains a hyperspectral camera
(Ximea SSM5x5) which provides 409×217 pixels with
24 bands in wavelengths between 667 and 947 nm, to-
gether with a wide emission range LED light source
and sun shades to reduce the influence of external light
sources. Additionally, a combined RGB and Time-of-
Flight (ToF) camera (Vzense DCAM710), provides 3D
spatial data corresponding to the hyperspectral data. A
computation device (NVIDIA Jetson Xavier NX) makes

Figure 5: Placement of camera module (Fig. 4) and addi-
tional sensors on Coyote III.



the module almost self-contained, requiring only power
and data connection to the rover’s manipulator arm via
an Electro-Mechanical Interface (EMI) [34]. The EMI
also allows reusing the module with other robots.

The rover has a solid state Light Detection and Ranging
(LiDaR) sensor at the front (Velodyne Velarray M1600)
and one combined RGB and ToF camera each at the front
and rear (Vzense DCAM560C Pro). These are used for
mapping and navigation and the cameras also for the
identification of rocks of interest. A complete rendering
of the sensor payload on Coyote III is shown in Figure 5.

Mobile Manipulation Constraints are imposed on the
manipulator arm’s workspace by the integration of mul-
tiple sensor attachments, the rimless wheel design, and
the free rotation joint for the rear axle of the Coyote III
robot [28]. These constraints are encountered in conjunc-
tion with the complex environments during planetary ex-
ploration characterized by unstructured terrain and ob-
stacles. The importance of a motion planning system
that prioritizes both robustness and optimization to en-
sure mission safety is emphasized by these limitations.
Thus, the need of a combined manipulator arm and rover
motion planner becomes evident when these factors are
considered.

Various mobile manipulation libraries were evaluated, in-
cluding DFKI’s in-house motion planner, the ADE mo-
tion planner [17], and the Multi-staged warm started mo-
tion planner [18]. After careful consideration of the
project’s specific demands and prerequisites, the ADE
motion planner was selected as the optimal solution. This
choice is rooted in the planner’s inherent capacity to find
an optimal base trajectory using an optimization-based
Fast Marching Method (FMM) approach [26] and a ro-
bust arm trajectory effectively circumventing collisions.

To achieve this, a Digital Elevation Model (DEM) is gen-
erated from sensor data, complemented by the deriva-
tion of auxiliary maps, including slope maps, traversable
maps, and cost maps. The Frontal Approach Cost Edit-
ing (FACE) algorithm, as developed in [17], is employed
for the generation of precise base orientation control and
to reduce unnecessary maneuvers. This algorithm mod-
ifies the cost map to align the base heading with the last
waypoint towards the sample.

In this context, the determination of arm motion is
equally vital, and a 3D cost tunnel is first constructed
around the base trajectory. Then, the arm motions are
generated using a 3D FMM applied within the 3D cost
tunnel. Collision avoidance in arm movements is ensured
by this approach.

For every base waypoint, a suitable waypoint of the arm
trajectory is created, and the joint configuration is deter-
mined using inverse kinematics. Options to determine
when the arm movements should start with respect to
the base, namely ‘beginning deployment,’ ‘end deploy-
ment,’ and ‘progressive deployment,’ are also provided
by the planner. Smoother arm motions are generated by
the progressive deployment option as the motion of the
arm is distributed equally along the base trajectory. Fi-
nally, proper tracking of the base path and arm joint pro-

Figure 6: The dataset is comprised various examples of
igneous, sedimentary and metamorphic rocks and min-
eral rocks.

file is ensured by a coupled trajectory controller.

Hyperspectral classification The precise execution of
the mobile manipulation is essential for Hyperspectral
Image (HSI) classification. Incorporating HSI will gen-
erate composition-rich representations of the navigated
environment valuable for the prospecting of a planetary
landscape.

To achieve HSI classification, a dataset will be built from
a collection of mineralogical samples as shown in Figure
6. This collection of samples is composed of 40 vari-
ous examples of igneous, sedimentary and metamorphic
rocks. It also includes 40 of the most important basic ma-
terials for the production of pure metals and alloys.

Recent advancements in HSI classification for mineralog-
ical composition have shown shown the advantage of
Deep Learning (DL) over traditional Machine Learning
(ML) methods in some classification problems [27, 13].
Notably, within the domain of HSI classification, studies
such as [25, 15] which focused in spectroscopy analysis
of ancient volcanic rocks as Mars analogues show the ef-
fectiveness of spectral analysis for identifying and map-
ping mineralogical details within rock specimens.

Following the works by [22] and [14], this dataset will be
used to train a CNN dedicated to rock classification based
on their composition.

Prediction Based Reaction Testing the system on lunar,
volcanic, or challenging terrains highlights the rigorous
demands placed on robotic systems for autonomous nav-
igation in remote environments. Beyond trajectory plan-
ning, ensuring the successful execution of those trajecto-
ries is crucial [19]. Reactive methods play a pivotal role
in enabling robots to respond effectively to dynamic envi-
ronmental changes, thus safeguarding the robotic system
from harm or catastrophic failure [31]. This paper in-
troduces a multifaceted framework designed to enhance
robotic autonomy in various terrains, focusing on tip-
over detection, anomalous motion detection, and sensor
error compensation. One of the primary objectives of this
work is to develop a DL-based model capable of predict-
ing potential tip-over events in real time. By utilizing
the Robot Construction Kit (ROCK) framework, the pro-
posed model forecasts the likelihood of a rover tipping
over during its mission. This proactive approach empow-
ers the rover to take timely corrective actions, minimizing
the risk of accidents [19].



With the help of the terrain classifier and considering the
specific terrain conditions, the prediction model is cho-
sen accordingly to suit various terrains, such as sand and
rock. The prediction model, powered by deep learn-
ing techniques and Long Short-Term Memory (LSTM)
modules within an Autoencoder, can handle sequential
Inertial Measurement Unit (IMU) data, providing accu-
rate forecasts of tip-over that assist the robot in real-
time decision-making. Additionally, the framework ad-
dresses anomalous motion detection. By employing the
same architecture, it is ensured that the rover can iden-
tify unexpected deviations from its planned trajectory, en-
abling it to make informed decisions to correct its course
and avoid potential hazards. To bolster the reliability of
robotic systems, a sensor error compensation mechanism
is implemented. By leveraging learned prediction mod-
els, deviations and failures in sensor values are detected
and, if necessary, corrected. This not only enhances the
overall system robustness but also enables the controlled
recovery of the robot in the event of sensor failures, en-
suring safe and effective autonomous navigation.

Autonomous Navigation The Autonomous Navigation
uses a Simultaneous Localization And Mapping (SLAM)
algorithm using data from the LiDaR, ToF cameras, IMU
and wheel positions to generate a map of the environ-
ment. The map is then used to plan a path between the
rover’s current position and a goal position. This plan is
then executed while deviations from the plan are handled
by simple means like adjusting the heading to move the
robot back onto the planned trajectory.

Rimless Rovers Control The rover used in the PerSim
project is a hybrid-wheel rover with rimless wheels in-
stead of traditional wheels as seen in Fig. 5. Rim-
less wheels have been proven to provide better obstacle
traversal capabilities [29]. However, the dynamics anal-
ysis of such rovers such as the analysis of their possi-
ble gaits and gait optimizations remains an open ques-
tion in research. Single rimless wheels are popularly used
within legged robotics research for gait and stability anal-
ysis [4, 2, 12]. Within this project, the gait and dynamic
analysis from a singular rimless wheel is extended to the
entire rover body. Thus, allowing us to reason about the
movement tracked by the center of the rover body and
even control it for specific goals. One of the motivations
is to reduce vibrations of the rover body due to the impact
timings of the wheels as this will allow better measure-
ments from the sensors mounted on the rover. For this,
the phase portrait of a single wheel of the rover was an-
alyzed (Fig. 7). This phase portrait will be used for the
multi-body simulation of the rover with phase-shifts in
the wheels to obtain different gaits. The phase-shifts can
then be optimized for lowering the frequency and ampli-
tude of the rover movements.

2.2. Long Term Navigation

This subsection describes the variety of adaptation meth-
ods for the navigation software that are studied in Persim.
Firstly, a repertoire of behaviors is evolved in simulation
with the aim of providing the rover the capacity to en-
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Figure 7: Phase portrait of a single wheel of the rover.

act different behaviors towards a same goal. A Gaussian
Process is then proposed for direct online adaptation to
refine the initial behavior repertoire. Finally, reinforce-
ment learning is envisioned to combine the experiences
gathered by the Episodic Memory and the Internal Simu-
lation. Among other factors affecting the selection of one
or other behavior, the terrain classification is taken into
account.

Behavior Repertoire As first step towards achieving dif-
ferent reliable navigation behaviors an evolutionary pro-
cess is used to search for a large set of candidate be-
haviors which perform reasonably well in simulation.
The behaviors are defined by Parameter Value Set (PVS)
which are set of values to be applied for the parameters of
different components the navigation system. The process
of evolution consists of the following steps: 1) selection
of the parameters and ranges of values in which to search,
2) definition of the missions for training, 3) execution of
the evolution process itself, where the different missions
are executed, the performance of each PVS computed and
the best PVSs selected and stored in the Behavior Perfor-
mance Map for further generations. [6]

Gaussian Process for Online Adaptation Online adap-
tation of the parameters of the rover navigation system is
done with the Stream Online Gaussian Process Regres-
sion (SOGPR) algorithm [8]. The method uses the initial
behavior performance map generated by the evolutionary
process and keeps evolving the parameters based on the
navigation performance that the rover achieves. To gather
such performance onboard, traverse evaluation metrics
are being developed.

Episodic Memory A topological graph representation
has been implemented to store the rover navigation per-
formance information associated with the different loca-
tions and time. The graph is composed of nodes rep-
resenting the different locations and edges representing
the traverses that have been attempted to connect them.
Along the edges, data products related to the traverse are
stored, e.g. the path, as well as performance and context
information. The data products can be used again if the
traverse is successfully completed, which might lead to
a reduction in computational costs. Detailed evaluations
are pending to confirm this. If the execution is not suc-
cessful, the stored information will be used to prevent the



same traverse from being executed in the future. The plan
is to further use this representation combined with DL
techniques to enable long-term generalization capabili-
ties. This way, not only specific locations will be iden-
tified as potentially problematic, but also more abstract
concepts such as navigation speed for certain trajectories.

Internal Simulation The internal simulation is one of the
central components of the long term navigation system.
The function of such module is to predict the future state
of the rover given state, the environment and an action to
be taken. On top of this, a layer of interpretation is needed
to identify failures on the simulation. The internal simu-
lation initial development and analysis was performed in
projects focusing on the exploration of lava tubes [9, 30]
to enhance safety during autonomous navigation.

Both the internal simulation and the episodic memory
rely on Envire [3] as a base graph representation for the
environment. Envire allows any C++ object to be stored
in a location node, which is linked to other nodes by its
transformation.

3. SOFTWARE DEVELOPMENT METHODOL-
OGY

The software development methodology in PerSim is
based on agile techniques adapted to the robotics case.
The complete project is divided into four iterations, each
one including the following stages: feature selection, de-
velopment, Continuous Integration and Deployment (CI-
CD), field testing, and analysis of results. The first two
field tests were planned as local campaigns, while the last
one took place in a real planetary analog environment lo-
cated in Vulcano Island, Sicily.

To autonomously and robustly deploy the current soft-
ware state to the robotic systems, a CI-CD pipeline was
established. Using the open-source automation server
Jenkins on a build server, daily builds are performed for
each workspace. If any errors arise during these builds,
they are promptly reported via email to the designated
maintainer.

These daily builds are primarily based on Docker images
with mounted workspaces and serve two main purposes.
First, they are integrated into a GitLab Continuous In-
tegration (CI) pipeline for continuous integration. After
each commit, in any of the workspaces repositories, this
pipeline triggers an update of the repository and rebuilds
it in the corresponding workspace. In case any commit in-
troduces an error, the commit author is notified via email.
Secondly, the daily builds are used to initiate the creation
of a Continuous Deployment (CD) image after every suc-
cessful build. Within the CD pipeline, the workspace
compiled into a single Docker image with all required
dependencies. This image is subsequently utilized to ex-
ecute predefined automated tests. If these tests pass suc-
cessfully, the image is appropriately tagged and pushed to
a Docker registry. Every robot can then check the Docker
registry for updates when starting up, ensuring they al-
ways use the latest version of the running workspace.

4. FIELD TESTS

Two field tests have been performed in the project to val-
idate the functionalities on the rover in scenarios similar
to a surface on the Moon or Mars.

For the first two field tests, the rover Asguard IV (Fig. 8)
was used. The mechanical principles of Asguard IV
and Coyote III are very similar, so the results are easily
transferable. The availability of multiple rimless wheel
rovers allowed the execution of field tests while one of
the rover’s hardware is been improved.

In order to be able to perform the outdoor tests regardless
of the current weather conditions, the Coyote III rover is
being made rainproof. To achieve this, a new cover was
designed to protect the active cooling from rain. All ro-
tating parts also had to be made rainproof, which includes
the connections of the motors to the wheels and the pas-
sive rear axles. In addition, some minor updates had to be
made for rain-proofing the wiring, the connection of the
manipulator to the rover, and the manipulator itself.

4.1. Field Test in Bremen

Terrain Classification Tests These tests were conducted
to integrate some of the methods developed within the
scope of the Insys project as detailed in [7], which pri-
marily aimed to implement interpretable techniques for
NNs applied to planetary exploration. The platform used
in these experiments was the Asguard IV robot system.

The first evaluation required that the data from the sen-
sor suite was being successfully collected via the soft-
ware infrastructure of the rover. This data was then trans-
mitted via the network to a workstation equipped with a
GPU, facilitating NN-based terrain classification. This
test achieved success, as the data was being received and
classified in real-time.

The second evaluation focused on ascertaining the per-
formance of the classifier on unseen data, i.e. on terrains
which where not used for training the model. This test
encompassed three categories only: rock, sand and con-
crete types. To ensure robust evaluation, each terrain sec-
tion needed enough traversable area measuring no less
than 2m2. Figures 9 provides a visual representation of
the setup within a Crater Hall, tailored to replicate lunar
analog conditions.

The classifier was trained to categorize six types: rock,
sand, gravel, grass, dirt and concrete terrains. However,
for the purposes of these experiments, the focus cen-
tered on terrains closely resembling planetary landscapes,
namely rock, sand, and concrete. Images shown in Figure
9 depict the experimental scenario.

The outcomes of this field test did not yield favorable
classification results. Figure 8 presents the prediction
summary in matrix form showing how many sample pre-
dictions are correct and incorrect per class. The X axis
corresponds to the prediction output and the Y axis to
the true category. Given the novelty of the test data, it is



Figure 8: Confusion matrix for terrain classification.

Figure 9: Field test setup for terrain classification.

conclusive that the model does not generalize well to pre-
viously unseen terrains. It is noted, however, that the rock
class was misclassified as gravel which is quite similar in
sensor values from the training data. Furthermore, the
sand terrain used for training was more compact than the
looser sand encountered in the testing field. It is conceiv-
able that the IMU sensor signature, utilized as input for
the NN, shares similarities with the signatures of gravel
and dirt recorded in the training logs. Similar issues are
noted for the concrete class.

While improving terrain classifiers falls outside of the
scope of this project, integrating enhanced models in the
future is feasible given the successful execution of inte-
gration tests.

Navigation Tests The goal for testing the Navigation
Subsystem was to make sure it is working reliably. For
this, a suitable start and end position in the testing area
was chosen and the robot would have to plan from the
start to the end and then execute that plan. Afterwards,
the robot would be placed back at the start and the exact
same experiment repeated. Figure 10 illustrates a general
overview of the motion planner. All of this would then be
tried multiple times with different start and end positions.

The robotic rover system Asguard IV was used for these
tests. In preparation for the test, a ground truth for the
position was deemed useful, so a GPS unit with differ-
ential correction was integrated. The position data would
not be used for navigation but simply stored for refer-
ence. During the Navigation Tests, the GPS receiver was
unable receive position data from the satellites despite a
clear sky. It was agreed to continue without GPS position
data.

During testing, it was found that the initially generated
map was too sparse for the path planner to plan from

Figure 10: Test of the motion planner switch.

start to end, so the map was first augmented by having
the robot drive around the area between start and end us-
ing the remote control.

The resulting map quality was often so bad that the path
planner refused to start because it either could not find a
path or it found the start or end position in an obstacle.

When the path planner created a plan, the path follower
would often diverge from the path and then try to rejoin
by using a point turn where it should have adjusted the
heading slightly. Point turns lead to especially bad odom-
etry, so those occurrences usually ended in an aborted
test.

Finally, a few good experiment runs were achieved, but
clearly more work was required for the GPS and the other
problems resulting in bad map data and path plan execu-
tion.

Before the field test in Vulcano Island (see 4.2), more
electrical shielding of the rover body was added and im-
proved GPS satellite reception to a point where the posi-
tion data could be received almost continuously.

After the field test in Vulcano Island, it was found that
the orientation from the odometry calculation was rein-
terpreted as being 180° rotated around the yaw axis. It is
believed that this has caused at least some of the problems
in map generation and path plan execution. While such
a rotation may sound catastrophic, it was not because the
map output by the SLAM algorithm is also rotated in the
world coordinate system. Errors would only occur when
the SLAM algorithm could not compensate for the incor-
rect rotation from the rover tilting in pitch or roll.

Mobile Manipulation Tests Guidance Navigation and
Control (GNC) is responsible of bringing the end effector
of the arm close to the region of interest while avoiding
any collisions once a particular location has been charac-
terized as a target of interest for close-range data acqui-
sition. The rover will autonomously switch between two
motion planners. A basic planner, which considers the
rover as a point in space centered at its center of mass to
only produce control commands for the joints in charge
of the movement of the base. The mobile manipulation
planner, which is plans a coordinated motion of the rover
and the manipulator arm sending commands to all joints
of the system.

The switching of the active motion planner is imple-



mented using Behavior Trees [5]. As long as the distance
to the object of interest is larger than a certain thresh-
old, the base motion planner is used. When the close dis-
tance is reached, the combined arm-base motion planner
becomes active. The motion planner switch was success-
fully tested during the first field test with Asguard IV.

4.2. Field Test in Vulcano Island

Vulcano is the third largest and southern most island of
the Aeolian archipelago. It is also one of the most closely
monitored, heavily researched and studied active volca-
noes in the world. It hosts the largest unique assemblage
of high and low temperature volcanic and hydrothermal
minerals. The diverse and extreme environments at Vul-
cano provide an essential training ground for testing in-
struments and techniques foreseen for future robotic ex-
ploration missions to Mars.

From a planetary perspective, the surface morphology of
parts of the Fossa Crater on Vulcano are similar to lunar
and martian regions with extremely dry, arid conditions
and little or no vegetation cover [20]. Hence, these analog
surface conditions at the crater and the environment on
the island of Vulcano provide an excellent testing ground
for autonomous planetary rovers like Asguard IV.

This year, as in the past campaigns, a variety of spec-
tral instruments ranging from Visible and Near-InfraRed
(VNIR) reflectance, Laser Induced Breakdown Spec-
troscopy (LIBS) to Raman spectroscopy were deployed at
various sites for mineralogical, biological, and elemental
analysis. The in-situ survey, and its comparison with lab-
oratory standards and instruments, provide an assessment
of the usability of these techniques to quickly character-
ize extra-terrestrial environments.

Environmental Mapping To assess the accuracy of As-
guard’s environmental mapping capabilities, a suitable
area at the base of the volcano was mapped, first with
the rover driven manually through the area and then
with stereoscopic video footage from a drone used as the
ground truth.

Autonomous Navigation In another series of tests, As-
guard’s autonomous navigation was examined at three
different locations on Vulcano. During each test, the
rover was given a series of target positions to head for
from its current location. Additionally each sequence
of traverses was repeated three times, launching from
a fixed starting position. All sensor data, navigation
goals, execution traces or other available information
from the rover were also logged, for later evaluation of
the Episodic Memory component still under development
at the time.

Two of the aforementioned tests were performed at
different locations at the crater of the volcano in a
low-vegetation environment with sandy to stony terrain
(Fig. 11), and the third trial in a valley with sand, sur-
rounded by rock formations and some vegetation.

While the generation of potential trajectories to the
presented targets were generated accurately, execution

Figure 11: Asguard IV during field tests on the volcano
crater at Vulcano Island.

anomalies occurred such as tip-overs. The anomalies
likely originated from limited fine-tuning of the nav-
igation parameters resulting in hazardous trajectories.
Nonetheless, some promising runs were achieved dur-
ing the experiments, with the rover successfully reaching
multiple targets in succession, autonomously.

5. CONCLUSIONS AND OUTLOOK

This paper presented an overview on the architecture pro-
posed for the development of some of the software mod-
ules required for long term navigation and autonomous
prospecting of planetary surfaces by a rover.

One of the main challenges of the project involving such
a varied set of modules, is the integration and testing. For
that purpose an agile approach, tailored to the robotics
case, is being used to direct the workflow. The approach
involves automatic checks for the software consistency
and validity. Validation of the features with rovers in rep-
resentative locations before the final field test are being
performed.

The field test presented in this paper showed that the
base GNC, Mobile Manipulation and Terrain Classifica-
tion work but require improvements. For modules for
which results are missing, the plan is to integrate them
before the next local field test.

While challenges remain, the project’s innovative ap-
proaches and methodologies hold great promise for fu-
ture planetary exploration missions. The field tests con-
ducted as part of the PerSim project have provided valu-
able insights and set the stage for further refinement and
development, ultimately contributing to the success of fu-
ture robotic missions.
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