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Abstract

Machine learning algorithms are improving rapidly, but annotating training
data remains a bottleneck for many applications. In this paper, we show how
real data can be used for self-supervised learning without any transformations
by taking advantage of the symmetry present in the activities. Our approach
involves contrastive matching of two different sensors (left and right wrist
or leg-worn IMUs) to make representations of co-occurring sensor data more
similar and those of non-co-occurring sensor data more different. We test our
approach on the Opportunity and MM-Fit datasets. In MM-Fit we show sig-
nificant improvement over the baseline supervised and self-supervised method
SimCLR, while for Opportunity there is significant improvement over the su-
pervised baseline and slight improvement when compared to SimCLR. More-
over, our method improves supervised baselines even when using only a small
amount of the data for training. Future work should explore under which con-
ditions our method is beneficial for human activity recognition systems and
other related applications.
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1 Introduction

Machine learning algorithms are improving rapidly, but annotating training
data remains a bottleneck for many applications. To overcome this problem,
a current area of research focuses on learning effective sensor representations
without human-annotated labels for human activity recognition [11, 27, 30, 10,
12, 8, 21, 9, 31, 22]. These methods follow the pretrain-then-finetune learning
schema. In general, the encoder is pretrained in a self-supervised (SSL) way,
and then the whole classifier is finetuned with a few labels. In this work, in the
pretraining step (Step 1 in Figure 1), the network learns from SSL, namely
the contrastive prediction task. The contrastive prediction task allows us to
train the model without annotations. The resulting model is able to capture
relevant characteristics of the input data and is beneficial for the downstream
task [11], as mentioned in Step 2 of Figure 1. In the second step in Figure 1,
the downstream task, the model needs a small amount of annotated data to
train the classification model.

The success of those methods is already known in other fields such as com-
puter vision [19, 14, 17, 2], natural language processing [13], and audio [5].
Lastly, similar methods have been proposed for human activity recognition,
including contrastive predictive coding [10], multitask [27], and SimCLR [31].
The last has a Siamese schema and is based on contrastive learning. Con-
trastive learning trains a model to match different views of instances created
from the same signal by contrasting them. The positive pair is obtained by
the transformation of the input window, while the negative pair is formed by
the remaining input windows of the same minibatch.

However, specific datasets may not benefit from some SSL methods. For
example, in MM-Fit[29], applying the reconstruction (autoencoder) as a pre-
text task did not lead to better classification results. David et al. [29] proposed
to learn from different five sensor modalities (fuse inertial sensor data and 3D
pose) to be able to deal with the high intra-class variability found in HAR
datasets. Pretrain-then-transfer is a strategy utilised in SSL in order to achieve
better general representations [11], but the design or choice of suitable SSL
settings is not trivial [11, 24]. Therefore, we contribute to the field by propos-
ing a new SSL method that takes advantage of symmetry in activities by
using contrastive learning between multiple sensors to tackle issues like (1)
limited labelled data or (2) performance on datasets with left-right arm/leg
synchronous activity.

Another advantage of contrastive learning is that it can save computational
resources. For example, we do not need the preprocessing of raw data as done
in [15, 6]. In addition, other methods [6] utilised handcrafted features, while
our contrastive learning-based approach automatically creates useful features.

This work is encouraged by the success of pretraining techniques [11, 16, 25]
and the necessity of reducing the amount of annotated data for training. We
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FIGURE 1: Shows the proposed training settings. When pretraining, we use
an encoder and head networks that learn to maximise the agreement of the
left and right sensors using unlabelled data. The contrastive loss is utilised,
in which the positive samples are left and right sensor data at time t and
negatives are taken from the same batch at time t′ ≠ t. In step 1, the

pretraining process takes pairs of time-synchronised data and trains the
encoder in a contrastive way without any label. Next step, the encoder is

finetuned using either left or right labelled data for classification. Using both
left and right data produces better results. For the inference, the model

needs only one device input for prediction.
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then explore the effectiveness of contrastive learning methods while reducing
labelled data requirements[11]. Our method contrastively matches two dif-
ferent sensor sources (left and right wrist or leg-worn IMUs). The training
process requires only one pair of accelerometers. This work further validates
the modality-agnostic character of contrastive learning and its potential for
generalisation [31].

2 Related Work

The work, Contrastive Language-Image Pre-Training (CLIP) [23], proposed a
technique that aligns pairs of images and texts by projecting them into the
joint representation space of CLIP. Moon et al. [18] used CLIP for aligning In-
ertial Measurement Unit (IMU) motion sensor recordings with video and text
by projecting them into the joint representation space of CLIP. In addition,
contrastive learning allows research to create general-purpose training tools
such as BYOL [7, 28], SimCLR [2, 31, 28], and contrastive predictive coding
(CPC) [10, 19, 12, 14], just to name a few.

Contrastive Predictive Coding [10, 12] results from the combination of
contrastive learning, temporal architecture networks and future timestep pre-
diction. The positive pair is made of long-term temporal network output (con-
text) together with future feature timesteps in the same window, while the
negative input of contrastive learning is the samples from other windows of
the same batch.

SimCLR [31, 28, 22] learns general representations from a dataset where
a model is trained to match different view instances created from the same
signal by contrasting them. The positive pair is obtained by the transformation
of the input window, while the negative pair is formed by the rest of the
input windows of the same batch. Then, the contrastive loss pulls the positive
pair together while pulling the negative pair far away from each other in the
representation space.

BYOL [28, 22] relies on two neural networks called online and target net-
works, that interact and learn from each other. The online network is trained
to predict the target network representation of an augmented view of an im-
age. The network is trained to minimise the mean-squared error loss between
the online network’s prediction and the target representations. Only the on-
line network is optimised via the loss, and the target network is updated via
a slow-moving average of the online network.

Contrastive learning enables the learning and transfer of knowledge from
one device to another [16, 25]. Previous work has focused on an arbitrary
device at an arbitrary position without constraints. The success of our work
lies partly in adding constraints for the position of devices, “body symmetry”.
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Therefore, we focus on devices worn on the left and right sides of the body,
for example, the legs or arms.

ColloSSL [16] proposes learning useful features from multiple devices by
using multi-view contrastive loss. Some of the key innovations in this work
are the selection of positive and negative pairs and contrastive sampling tech-
niques. The device selection algorithm is designed to increase the likelihood
of selecting ‘good’ positive and negative samples. As metrics, they compute
the pairwise Maximum Mean Discrepancy (MMD) among the data points.
Then, the positive pair is formed by those with the minimum MMD distance,
and the rest are part of the negative samples. To compute the loss function,
they applied contrastive sampling, whose role is to decide which data samples
should be picked from each device for contrastive training.

Closest to our work is Learning from the Best [25], a contrastive-based
method that transfers useful information from a source sensor to a target one
by training a joint representation. While the objective of both works is similar
–using synchronised data of two sensors to obtain a better representation –
there are several differences. For example, [25] uses two separate encoders, one
for each sensor, while in this work both sensors share the same one. There-
fore, we also do not use translator networks to bring one representation to
the other. This means that in this work, contrastive learning is applied be-
tween the encoded representations of both sensors instead of between the data
and its translated version. Another difference is our contrastive loss function:
we use the modified NT-Xent[31] loss, while previous work utilised the in-
foNCE loss. Moreover, our networks are simpler, using only 1D-convolution
and fully connected layers instead of transformers combined with CNNs. While
we do not compare those two methods in this work, we aim to show that even
a simpler version of the contrastive learning scheme can work when taking
advantage of symmetries in activities. We hope that this can contribute to
position-independent HAR, as our learned model is valid for both devices
without compromising performance (e.g., left- or right-hand user).

3 Method

Left-Right contrastive learning was inspired by the successful contrastive
learning algorithms in computer vision and HAR, such as SimCLR [2, 31],
BYOL [7, 28], learning from the best[25] algorithms, etc. The proposed method
learns useful representations by maximising agreement between left- and right-
worn IMU data via a contrastive loss in the latent space. In contrast to [25],
our method uses one encoder for both sensors and has no translator network.
Our method has the advantage of a simpler model, while [25] has the ability
to train with data from any pair of devices. The training procedure illustrated
in Figure 1, presents the following four major components:
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1. The left and right sensor data synchronised within time allows
building the input x of training without the need for data augmenta-
tion. The stochastic data augmentations used in other contrastive
methods reflect an approximation of sensor properties. Using di-
rectly raw sensor data as views allows learning the sensor properties
directly instead of through the view’s approximation by transfor-
mations.

2. An encoder network encoder(.) that predicts the representation
in the latent space from the input data. The training pipeline has no
restriction on architecture; a neural network of choice can be used.
For example, we use the encoder from [31, 27] which has three (1D)
convolutional layers.

3. A project head that takes the representation h = encoder(x) and
projects it into contrastive latent space z = head(h), s. Figure 1.

4. A contrastive loss function that defines agreements within posi-
tive and negative samples in the same minibatch.

The proposed method can be trained using different tools of siamese ar-
chitecture and contrastive loss with simple modifications such as BYOL [7],
SimSiam [3], or SimCLR [2]. We chose to modify the contrastive learning
framework SimCLR so that we use left and right sensor data instead of a
double transformation. As in [2, 31, 28], we randomly sample a minibatch of
N examples and define the contrastive loss with pairs of left xleft and right
xright sensor data derived from the minibatch. Further details can be found
in Algorithm 1.

Algorithm 1 Left-Right contrastive learning.

Input: minibatch of size N, temperature constant τ
Output: L loss
for sampled minibatch {xk}Nk=1 do

for all k ∈ {1...N} do
z2k−1 = head(encoder(xleft

k ))

z2k = head(encoder(xright
k ))

end for
for all i ∈ {1...2N} and j ∈ {1...2N} do

simi,j ← pairwise similarity between zi and zj
end for
l(i, j)← − log

exp(simi,j/τ)∑2N
k=1 1[k ̸=i] exp(simi,j/τ)

▷ defines loss for a positive pair (i

and j)

L = 1
2N

∑N
k=1[l(2k − 1, 2k) + l(2k, 2k − 1)]

end for

Note that the output of this network is normalised to lie on the unit of the
hypersphere, which allows using the inner product as similarity metrics for
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contrastive learning [2, 19]. The projection head is only used while training
and does not participate in inference settings. In addition, the pipeline applies
cosine similarity sim(.) as a similarity function. The remaining details are in
experiments section.

4 Experiment

In this section, we present the datasets used in our experiments. First, we give
a short description of our training pipeline and evaluation metrics. Finally, the
results are presented.

4.1 Evaluation

We start with an overview of the two datasets used, MM-Fit and Opportunity.
Afterwards, the details of the training procedure are presented along with the
network’s architecture. In addition, the validation procedure is explained.
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FIGURE 2: Shows MM-Fit class distribution based on windows of two
seconds with 50% overlap. The preprocessed dataset has 29175 samples.

MM-Fit Dataset. An open-source dataset, MM-Fit [29], is used in our
experiments. The dataset is collected from different body-worn inertial sensors
and cameras (not worn), which are time-synchronised. There are four types of
devices, including the Orbbec Astra Pro camera, the eSense (Nokia Bell-Labs)
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earbud, the two Mobvoi TicWatch Pro smartwatches, and two smartphones:
the Samsung S7 and Huawei P20. The subject wore two smartwatches, one
on each wrist, an earbud in the left ear, and smartphones in the left and right
trouser pockets. The smartwatches recorded the acceleration and angular ve-
locity at 100 Hz. In this work, we use the accelerometers from the two smart-
watches. We apply windows of two seconds with a step of one second. The
MM-Fit contains ten activities and ’no activity’ classes; among them, we cite:
squats, lunges (with dumbbells), bicep curls (alternating arms), sit-ups, push-
ups, sitting overhead dumbbell triceps extensions, standing dumbbell rows,
jumping jacks, sitting dumbbell shoulder presses, and dumbbell lateral shoul-
der raises. In addition, annotation includes repetition counting across multiple
devices. For this dataset, we take into account all the described classes. Figure
2 provides a short overview of class distribution based on a window of two
seconds with 50% overlap. We notice that the data are not well balanced, with
the null class dominating the dataset.

Opportunity Dataset. The Opportunity dataset [26] recorded sensor
data for 6 hours from four subjects in a daily living (ADL) scenario. The sen-
sors were either integrated into the environment, or in objects, or on the body.
The activities in the experiments are grouped as locomotion or gestures. This
work focuses on locomotion activities where there are four classes, namely
stand, walk, sit, and lie, as in [1, 25]. This dataset has more than one label
type, for example, mode locomotion and mode gestures [1]. We evaluate the
locomotion classes. In terms of the sensor settings, we choose acceleration data
from the left and right lower arms (RLA and LLA), each having a sampling
rate of 30 Hz. The null class was excluded from our experiments as, unlike in
the case of MM-Fit, here we have many static classes and there is too much
ambiguity between them and the null class as we are using only a single ac-
celerometer for inference. This is also the reason we have not evaluated our
method based on gestures. In other words, we follow this evaluation procedure
because we focus on HAR from a single sensor, and it can be challenging to
predict all classes using only a single acceleration data. For example, some
activities (e.g., open, close, etc.) from the mode gesture are exclusively per-
formed by one dominant hand [4]. Handling those classes is future work and
would have to include more than one sensor as source data, as with a single
one for inference, the signals to the corresponding activity would be missing.

Metrics. Three common metrics are used to study the performance of the
models: macro F1, weighted F1, and accuracy. We run every experiment ten
times and report the mean and standard deviation. As a baseline, we trained
one model using left and right accelerations and then compute the metrics
separately on left and right devices. Later, we noted ’both’ to mention when
left and right sensor data are used together; otherwise, it was specified whether
we utilise data from the left or right arm.

Training procedure. Regarding the architecture of the networks (Figure
3), for pretraining, we need an encoder and a prediction head. The encoder has
three 1D-convolutional layers with kernel of 24, 16, 8, and 32, 64, 96 filters, re-
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FIGURE 3: Shows the architecture of the network. The adaptive
max-pooling is applied over time. A dropout rate of 10% is used. The model

is simple; the encoder and classifier together comprise 146 thousand
parameters.

spectively. Every layer is followed by a relu activation function and a dropout
of 0.1%. We applied global maximum pooling to the feature map in the third
layer. In this step, we used the contrastive prediction head, which consists of
three dense layers with 256, 128, and S output sizes, respectively. The con-
trastive loss was then optimised using SGD with a cosine decay on learning
rate of 0.004, a temperature of 0.05, and a batch size of 64 over 200 epochs.
Note that SimCLR was pretrained using rotation as the transformation, the
same as in the code published with the paper [31].

For classification, we used the encoder with previously trained weights,
followed by a classifier module. We chose a simple classifier with two fully
connected layers with 1024 and class numbers respectively. The model is fine-
tuned based on cross-entropy loss with the Adam optimiser, with a learning
rate of 0.0001 for 50 epochs.

All our results refer to an unseen test set. As it is done in [29],
the MM-Fit dataset is split according to the participants data: train
(1, 2, 3, 4, 6, 7, 8, 16, 17, 18), validation (14, 15, 19), test set (9, 10, 11), and un-
seen test set (0, 5, 12, 13, 20). For Opportunity, data are preprocessed similar
to [20], where we train the model on the data of all ADL, and drill sessions for
the first subject and on ADL1, ADL2, ADL3 and drill sessions for Subjects
2 and 3. We report classification performance on a testing set composed of
ADL4 and ADL5 for Subjects 2 and 3.

In order to evaluate the quality of learned representations, we used reduced
labelled data for finetuning, namely 1, 5, 10, 50, and 100 samples per class.

The training follows the protocol in Figure 1, which implements the
schema of pretrain-then-finetune. In the first step, we train the encoder in our
proposed self-supervised learning manner. We trained with different hyper-
parameters as done in [12], then we chose the best encoder based on valida-
tion.

In the second step, the classification task, we used early stopping with
patience of 5 and kept the best classification model. As in [27, 31], all layers
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Method Training Inference F1 Weighted F1 Macro Accuracy

Baseline
Left Left 90.26±0.67 74.77±1.64 91.00±0.70
Right Right 90.97±0.68 76.52±2.26 91.72±0.57

Both
Left 89.82±0.54 72.28±1.42 90.48±0.62
Right 89.76±0.65 72.29±2.50 90.77±0.54

SimCLR[31]
Both Left 89.93±0.54 69.58±1.76 90.69±0.43
Both Right 89.91±0.75 69.90±2.49 90.69±0.58

MM-Fit[29]
Left 90.74
Right 92.72

Ours SSL+Both
Left 93.19±0.20 82.99±0.77 93.57±0.16
Right 93.93±0.53 85.28±1.86 94.31±0.42

TABLE 1.1: Classification (macro f1 and accuracy) results for the proposed
method with comparison to baseline, MM-Fit (result reported from paper

[29]) and SimCLR.

of the base encoder are frozen except for the last one, and a two-layer MLP
(Multi-Layer Perceptron) classifier is added and finetuned.

4.2 Results

In Table 1.1, we can see the performance of our method when compared
to the baseline (supervised training) and another SSL method (SimCLR).
There we can see that for the MM-Fit dataset, our method presented around
8% macro f1 improvement compared to the baseline and even bigger gains
when compared to SimCLR, which did not beat the baseline. This shows
the potential of our approach, which, unlike SimCLR, does not rely on data
transformations. Since MM-Fit includes symmetric motions, it is likely our
method’s improvement comes directly from the lack of data transformations.
One could think that having access to double the data is the source of our
improvement, but our method also beats a supervised approach trained using
data from both sensors as examples, which points to our contrastive training
itself being beneficial.

Since MM-Fit is an unbalanced dataset, as seen in Figure 2, it is relevant to
look at the confusion matrix in Figure 5 to show our performance in the most
and least frequent classes. For example, in addition, the bicep curls exercise
presented the lowest performance with 87.8% accuracy, which can be expected
as it is the least symmetric activity. The highest performance was observed in
the squats exercise, with 98.8% accuracy. The non-activity class achieved an
accuracy score of 94.5%, while the remaining activities had a mean accuracy
of 93.7%. This shows that the proposed method is able to handle imbalanced
data.

The results on the Opportunity dataset can be read from Table 1.2, where
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Method Training Inference F1 Weighted F1 Macro Accuracy

Baseline

Left Left 49.30±3.97 38.51±3.35 60.78±1.84
Right Right 43.40±3.52 34.39±6.74 54.60±3.29

Both
Left 48.36±1.03 37,73±0.86 60.32±1.34
Right 37.35±4.42 27.94±4.06 48.95±3.82

SimCLR[31] Both
Left 76.17±0.85 72.56±2.00 77.02±0.80
Right 71.08±0.81 60.57±1.15 72.24±1.30

Ours SSL+Both
Left 77.53±0.93 73.84±1.63 78.30±0.89
Right 72.99±0.93 62.74±1.68 74.27±1.21

TABLE 1.2: Classification results for the proposed method with comparison
to baseline and SimCLR on Opportunity dataset [1, 26].

results from baseline, SimCLR, and the proposed method are compared. All
SSL methods show promising improvements at all metrics of more than 25%.

In this case, our method still outperforms SimCLR, but now by less than
2% of the macro F1 score. More specifically, pretraining enhanced the results
from 0.39 to 0.73 and 0.74 macro f1 for SimCLR and the proposed method,
respectively (left accelerometer).

We hypothesise that our gains are smaller when compared to SimCLR due
to the locomotion activities being less symmetric. Figure 8 shows that while
lying and walking activities are well recognised in the Opportunity dataset,
standing and sitting are the most challenging activities for the model.

4.3 Effect of a reduced training set

The Figure 4 shows results for an experiment in which we vary the number of
labelled data available in the MM-Fit dataset. Here, we can see that using only
a small amount of labelled data (100 samples per class), we can achieve a macro
f1 score of 0.7 (dashed lines) with more than 20% improvement compared to
training from scratch with the same amount of examples.

4.4 Contribution of batch size to contrastive loss

We also did an analysis of the contribution of batch size to contrastive loss.
We could not observe the positive relationship between batch size and per-
formance, in contrast to [2], where a large minibatch performs better. Figure
9 shows the contribution of batch size and latent space size to performance.
As the minibatch size increases, the performance does not necessarily become
better. The same behaviour is observed while comparing latent space size and
accuracy.
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4.5 Discussion and Limitations.

The proposed method outperforms the baseline and SimCLR in all tasks. It
achieves 84.03% accuracy with an improvement of 35% compared with train-
ing from scratch while having only 100 labelled samples (7,76% of the train-
ing set on MM-Fit). In addition, we observed improvements on MM-Fit and
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FIGURE 6: Shows confusion matrix (left arm) on MM-Fit dataset for
baseline (left) and SimCLR (right) methods.
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FIGURE 7: Shows the confusion matrix on Opportunity dataset with
SimCLR. The model is tested with data from left hand (left figure) and right

hand (right figure).
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FIGURE 8: Shows the confusion matrix on Opportunity dataset with
proposed method. Model is tested with data from left hand (left figure) and

right hand (right figure).

Opportunity if the entire labelled data (for trains) were available. However,
the proposed method does not perform significantly better than other SSL
on datasets, e.g., Opportunity, whose activities do not synchronously involve
both arms or no arms, e.g., standing or sitting. Details can be visualised by
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FIGURE 9: Displays the effect (accuracy in percentage) of batch size and
latent space size. Figure (a) and Figure (b) report on left and right worn

smartwatch, respectively.

comparing Figure 8 and Figure 7. The reason behind this may lie in the fact
that the motion signals captured from the arms are perturbed by (1) inde-
pendent arm movement or (2) signal propagation through different joints [25].
But there are some open questions, for example, about the performance when
the dataset contains a large number of locomotion activities. Moreover, it is
not always possible (or easy) to collect left-right synchronous data for various
reasons, e.g., running, walking, etc.

Looking at the improvement done by the proposed method, we could ob-
serve that some classes improved only marginally from baseline. For example,
the lowest improvement is observed in tricep extensions activity, where the
proposed method has a 0.6% gain in macro F1 from baseline; for details, see
Figures 5 and 6. In contrast to lower improvements, SimCLR classifies worse
than baseline; for details, see Figure 6. Note that triceps extension in MM-
Fit is symmetrical for the left and right arms. Perhaps the proposed method
makes use of this synchronous behaviour, but in this case, the improvement
is not significant.
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5 Conclusion

The proposed pretraining technique applies contrastive learning to two differ-
ent sensor data from left and right wrist-worn devices and hence does not need
any transformation. In order to evaluate the performance of the learned repre-
sentation for HAR, we followed the schema of ’pretrain-then-finetune’. In the
results, we observed that left-right contrastive learning draws promising re-
sults. In addition, the finetuned model performed better than fully supervised
learning from scratch. The results also showed the role of data representation,
where the model achieved around a 0.7 macro f1 score on MM-Fit using only
100 annotated samples per class.

We have observed that our method does not need a large minibatch, in
contrast to other contrastive learning frameworks based on transformations.
Moreover, it can alleviate data requirements by still showing improvements
given a reduced training set.

On the other hand, our proposed method was designed with symmetrical
activities in mind. Thus, it requires synchronised data from both sides and
may not provide substantial improvements if only one of the limbs is involved
in the activity. Therefore, in future work, we will evaluate our methods with
more datasets that are less symmetrical in motion.

In many areas, prior knowledge about the activities being performed is
known beforehand. Thus, we will investigate how our method can be applied
to those activities that fit this proposed schema. We will also investigate how
to generalise the method so that other relationships between activities can be
included in the contrastive framework.

Moreover, future work will also focus on studying the effects of different
modalities and sensor placement, as well as data transformations.
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[29] Strömbäck, D., Huang, S., Radu, V.: Mm-fit: Multimodal deep learn-
ing for automatic exercise logging across sensing devices. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., Virtual 4(4) (2020). DOI
10.1145/3432701. URL https://doi.org/10.1145/3432701

[30] Tang, C.I., Perez-Pozuelo, I., Spathis, D., Brage, S., Wareham, N., Mas-
colo, C.: Selfhar: Improving human activity recognition through self-
training with unlabeled data. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, Virtual 5(1), 1–30 (2021).
DOI 10.1145/3448112. URL https://doi.org/10.1145%2F3448112

[31] Tang, C.I., Perez-Pozuelo, I., Spathis, D., Mascolo, C.: Exploring con-
trastive learning in human activity recognition for healthcare. Machine
Learning for Mobile Health Workshop at NeurIPS, Vancouver, Canada
(2020)


