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ABSTRACT

To explore oceans on ice-covered moons in the solar sys-
tem, energy-efficient Autonomous Underwater Vehicles
(AUVs) with long ranges must cover enough distance
to record and collect enough data. These usually un-
deractuated vehicles are hard to control when perform-
ing tasks such as vertical docking or the inspection of
vertical walls. This paper introduces a control strategy
for DeepLeng to navigate in the ice-covered ocean of
Jupiter’s moon Europa and presents simulation results
preceding a discussion on what is further needed for ro-
bust control during the mission.

1. INTRODUCTION

In recent decades, many missions [6} 4] have been under-
taken to investigate Europa, one of Jupiter’s moons. Its
surface consists of a thick ice crust which covers a deep
ocean underneath it. Even today multiple missions like
ESA’s JUICE [9] mission or Clipper by NASA are
prepared to launch to specifically orbit around Europa. It
attracts research because it is one of the most promising
places in our solar system that could contain life[3].

To inspect the ocean a system was conceptualized at
DFKI Bremen which could drill through the ice and then
deploy an AUV into the ocean for inspection. The so-
called DeepLeng was built with design restrictions to
minimize energy consumption and also spatial require-
ments to fit into the cargo space[[10]]. The slender torpedo-
like shape minimizes drag during forward locomotion, in-
creasing the range and speed of the AUV, which is neces-
sary to realize long-term navigation missions to explore
large oceans like Europa’s. The manifold advantages of
such a design come at the cost of underactuation, thus the
incapability to generate any wrench. The recently emerg-
ing field for control of underactuated systems offers many
techniques, but applying them to the underwater domain
demands the extension of the system model by hydrody-
namic effects and deals with free-floating platforms and
a singularity-free representation of the orientation. The

Figure 1: DeepLeng AUV demonstrating the vectored
thrust during under-ice deployment in Abisko, Sweden

interest to develop and control such AUVs exceeds the
exploration of oceans of icy moons and allows the de-
ployment of a new class of underwater robots. This pa-
per contributes a Trajectory Optimization formulation to
generate trajectories for chosen agile maneuvers, which
explicitly respect the hydrostatic, and hydrodynamic ef-
fects and the mechanic constraints. To account for var-
ious sources of error, a time-varying Linear Quadratic
Regulator is proposed to stabilize the trajectory during
execution. The control architecture will show that de-
spite the constraints, maneuvers far outside of the scope
of movements, for which the system was originally de-
signed, are possible.

1.1. Related Work

There is extensive research in the field of underactu-
ated systems. Especially for canonical systems, like the
cart-pole or the double pendulum, many approaches have
been extensively studied. Besides Trajectory Optimiza-
tion and Linear Quadratic Regulators (LQRs), Model
Predictive Control (MPC) [15], Reinforcement Learning
Agents(RL) [12] and Proportional Integrative Derivative
(PID) [16] controllers have been used.



Usually, those canonical systems are fixed to the world.
Underactuated free-floating platforms and their control
were investigated to a lesser extent[[13[7]. Trajectory Op-
timization in the underwater domain has been studied in
[2]] with a focus on long-distance navigation and not on
agile maneuvering. A comparable approach tested on a
similar vehicle is presented in [3]. The featured AUV is
very similar to DeepLeng. Both are only actuated by one
large thruster at the rear of the vehicle. Nonlinear and
linearized MPC controllers are used to perform hydro-
batics such as the control of an AUV as an inverted pen-
dulum. The controller can explicitly respect the system
constraints posed by the maximum angle of the thruster
while also respecting the hydrodynamic effects. Exam-
ples as sideward movements tested in the paper prove that
the controller is capable of performing movements where
classical techniques would generate actuation inputs that
exceed the constraints of the system.

Due to the high computational cost, MPC can only opti-
mize the control inputs for a restricted horizon and a re-
duced model. When generating reference trajectories of-
fline or before the execution of the trajectory, one can use
a nonlinear model over a longer horizon and then stabi-
lize around the trajectory with the MPC from [3] or other
approaches.

2. SYSTEM DYNAMICS

2.1. DeepLeng

DeepLeng has a single thruster at the rear of its body. It is
mounted with a pan-tilt unit consisting of a rod and two
linear actuators which fix the thruster to the main body
and allow to alter the yaw and pitch angle of the thruster
to the body. The mechanism offers high stiffness and ro-
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Figure 2: Pan-tilt unit of DeepLeng

bustness, but the maximum angular speed of the thruster
is relatively slow.

Following the parallel kinematics of this mechanism are
not considered. Instead, the yaw and pitch angle of the
thruster relative to the main body are used. Solutions to
the inverse kinematics (I1,l2) = k(v, ¢) of this mech-
anism which maps the thruster angles to the length of
the linear actuators are well known and can be computed
online. The relation between a wrench w acting on the

thruster and the generalized forces f acting on the body
is given by:
f=J T(s)w (1)

Where .J8%¢ is the Jacobian of the rigid multibody kine-
matics and s the generalized positions of the system.

2.2. Dynamics

Computing the full hydrodynamic effects is computation-
ally expensive and not solvable online. To still estimate
the force affecting the AUV one has to use simplified
models to compute the drag forces.

Fossen[8]] models the hydrodynamics as:

MoC(v)v + D(v)v +r(s) = 7(s,u) (2)

M is the mass matrix consisting of the mass matrix of
the vehicle and M 4, of the added mass due to the wa-
ter which must be accelerated with the body. C(v) =
C(v)pr + Caps are the Coriolis and centripetal forces of
the mass matrix and the added mass.
D(v)v = Dy + Dg|v|v is the damping term consisting
of two coefficients representing linear and quadratic drag
terms.
r(s) are the restoring forces. Since we assume a neu-
trally buoyant vehicle, for the gravitational force and the
buoyant force | f,| = | f5| holds, it only has a torque com-
ponent:

ngfg_cbxfb 3)
cg being the center of gravity and c, the center of
bouyancy.

3. CONTROL

3.1. Trajectory Optimization

The decision variables of the Trajectory Optimization are
generated by using Direct Transcription. Defining a num-
ber of time steps 7' € N, we define a set of states X =
{z0,...,x74+1} and control inputs U = {ug,...,ur}. To
allow the solver to find a time optimal solution, we define
a decision variable ha representing the time step, and the
total length of the trajectory as D = T'ha. The decision
variables are Z = {X, U, da} The state derivative is de-
fined as sy = f(s¢,ut), where f(s¢,u) is the nonlinear
state derivative at a state s; and an input u;.

States and the input are defined as:
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The generalized positions s consist of a quaternion and
the three-dimensional position, the yaw angle ¢ and the
pitch angle ¢ of the thruster. The corresponding velocity
v consists of three angular velocities around the three
principal axes and the derivatives of the position and
the thruster angles. s, is the quaternion part of the state
vector, and s, is the position part. v is the derivative
of s, except that the derivative of the orientation is
given as angular velocities instead of derivatives of the
quaternion. x is the state vector of the system. The input
vector contains the force applied by the thruster, whose
direction and thus its resulting wrench on the main body
depends on % and ¢. T, and 74 are the torques applied on
the virtual joints through which the thruster is mounted
to the main body. The optimization problem:

T+1 T
min 3 (s, —s))" + >l +(Tda)®  (10)
=0 t=0
Subject to:
Frin < f < Finax (11)
hAin < ha < hag,.. (12)
0.999 < ||s,]|< 1.001 (13)
0
Sq= ZZ %54 (14)
w,

St4+1 = St + hasi (15)
Vi1 = V¢ + haUip1 (16)

0

)
M, + Cv+ D(w)v = J7T ?’ (17)

0

0
ha, i = ha, (18)
Ymin <V < Ymas 19)
Umin < ¥ < Prmag (20)
Pmin < ¢ < Pman (21
Omin < O < Pimas (22)
St=0 = Sinit (23)
Vt=0 = Vinit (24)
Ut=0 = Vinit (25)
St=T = S§ (26)
Vi=T = Uy 27
Up=T = Vf (28)

The costs are defined in as the positional er-

ror between the position at any given timestamp ¢ and the
desired final position s7, the quadratic input and the to-

tal time of the trajectory squared. enforces

that the input force does not exceed the maximum force
of the thruster. The timestamp ha in must
be limited, otherwise the solver fails to find a solution.
quation 13| ensures that s, has unit length and
tion 14|yields the derivative of the quaternion part of the
state by hamiltonian multiplication of the angular part of
v and the orientation.
[Equation 15|and [Equation 16|determine the discrete inte-
gration of the state and the velocities. The acceleration is
chosen according to the dynamics of the system by the
constraint in [Equation 17| according to the equation of
motion from the previous chapter. Eguanon 19} [Equa-
[tton 20| [Equation 21| and [Equation define the max-
imum angles and angular speeds of the thruster. This
constraint allows us to ignore the parallel kinematics and
work with joints in the simulation even without identify-
ing the actual mass and inertia of the thruster, as the an-
gular velocities and the angle can be used as inputs to the
thruster on the physical system. The latter equations de-
fine that the first and final states must equal a user-defined
target and goal.

3.2. Trajectory Stabilization

To compensate for errors in the model, unknown environ-
mental forces and errors in the state estimation, a time-
varying LQR stabilizes the AUV around the reference tra-
jectory. The state of the system and the control inputs are
thus given by:

x* (29)
u* (30)
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where z* and u* are the optimal state and input given by
the trajectory. The linearization is defined as a first-order
Taylor Expansion

flz,u) ~ f(z*,u*) + 6f(52’ u)i" + 6f§;; u)& (31)
This equation can be written in state space form as
flz,u) = Az + Bu (32)
where the A matrix is given as
gixo 0470 s
A = | oo s s @3)
R C(s,v)3%8

_ -1 (0r(s) OB 50(5,1}))
=M ( st (34)



and the input matrix as:

B =
09><1 09><1 09><1
O6><1 ()7><1
M—1JT Mt 1 M1 < )
0 1

(35)
Calculating these matrices for all the timestamps where
each state is associated with a point in time and then inter-
polating yields the time-varying matrices A(t) and B(t).
Since there is no restriction for LQRs that the state and in-
put matrices must be time-invariant, a time-varying LQR
can be computed from A(t) and B(t).
Stability describes the dynamics of a system over an infi-
nite time horizon, but our trajectory is only defined over a
finite horizon. To stabilize around the trajectory we first
have to compute an infinite horizon LQR with the state
and input matrix at the last point of the trajectory. Solv-
ing the algebraic Riccati equation:

0=S8%A+A"S® - S*BR'BTS™+Q (36)
yields the cost to go matrix S and the control law:
u* = —-R'BTS®r = — K>z (37)

The finite horizon LQR can be obtained by solving the
differential Riccati Equation

—S(t) = St)A+ ATS(t) — S()BR™'BTS(t) + Q

(38)
with the terminal condition:
S(Tda) =S (39)
and the control law:
u*=—-R'BTS(t)x = —Kx (40)
The control law for the complete trajectory can then be
written as:
K t<Td
f_ <dda
K= { K> else (41)

In this formulation, it can be clearly seen that the lin-
ear system is not controllable due to the quaternions as
4 numbers are used to represent 3 rotational DoFs. Sim-
ilar to [1], the unit length of the quaternion is therefore
enforced directly by reducing the state vector of its first
entry. The state size is reduced by one compared to the
formulation above. Instead, the real part of the quaternion
is calculated as:

qw=1—1/a2+q2+¢? (42)

4. RESULTS

This section will first introduce three trajectories yielded
from the Trajectory Optimization. They represent move-
ments close to the boundaries of the mechanical con-
straints of DeepLeng and they heavily rely on hydrody-
namics. The time-varying LQR is tested by executing

the reference trajectories in a simulation with the same
parameters for hydrodynamic damping used in the Tra-
jectory Optimization.

4.1. Trajectories

The following three trajectories are the case study to
evaluate the control framework: (1) Polebalancing, (2)
Quarterhelix and (3) Steep elevation. Throughout these
cases, we select the maximum and minimum values of
the thruster F,,,;,, = —70N and F,,,,.. = 7TON.

During the pole balancing maneuver, the vehicle swings
up and holds an orientation close to 90°. The maneuver
is of interest for vertical docking or the inspection of ver-
tical obstacles. It is also similar to the inverted pendulum
system. [Figure 3| shows the reference position and ori-
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Figure 3: The position and orientation of the pole balanc-
ing trajectory

entation of the polebalancing trajectory. The force limit
defined in was increased for this trajectory,
otherwise the restoring torque, which reaches its maxi-
mum at a vertical pose, can not be negated by the thrust
force. There is still a margin in the maximum angle and
angular velocity of the thrusters to allow the time-varying
LQR to stabilize around the trajectory.
Moving upwards or downwards in a helix is of interest for
reaching the seabed of the surface whilst staying in a lim-
ited area. The maneuver can be subdivided into quarter-
helices, where only a curve with a total rotation of 90° is
considered. A maneuver of arbitrary duration and range
can be easily synthesized by concatenating multiple quar-
terhelices. shows the trajectories reference posi-
tion and orientation.

For a monotonic elevation in a tight space, hence with
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Figure 4: The position and orientation of the quarterhelix
trajectory

constraints in the x and y direction of the AUV, the steep
elevation trajectory in functions as a reference.



In emergency situations, it is a fast way to reach the sur-
face.

Position (m)
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Figure 5: The position and orientation of the steep eleva-
tion trajectory

4.2. Simulation

The combined framework of the reference trajectories
and the additional time-varying LQR is tested in this sim-
ulation. Note that the error passed to the time-varying
LQR is not the state of the system, but its difference to
the expected state from the reference trajectory. The ref-
erence input of the trajectory is subtracted as well.

All tests were conducted using the Drake simulator. The
hydrodynamics were incorporated by implementing a
custom module that applies external forces to the AUV.
It uses the formulation from the System Dynamics chap-
ter. shows the position, orientation, the thruster
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Figure 6: The position(top left), orientation(top right),
thruster angles(bottom left) and force input(bottom right)
during execution of the pole balancing trajectory

angles and the force input in comparison to the reference
trajectories during the execution of the polebalancing tra-
jectory. [Figure 7] shows the respective plot for the quar-
terhelix trajectory and [Figure 8|for the steep elevation tra-
jectory.
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Figure 7: The position(top left), orientation(top right),
thruster angles(bottom left) and force input(bottom right)
during execution of the quarterhelix trajectory
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Figure 8: The position(top left), orientation(top right),
thruster angles(bottom left) and force input(bottom right)
during execution of the steep elevation trajectory

5. DISCUSSION

The system matrix A of the time-varying LQR, which
models the dynamics of the system, does not contain the
hydrodynamic terms that are applied in the Trajectory
Optimization and the simulation. Updating it with the
additional bias terms would enhance the controller’s per-
formance.

The representation of the DeepLeng is generated by pars-
ing a URDF. The modeling of added mass as proposed by
[8]] is not natively supported in URDF, since that would
require the possibility to specify masses for each axis in-
dependently. For the above simulation, an average of the
added mass was added to the vehicle’s mass in the URDF
to approximate the dynamics.

[14] describes how to synthesize a controller that is
proven to stabilize around the trajectory. Since stability is
considered as a statement when time goes to infinity, not
only a finite horizon LQR over the time interval of the tra-



jectory is needed but also an infinite horizon LQR which
stabilizes around the final pose of the trajectory. The op-
timal cost-to-go function S of the latter infinite horizon
LQR is passed into the finite horizon LQR as a cost func-
tion for the final state. In the simulation of this paper, this
leads to the failure of the calculation of the finite horizon
LQR. Better tuning of the () and R matrices of the infi-
nite horizon LQR may lead to a cost-to-go matrix .S with
smaller values which allows the successful computation
of the finite horizon LQR.

Till the submission of the paper tuning the time-varying
LQR lead to better performance. To the author’s assess-
ment, the tuning is still not optimal, and further tuning
could improve the performance.

6. CONCLUSION

This paper presented a Trajectory Optimization formula-
tion for an underactuated AUV and a time-varying LQR
to stabilize around the reference trajectories. Simulations
showed the capability of the controller to execute repre-
sentative trajectories.

For icy moon exploration, the proposed control architec-
ture will be able to generate and stabilize around nominal
trajectories given a precise model, especially of the hy-
drodynamics. Changes in temperature and alterations in
the composition of the liquid have a severe influence on
the hydrodynamic parameters. Since the exact proper-
ties of the ocean on Europa are unknown and due to the
controller’s dependency on a good model, model identi-
fication on Earth will not provide sufficient results.
Adding an online model adaptation could allow the sys-
tem to correct the errors in the model identification and
result in robustness toward unknown dynamics for ocean
exploration.
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