Polar-Ano: Surface Anomaly Detection via Deep Polarization Imaging and Data Synthesis with Physic-based Rendering

Yaxu Xie, Alain Pagani, and Didier Stricker
Augmented Vision
German Research Center for Artificial Intelligence
Kaiserslautern, Germany
name.surname@dfki.de

Abstract—In this paper, we propose a complete pipeline from generating polarization images via physics-based rendering to train and deploy an image anomaly detection and localization model for polarimetric industrial inspection. The method consists of two stages. We first compute the Polarimetric Priors with both determined and learning-based method. Then, the Polarimetric Priors are given to a self-supervised surface anomaly detection network to predict the anomalies score and anomalies masks. To train the network, we adapt and modify a physic-based rendering pipeline to generate photo-realistic data samples of polarized images on a large scale. Our experiments show the effectiveness of our proposed pipeline.

Index Terms—anomaly detection, polarimetric imaging, physic-based rendering, shape-from-polarization

I. INTRODUCTION

Surface anomalies frequently arise due to changes in material composition, surface damages, and stains, or structural damages and deformities. The detection of surface anomaly requires not only binary classification of normal and anomaly samples but also the localization of the anomaly in image space. In the domain of industrial anomaly detection, the pursuit of enhancing sensitivity and accuracy has driven the exploration of novel techniques for image appearance acquisition that can discriminate various and subtle anomalies from expected patterns. However, many types of industrial products are usually texture-less, single-colored, or even transparent, which may elude conventional imaging techniques (simple RGB or gray-scaled images).

Polarimetric imaging is a well-known technology that capitalizes on the polarization properties of light and provides distinctive information about object surfaces. By extending the analysis beyond classical intensity-based imaging, polarimetric imaging has demonstrated the potential to unearth latent anomalies that might otherwise remain concealed. The surface geometric, roughness, texture, and micro-structures can be revealed, via analyzing the polarimetric information such as degree of linear polarization (DoLP), angle of linear polarization (AoLP), and stoke maps, which contributes to the identification of anomalies. Although the reflection and polarization of light on specific material are well-studied problems and can be solved using Fresnel equation, there are still several limitations of traditional determined polarimetric imaging: (1) The acquisition of polarimetric data is inherently prone to Poisson noise since the intensity of light through linear polarizer is reduce by 50%, (2) Polarimetric imaging often confronts the ambiguity inherent in interpreting reflections from complex surfaces, (3) The surface of real-world objects can consist of multiple materials or have different roughness, which again brings ambiguity to the model [30]. Since deep learning methods show a strong ability to learn priors and to be robust against noise in many general domains, researchers have noticed its potential in polarimetric imaging [4], [17].

Yet another challenge is that anomaly appearances are very rare compared to the normal samples, which can be laborious and costly to obtain in real-world industrial settings. Supervised learning methods require extensive labeled datasets for training, but the imbalanced data distribution limited its performance. In response, self-supervised deep learning emerges as a promising pipeline to address these challenges, offering a data-efficient and resource-conscious approach to

The research leading to these results has been partially funded by the German BMBF project RACKET (01IW20009).
surface anomaly detection. By reducing the dependency on annotated datasets and enhancing the model’s adaptability, self-supervised learning contributes to more cost-effective and robust anomaly detection solutions. Although the self-supervised anomaly detection method requires only normal data samples for training, the intensive labor of manually creating and labeling polarimetric data samples is still a bottleneck for combining polarimetric imaging and learning-based surface anomaly detection.

Therefore, we adopt a physics-based rendering pipeline to automatically generate high-quality polarized image samples of target 3D objects with the desired ground truth. This pipeline allows us to introduce controlled randomness of light intensity and direction, object materials, color and texture, and background to the synthetic data samples. Then, we develop a vision system for surface anomaly detection using polarimetric intensity and direction, object materials, color and texture, and pipeline allows us to introduce controlled randomness of light of target 3D objects with the desired ground truth. This automatically generate high-quality polarized image samples for training, the intensive labor of manually supervised anomaly detection method requires only normal annotated datasets and enhancing the model's adaptability, which means the network is supposed to show lower reconstruction performance in anomaly regions. This assumption may fail if the reconstruction network is too representative or the anomalies are too similar to normal appearance for photometric loss. Methods like \(\text{DR}\text{-}\text{EM} \) [33] and CutPaste [19] make efforts to generate and blend random synthetic anomalies on anomaly-free images and using a discriminator network to compare the input and the reconstructed image so that the anomaly can be detected. Other works [8], [25], [26] have noticed that the normal features and the anomalous features can be normalized and clustered far away from each other in the embedding space. SimpleNet [21] is then proposed to generate anomaly in embedding space and perform transfer learning to reduce the distribution gap between pretrained and target datasets, which results in a lightweight and fast design.

Self-supervised Surface Anomaly Detection In industrial quality control, the surface anomaly appearances are significantly diverse. Moreover, the images of anomaly samples are too rare to be manually collected/created and annotated in time-cost efficient ways. Self-supervised learning methods are therefore widely studied in anomaly detection. To enable self-supervised training, some works [2], [3], [7] utilize auto-encoders and generative adversarial networks to reconstruct normal data. These methods are fully trained with normal data, during inference the anomalies are identified according to the reconstruction quality, which means the network is supposed to show lower reconstruction performance in anomaly regions. This assumption may fail if the reconstruction network is too representative or the anomalies are too similar to normal appearance for photometric loss. Methods like \(\text{DR}\text{-}\text{EM} \) [33] and CutPaste [19] make efforts to generate and blend random synthetic anomalies on anomaly-free images and using a discriminator network to compare the input and the reconstructed image so that the anomaly can be detected. Other works [8], [25], [26] have noticed that the normal features and the anomalous features can be normalized and clustered far away from each other in the embedding space. SimpleNet [21] is then proposed to generate anomaly in embedding space and perform transfer learning to reduce the distribution gap between pretrained and target datasets, which results in a lightweight and fast design.

Polarimetric Imaging has been strongly boosted recently with the progress of on-chip polarization CMOS, which enables to capture of images with multiple different polarization angles in one shot. Polarization cues of objects and scenes, such as Degree of Polarization (DoP), Angle of Polarization (AoP) and stroke vectors can be computed with the polarized images and provide extra information for various tasks, such as surface normal estimation [14], [30], spatially varying surface reflectance functions (SVBRDF) recovery [5], reflection separation [22] and anomaly detection [6]. However, the ambiguities of polarization cues due to unknown reflection types, object surface materials, and sensor noises limit the application scenarios of many works. Recently, deep learning has been introduced into polarimetric imaging for the reason that neural networks are more adaptive facing ambiguities and imperfection of input data. Learning-based Shape-from-Polarization (SfP) has been tackled in both object [4] and scene [18] levels as well as the acquisition of SVBRDF [10]. Sparse polarization sensor and the polarization information compensation network [17] are also developed, to overcome the sensor sensitivity reduction resulting from polarization filters. The pose estimation and anomaly detection of transparent objects are also explored in several works [12], [16], [32].
The polarization state of light can be affected by the reflection. When unpolarized light strikes a surface, the reflected light can become partially polarized. And the azimuth and zenith angle of the reflection are determined by the surface normal of the observed object. The relation between polarization, reflection and object surface geometry can be jointly determined by Fresnel Equation. Therefore, estimating the polarization, reflection and object surface geometry can be jointly described by Fresnel Equation. Therefore, estimating the polarimetric information will provide extra cues for identifying the surface anomaly.

We assume the the polarization images I are from a polarization camera with on-chip lens and polarizers with polarization angles $\phi_{pol} \in \{0^\circ, 45^\circ, 90^\circ, 135^\circ\}$, which can be determined by:

$$I(\phi_{pol}) = I_{un}(1 + \rho \cos(2\phi - 2\phi_{pol}))$$

where ϕ is the angle of polarization (AoP), ρ is the degree of polarization (DoP) and I_{un} is the unpolarized intensity of light. Having the images with different polarizer angles, the degree of polarization ρ and the angle of polarization ϕ are computed by:

$$\rho = \sqrt{(I_0 - I_{90})^2 + (I_{45} - I_{135})^2} / I,$$

$$\phi = \frac{1}{2} \arctan \frac{I_{45} - I_{135}}{I_0 - I_{90}}.$$

with $I = (I_0 + I_{45} + I_{90} + I_{135})/2$.

Due to the complex and unknown material behavior and multiple solution natural of Fresnel Equation, the traditional shape-from-polarization methods are valid only under strict assumptions and perform worse than learning-based methods [4, 18]. We therefore utilize the learned surface normal from pretrained SPW-Net [18] as the third polarimetric priors. Thus, the input for our polarimetric surface anomaly detection method consists of the unpolarized image, the degree of polarization, the angle of polarization and the learned surface normal:

$$X = \{I_{un}, \rho, \phi, n\}.$$

B. Surface Anomaly Detection

We utilize the $DREM$ Method [33] as our surface anomaly detection baseline. $DREM$ is a reconstructive-discriminative network, which can be trained in an end-to-end manner on synthetically generated just-out-of-distribution patterns. The model consist of two sub-networks, the reconstructive network takes image samples with augmented anomalies as input and reconstructs the anomaly-free images from them. While the discriminative network takes both the reconstructed images and the anomaly-augmented images as inputs and estimate the region of anomalies in image space. The synthetic anomalies are created using random picked patterns masked with a binary mask generated using Perlin noise genera- tor, and blended on the anomaly-free image. We propose to train $DREM$ on our Polarimetric Prior $X = \{I_{un}, \rho, \phi, n\}$ separately:

$$\hat{M}_i, \hat{\eta}_i = f(X_i) \quad \text{with} \quad X_i \in \{I_{un}, \rho, \phi, n\}$$

where \hat{M} is the predicted anomaly mask with the same frame size as the input images, and $\hat{\eta} \in (0, 1)$ is the predicted anomaly score. We then simply compute the average of the \hat{M}_i and $\hat{\eta}_i$ as the final output.
C. Physic-based Polarization Data Synthesis

Instead of capturing real polarimetric images and labeling them with ground truth object masks, surface normals, and anomaly maps, we modify an open-sourced physic-based rendering method [1] to generate synthetic data samples. As illustrated in Figure 3, our method bases on BlenderProc [9] and Mitsuba3 [15]. We first create the 3D model of target object via CAD software and generate a high resolution 3D mesh of each component of the object. Then we set up a scene layout as in the BOP dataset [13] with random sampled camera poses, backgrounds and object poses using BlenderProc.

The scene layout is later on converted to Mitsuba3 scripts to conduct physic-based rendering to generate photo-realistic polarization images. As shown in Figure 3, every component of the object (here a USB stick shaped as a plastic construction brick) is assigned with different BSDFs (polarized plastic and rough conductor).

Comparing to the original implementation [1], we also introduce controlled randomness such as spot light position, light intensity, material color etc, in order to increase the generalization-ability of our data rendered samples. All manipulable parameters in our setup is listed in Table I.

IV. EXPERIMENTS

In this section, we first give details about the implementation. Then we test our trained method on our own dataset and real data samples, and evaluate the performance qualitatively and quantitatively.

TABLE I: Controlled random variables of PBR data synthesis.

<table>
<thead>
<tr>
<th>Variables/Units</th>
<th>Sampling Methods</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera Pose (m)</td>
<td>Spherical Shell</td>
<td>$r \in (0.4, 0.49)$</td>
</tr>
<tr>
<td>Object Pose (m)</td>
<td>Surface Dropping</td>
<td>$h \in (1, 4)$</td>
</tr>
<tr>
<td>Background</td>
<td></td>
<td>\cdot</td>
</tr>
<tr>
<td>Spot Light Position (m)</td>
<td>Spherical Shell</td>
<td>$r \in (1, 1.5)$</td>
</tr>
<tr>
<td>Light Intensity (w/m^2)</td>
<td>Uniform</td>
<td>$p \in (2.25, 3.375)$</td>
</tr>
<tr>
<td>Material Color</td>
<td>Uniform</td>
<td>$i \in (0.1)$</td>
</tr>
<tr>
<td>Material α (Rough)</td>
<td>Uniform</td>
<td>$\alpha \in (0.1, 0.7)$</td>
</tr>
<tr>
<td>Material α (Smooth)</td>
<td>Uniform</td>
<td>$\alpha \in (0.001, 0.011)$</td>
</tr>
</tbody>
</table>

Implementation Details We generated 4,608 synthetic polarized data samples with annotated object mask, DoP, AoP and surface normal. Samples have a frame size of 480×640. We randomly picked 80% of the samples for training, and 20% for testing. Our network is trained on the generated data for 50 epochs, using ADAM optimizer with an initial learning rate of 0.0001 and batch size of 4. Because SPW [18] is trained on scene-level dataset, we fine-tuned the network using our synthetic dataset for 10 epochs.

Evaluation We first evaluate our method on the test split of our synthetic dataset in terms of AUROC (Area Under the ROC Convex Hull) both for image-wise anomaly (AUROC-I) and pixel-wise anomaly (AUROC-P), the results is listed in Table II. We mark the input variants with only raw unpolarized image as \hat{R}, with AoP as ϕ, with DoP as ρ and with learned surface normal as n. As the result shows, by adding Polarimetric Priors one by one, the results keep improving. With the method variant $\hat{R} + \phi + \rho + n$ (all of the Polarimetric Priors) yields the best result among all variants. We also test the performance of our method on real data samples, the visualized results are given in Figure 4. Even though our method is only trained on synthetic data, it still performs well enough for real world samples, which also proves the realism and usefulness of our render synthetic data.
A polarimetric surface anomaly detection method was presented, together with the method for generate training data via physics-based rendering techniques. Our proposed pipeline shows accurate result during testing both in synthetic and real data. For the future work, we would like to explore the rendering techniques to generate additional types of realistic anomalies to create a more comprehensive polarimetric anomaly detection benchmark.

V. Conclusion

A polarimetric surface anomaly detection method was presented, together with the method for generating training data via physics-based rendering techniques. Our proposed pipeline shows accurate results during testing, both in synthetic and real data. For future work, we would like to explore the rendering techniques to generate additional types of realistic anomalies to create a more comprehensive polarimetric anomaly detection benchmark.

References

TABLE II: Comparison of the performance of the surface anomaly detection method with different input variants.

<table>
<thead>
<tr>
<th>Methods</th>
<th>I-AUROC</th>
<th>P-AUROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>99.075</td>
<td>99.070</td>
</tr>
<tr>
<td>$R+\phi$</td>
<td>99.689</td>
<td>99.836</td>
</tr>
<tr>
<td>$R+\rho$</td>
<td>99.974</td>
<td>99.911</td>
</tr>
<tr>
<td>$R+\phi+\rho$</td>
<td>99.817</td>
<td>99.926</td>
</tr>
</tbody>
</table>

Fig. 4: **Visualized Results of Surface Anomaly Detection for Real Data Sample**: (a) sample with structural damage on the corner, and (b) the defect-free sample.