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Abstract—In this paper, we propose a complete pipeline from
generating polarization images via physics-based rendering to
train and deploy an image anomaly detection and localization
model for polarimetric industrial inspection. The method consists
of two stages. We first compute the Polarimetric Priors with both
determined and learning-based method. Then, the Polarimetric
Priors are given to a self-supervised surface anomaly detection
network to predict the anomalies score and anomalies masks. To
train the network, we adapt and modify a physic-based rendering
pipeline to generate photo-realistic data samples of polarized
images on a large scale. Our experiments show the effectiveness
of our proposed pipeline.

Index Terms—anomaly detection, polarimetric imaging,
physic-based rendering, shape-from-polarization

I. INTRODUCTION

Surface anomalies frequently arise due to changes in ma-

terial composition, surface damages, and stains, or structural

damages and deformities. The detection of surface anomaly

requires not only binary classification of normal and anomaly

samples but also the localization of the anomaly in image

space. In the domain of industrial anomaly detection, the

pursuit of enhancing sensitivity and accuracy has driven the

exploration of novel techniques for image appearance acqui-

sition that can discriminate various and subtle anomalies from

expected patterns. However, many types of industrial products

are usually texture-less, single-colored, or even transparent,

which may elude conventional imaging techniques (simple

RGB or gray-scaled images).

Polarimetric imaging is a well-known technology that cap-

italizes on the polarization properties of light and provides

distinctive information about object surfaces. By extending

the analysis beyond calssical intensity-based imaging, po-

larimetric imaging has demonstrated the potential to unearth

latent anomalies that might otherwise remain concealed. The

surface geometric, roughness, texture, and micro-structures

can be revealed, via analyzing the polarimetric information

such as degree of linear polarization (DoLP), angle of linear

polarization (AoLP), and stoke maps, which contributes to
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the identification of anomalies. Although the reflection and

polarization of light on specific material are well-studied

problems and can be solved using Fresnel equation, there are

still several limitations of traditional determined polarimetric

imaging: (1) The acquisition of polarimetric data is inherently

prone to Poisson noise since the intensity of light through

linear polarizer is reduce by 50%, (2) Polarimetric imaging of-

ten confronts the ambiguity inherent in interpreting reflections

from complex surfaces, (3) The surface of real-world objects

can consist of multiple materials or have different roughness,

which again brings ambiguity to the model [30]. Since deep

learning methods show a strong ability to learn priors and to

be robust against noise in many general domains, researchers

have noticed its potential in polarimetric imaging [4], [17].

Yet another challenge is that anomaly appearances are

very rare compared to the normal samples, which can be

laborious and costly to obtain in real-world industrial settings.

Supervised learning methods require extensive labeled datasets

for training, but the imbalanced data distribution limited

its performance. In response, self-supervised deep learning

emerges as a promising pipeline to address these challenges,

offering a data-efficient and resource-conscious approach to
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surface anomaly detection. By reducing the dependency on

annotated datasets and enhancing the model’s adaptability,

self-supervised learning contributes to more cost-effective

and robust anomaly detection solutions. Although the self-

supervised anomaly detection method requires only normal

data samples for training, the intensive labor of manually

creating and labeling polarimetric data samples is still a

bottleneck for combining polarimetric imaging and learning-

based surface anomaly detection.

Therefore, we adopt a physics-based rendering pipeline to

automatically generate high-quality polarized image samples

of target 3D objects with the desired ground truth. This

pipeline allows us to introduce controlled randomness of light

intensity and direction, object materials, color and texture, and

background to the synthetic data samples. Then, we develop a

vision system for surface anomaly detection using polarimetric

imaging and self-supervised learning on our generated data.

The contributions of our paper are the following:

• we implemented a physics-based rendering pipeline to

generate polarization images of object-level scene lay-

outs, which enables us to train and test learning-based

methods on it.

• we proposed the comprehensive use of multiple inputs

(raw image, DoP, AoP and surface normal) to enrich the

appearance information.

• we trained a self-supervised surface normal detection

method on multiple inputs, and test the performance of

the model on both synthetic and real data samples.

II. RELATED WORK

In this section, we first review the recent progress of

polarimetric imaging, especially learning-based ones. Then

we give a summary of industrial surface anomaly detection.

Finally, we discuss the existing pipelines of physics-based

rendering for polarization.

Polarimetric Imaging has been strongly boosted recently with

the progress of on-chip polarization CMOS, which enables to

capture of images with multiple different polarization angles

in one shot. Polarization cues of objects and scenes, such as

Degree of Polarization (DoP), Angle of Polarization (AoP)

and stroke vectors can be computed with the polarized images

and provide extra information for various tasks, such as

surface normal estimation [14], [30], spatially varying surface

reflectance functions (SVBRDF) recovery [5], reflection

separation [22] and anomaly detection [6]. However, the

ambiguities of polarization cues due to unknown reflection

types, object surface materials, and sensor noises limit the

application scenarios of many works. Recently, deep learning

has been introduced into polarimetric imaging for the reason

that neural networks are more adaptive facing ambiguities

and imperfection of input data. Learning-based Shape-from-

Polarization (SfP) has been tackled in both object [4] and

scene [18] levels as well as the acquisition of SVBRDF [10].

Sparse polarization sensor and the polarization information

compensation network [17] are also developed, to overcome

the sensor sensitivity reduction resulting from polarization

filters. The pose estimation and anomaly detection of

transparent objects are also explored in several works [12],

[16], [32].

Self-supervised Surface Anomaly Detection In industrial

quality control, the surface anomaly appearances are

significantly diverse. Moreover, the images of anomaly

samples are too rare to be manually collected/created

and annotated in time-cost efficient ways. Self-supervised

learning methods are therefore widely studied in anomaly

detection. To enable self-supervised training, some works [2],

[3], [7] utilize auto-encoders and generative adversarial

networks to reconstruct normal data. These methods are fully

trained with normal data, during inference the anomalies

are identified according to the reconstruction quality, which

means the network is supposed to show lower reconstruction

performance in anomaly regions. This assumption may

fail if the reconstruction network is too representative

or the anomalies are too similar to normal appearance

for photometric loss. Methods like DRÆM [33] and

CutPaste [19] make efforts to generate and blend random

synthetic anomalies on anomaly-free images and using

a discriminator network to compare the input and the

reconstructed image so that the anomaly can be detected.

Other works [8], [25], [26] have noticed that the normal

features and the anomalous features can be normalized and

clustered far away from each other in the embedding space.

SimpleNet [21] is then proposed to generate anomaly in

embedding space and perform transfer learning to reduce the

distribution gap between pretrained and target datasets, which

results in a lightweight and fast design.

Data Synthetic using Physic-based Rendering Synthetic data

is generated via rendering methods which means it does not

require manual data collection efforts and it can contain nearly

perfect annotations. Many large-scaled synthetic datasets are

already widely used in nowadays learning-based computer

vision research, such as Replica [28] and Hypersim [24] for

indoor spatial sensing, Virtual KITTI [11] and SIFT [29] for

autonomous driving. To reduce the gap between synthetic

and real data, physically based rendering (PBR) software is

used during the generating of these datasets, which aims

to simulate light interaction with materials in a way that

accurately represents the real world. Polarization rendering is

a specialized aspect of PBR that focuses on capturing light

polarization effects. Early research [23], [27], [31] already

established the model and the numeric solver of polarization

rendering on complex/mixed reflection situations of different

materials. Recently, efforts have also been made by Wenzel

Jakob et al. [15] to develop a research-oriented rendering sys-

tem for forward and inverse light transport simulation, which is

differentiable, cross-platformed, and adaptive to modern CPU

and GPU acceleration backend.
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Fig. 2: Network Architecture. The network consists of two stages. At the first stages, the Polarimetric Priors X are computed.

And then the Polarimetric Priors are given to the anomaly detection network to predict the anomalies.

III. APPROACH

In this section, we look into the details of our proposed

polarimetric surface anomaly detection pipeline. We first give

definitions of every polarimetric priors used as the input of

the surface anomaly detection method. After clarifying the

architecture and loss terms of the network, we explain the data

synthesis method we adopted to render polarization images.

The overview of the network architecture is shown in Figure 2.

A. Polarimetric Prior Estimation
The polarization state of light can be affected by the reflec-

tion. When unpolarized light strikes a surface, the reflected

light can become partially polarized. And the azimuth and

zenith angle of the reflection are determined by the surface

normal of the observed object. The relation between polar-

ization, reflection and object surface geometry can be jointly

described by Fresnel Equation. Therefore, estimating the po-

larimetric information will provide extra cues for identify the

surface anomaly.
We assume the the polarization images I(φpol) are from

a polarization camera with on-chip lens and polarizers with

polarization angles φpol ∈ {0◦, 45◦, 90◦, 135◦}, which can be

determined by:

I(φpol) = Iun(1 + ρ cos(2φ− 2φpol)) (1)

where φ is the angle of polarization (AoP), ρ is the degree

of polarization (DoP) and Iun is the unpolarized intensity of

light. Having the images with different polarizer angles, the

degree of polarization ρ and the angle of polarization φ are

computed by:

ρ =

√
((I0 − I90)2 + ((I45 − I135)2)

I
,

φ =
1

2
arctan

I45 − I135
I0 − I90

(2)

with I = (I0 + I45 + I90 + I135)/2.

Due to the complex and unknown material behavior and

multiple solution natural of Fresnel Equation, the traditional

shape-from-polarization methods are valid only under strict as-

sumptions and perform worse than learning-based methods [4],

[18]. We therefore utilize the learned surface normal from

pretrained SPW-Net [18] as the third polarimetric priors. Thus,

the input for our polarimetric surface anomaly detetion method

consists of the unpolarized image, the degree of polarization,

the angle of polarization and the learned surface normal:

X = {Iun, ρ, φ, n} . (3)

B. Surface Anomaly Detection

We utilize the DRÆM Method [33] as our surface anomaly

detection baseline. DRÆM is a reconstructive-discriminative

network, which can be trained in an end-to-end manner on

synthetically generated just-out-of-distribution patterns. The

model consist of two sub-networks, the reconstructive network

takes image samples with augmented anomalies as input and

reconstructs the anomaly-free images from them. While the

discriminative network takes both the reconstructed images

and the anomaly-augmented images as inputs and estimate the

region of anomalies in image space. The synthetic anomalies

are created using random picked patterns masked with a binary

mask generated using Perlin noise genera- tor, and blended on

the anomaly-free image. We propose to train DRÆM on our

Polarimetric Prior X = {Iun, ρ, φ, n} separately:

M̂i, η̂i = f(Xi) with Xi ∈ {Iun, ρ, φ, n} (4)

where M̂ is the predicted anomaly mask with the same frame

size as the input images, and η̂ ∈ (0, 1) is the predicted

anomaly score. We then simply compute the average of the

Mi and ηi as the final output.
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Fig. 3: Our physics-based polarization rendering pipeline for data synthesis. Here the reference object is a USB stick with

the shape of plastic construction bricks, the top and the bottom bricks is assign with different material smoothness.

Same as the original design of [33], the reconstructive net-

work is trained with photometric loss, while the discriminative

network is trained Focal Loss [20] for the predicted anomaly

mask:

L = Lrec(Xi, X
r
i ) + Lseg(M, M̂i) (5)

where M is the ground truth anomaly mask, and Xr
i is the

reconstructed term of Xi.

C. Physic-based Polarization Data Synthesis

Instead of capturing real polarimetric images and labeling

them with ground truth object masks, surface normals, and

anomaly maps, we modify an open-sourced physic-based

rendering method [1] to generate synthetic data samples. As

illustrated in Figure 3, our method bases on BlenderProc [9]

and Mitsuba3 [15]. We first create the 3D model of target

object via CAD software and generate a high resolution 3D

mesh of each component of the object. Then we set up a scene

layout as in the BOP dataset [13] with random sampled camera

poses, backgrounds and object poses using BlenderProc.

The scene layout is later on converted to Mitsuba3 scripts

to conduct physic-based rendering to generate photo-realistic

polarization images. As shown in Figure 3, every component

of the object (here a USB stick shaped as a plastic construction

brick) is assigned with different BSDFs (polarized plastic and

rough conductor).

Comparing to the original implementation [1], we also

introduce controlled randomness such as spot light position,

light intensity, material color etc, in order to increase the

generalization-ability of our data rendered samples. All ma-

nipulable parameters in our setup is listed in Table I.

IV. EXPERIMENTS

In this section, we first give details about the implementa-

tion. Then we test our trained method on our own dataset and

real data samples, and evaluate the performance qualitatively

and quantitatively.

Variables(Units) Sampling Methods Range
Camera Pose (m) Spherical Shell r ∈ (0.4, 0.49)
Object Pose (m) Surface Dropping h ∈ (1, 4)
Background - -
Spot Light Position (m) Spherical Shell r ∈ (1, 1.5)
Light Intensity (w/m2) Uniform p ∈ (2.25, 3.375)
Material Color Uniform i ∈ (0, 1)
Material α (Rough) Uniform α ∈ (0.1, 0, 7)
Material α (Smooth) Uniform α ∈ (0.001, 0.011)

TABLE I: Controlled random variables of PBR data synthesis.

Implementation Details We generated 4,608 synthetic

polarized data samples with annotated object mask, DoP, AoP

and surface normal. Samples have a frame size of 480× 640.

We randomly picked 80% of the samples for training, and

20% for testing. Our network is trained on the generated data

for 50 epochs, using ADAM optimizer with an initial learning

rate of 0.0001 and batch size of 4. Because SPW [18] is

trained on scene-level dataset, we fine-tuned the network

using our synthetic dataset for 10 epochs.

Evaluation We first evaluate our method on the test split of

our synthetic dataset in terms of AUROC (Area Under the

ROC Convex Hull) both for image-wise anomaly (AUROC-

I) and pixel-wise anomaly (AUROC-P), the results is listed in

Table II. We mark the input variants with only raw unpolarized

image as R, with AoP as φ, with DoP as ρ and with

learned surface normal as n. As the result shows, by adding

Polarimetric Pirors one by one, the results keep improving.

With the method variant R+φ+ρ+n (all of the Polarimetric

Priors) yields the best result among all variants. We also test

the performance of our method on real data samples, the

visualized results are given in Figure 4. Even though our

method is only trained on synthetic data, it still performs well

enough for real world samples, which also proves the reaslism

and usefulness of our render synthetic data.
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Methods I-AUROC P-AUROC
R 99.075 99.070
R+φ 99.689 99.836
R+φ+ρ 99.794 99.911
R+φ+ρ+n 99.817 99.926

TABLE II: Comparison of the performance of the surface

anomaly detection method with different input variants.

V. CONCLUSION

A polarimetric surface anomaly detection method was pre-

sented, together with the method for generate training data

via physic-based rendering techniques. Our proposed pipeline

shows accurate result during testing both in synthetic and

real data. For the future work, we would like to explore the

rendering techniques to generate additional types of realis-

tic anomalies to create a more comprehensive polarimetric

anomaly detection benchmark.
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Fig. 4: Visualized Results of Surface Anomaly Detection for Real Data Sample: (a) sample with structural damage on the

corner, and (b) the defect-free sample.
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