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ABSTRACT
Hybrid Intelligence (HI) is a rapidly growing field aiming at creat-

ing collaborative systems where humans and intelligent machines

cooperate in mixed teams towards shared goals. A clear characteri-

zation of the tasks and knowledge exchanged by the agents in HI

applications is still missing, hampering both standardization and

reuse when designing new HI systems. Knowledge Engineering

(KE) methods have been used to solve such issue through the for-

malization of tasks and roles in knowledge-intensive processes. We

investigate whether KE methods can be applied to HI scenarios, and

specifically whether common, reusable elements such as knowl-

edge roles, tasks and subtasks can be identified in contexts where

symbolic, subsymbolic and human-in-the-loop components are

involved. We first adapt the well-known CommonKADS method-

ology to HI, and then use it to analyze several HI projects and

identify common tasks. The results are (i) a high-level ontology of

HI knowledge roles, (ii) a set of novel, HI-specific tasks and (iii)

an open repository to store scenarios
1
– allowing reuse, validation

and design of existing and new HI applications.
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1 INTRODUCTION
The field of Hybrid Intelligence (HI) envisions of creating collab-

orative systems, where humans and intelligent machines operate

in mixed teams collaboratively, synergistically , and proactively

to achieve shared goals [1]. In a typical HI scenario, humans and

artificial agents complement each other’s limitations. For exam-

ple, human limitations such as stereotypes, error proneness, in-

group favoritism or short memory are mitigated by machine-driven

decision-making, while the human feedback ensures the machines’

fairness, sample efficiency and task generalizability. This team col-

laboration requires advanced interaction of heterogeneous actors

(i.e. humans and artificial agents), which are aware of and can adapt

to each others’ tasks and knowledge within the organization they

operate. HI being in its infancy, a clear characterization of such a

complex interaction in terms of the knowledge and the tasks the

mixed teams are involved in is currently missing. This prevents to

efficiently develop HI scenarios and, more importantly, to compare

and reuse concepts and design patterns across HI applications
2
. In

other words, Hybrid Intelligence currently lacks formal, systematic

representation of the interaction between a hybrid team of humans

and artificial agents, and a method to design both the knowledge

and the tasks involved in these interactions is therefore needed.

A well-known method to describe tasks and roles in knowledge-

intensive processes as the HI scenarios is using Knowledge Engi-

neering (KE) [21]. Methods such as CommonKADS [20] have been

extensively used since the 1980s in order to define the basic organi-

zation of a knowledge-based expert system, through modeling and

implementing design components and their relationships. The main

insight behind CommonKADS was that it should not only be used

to develop an expert system supporting organizations in their tasks,

but also to engineer the organization’s knowledge and modeling

requirements. To do this, the CommonKADS methodology defined

and used a typology of generic tasks decomposable into primitive

inference steps, that engineers could use to design and implement

knowledge-based systems. By moving the implementation to the

more abstract “knowledge level”, CommonKADS ultimately allowed

to standardize and reuse task-types, problem solving methods and

elementary inference steps across applications [24].

In this paper, we bring forward the idea that Knowledge Engi-

neering methods such as CommonKADS can be used to help us

formally describe Hybrid Intelligence applications, i.e. modeling

2
Henceforth, “application” and “scenario” are used interchangeably to indicate a hybrid

team of humans and artificial agents jointly working to solve a given problem.
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the tasks and knowledge types involved in it. This allows us to

identify and standardize tasks and knowledge across HI scenarios,

support future researchers in designing HI systems by providing

them with reusable and interoperable design blocks, and ultimately

contribute to better characterizing a rapidly growing field in the

AI area. The main questions we investigate therefore are: (1) can
the classical Knowledge Engineering methods help us characterizing
modern, Hybrid Intelligence applications? And, (2) can we identify
common components that are typical to HI scenarios?

In order to answer our questions, we first adapt the well-known

CommonKADS methodology to Hybrid Intelligence, namely by

following the knowledge analysis steps in order to characterize

knowledge roles, tasks and subtasks composing the Knowledge

Model of an HI system. We then validate such Knowledge Model by

describing and finding common knowledge structures, tasks and

inference steps in 7 Hybrid Intelligence scenarios gathered from

the community. These include research projects both in the Dutch

Hybrid Intelligence consortium
3
and similar European initiatives.

The results are: (i) a high-level ontology of knowledge roles for HI

applications, (ii) a preliminary set of HI-specific tasks and (iii) an

open repository where HI applications and their Knowledge Models

can be recorded. These can ultimately serve for purposes such as

reuse (i.e designing new HI scenarios), quality control (comparing

to existing scenarios) and evaluation (validation of new scenarios).

2 RELATEDWORK AND MOTIVATION
Hybrid Intelligence (HI). Hybrid Intelligence is described as the com-

bination of human and machine intelligence, where humans and

machines collaborate in mixed teams synergistically, proactively,

and with the purpose to achieve shared goals [1]. In HI scenar-

ios, goals that were unreachable by either humans or machines

can be achieved through complementing each others’ strengths

and limitations [1, 4]. Several projects are born since the seminal

papers have appeared, e.g. the Dutch Hybrid Intelligence Centre,

the European Network for Human-Centred Artificial Intelligence
4
,

the Human-Centred AI research group
5
, and events such as the

Human-centred AI workshop series
6
and the first editions of the

Hybrid Human-Artificial Intelligence conference (HHAI
7
).

Some work defined the core concepts around Hybrid Intelligence.

A research agenda for HI is presented in [1], which includes the

use of psychological theories of cooperation and theory of mind to

improve synergetic work (Collaborative HI), reinforcement learning

for machines to adapt to humans and their environment (Adaptive

HI), societal and personal value-aware methodologies to design

systems (Responsible HI), ontologies and knowledge graphs as

background knowledge to share and explain awareness, goals and

strategies (Explainable HI). [4] attempts to characterize what is HI,

starting from the different dimensions of the term “intelligence”

(e.g. social, logical, spatial, musical). The authors compare a hybrid

intelligence with human, collaborative and artificial intelligence

and identify HI as a type of intelligence that intersects the human

and the artificial one. Other characterizations are more limited in

3
https://www.hybrid-intelligence-centre.nl/

4
https://www.humane-ai.eu/

5
https://hcai.site/

6
https://sites.google.com/view/hcai-human-centered-ai-neurips/home

7
hhai-conference.org

scope, e.g. [11] describes the ways humans support AI systems (task

design, quality control, etc.), while taxonomies and standardizations

for human-machine teams are presented in [5, 13, 15].

Works attempting to formally define specific HI tasks and sys-

tems from a Knowledge Engineering perspective are e.g. modular

design patterns for hybrid systems combining symbolic and subsym-

bolic techniques [22, 23], or formal languages used to describe the

dynamic allocation of task in hybrid, human-agents teams [25, 26].

In [3], a set of business applications operating in different domains

are analyzed to derive a hierarchical set of dimensions relevant to

design HI systems: these include the task to perform, the learning

actor (human or machine) and the type of interaction (human-to-AI

or AI-to-human). We use a similar bottom-up approach to identify

knowledge type and tasks in HI scenarios.

Knowledge Engineering for Application Design. Knowledge Engi-

neering (KE) was conceived to turn the construction of knowledge-

based systems into an engineering process, following Software

Engineering approaches [21]. Different modeling frameworks ad-

dress various KE aspects, i.e. CommonKADS [20] describes models,

MIKE [2] formalizes the executable specification of the model, PRO-

TÉGÉ [7] allows collaborative knowledge acquisition and reasoning.

The CommonKADS methodology has been applied in a vari-

ety of scenarios, including e-governance [28], smart grid manage-

ment [29], and robot control [9]. Some works have extended Com-

monKADS to multi-agent systems scenarios for e.g. supply chain

management and traffic simulations [16, 18]. These scenarios have

been mostly dealing with single user, stand-alone knowledge-based

systems to support the domain expert in complex, but well-defined

tasks (e.g. diagnosis, assessment, planning) [27]. With the rise of

the Semantic Web and its open-ended tasks (e.g. semantic search,

information retrieval, knowledge representation at scale), the KE

methodologies evolved into open semantic patterns, e.g. Ontol-

ogy Design Patterns, boxologies and scripts for informed machine

learning-based language-driven applications [6, 23]. Similarly to

us, [24] uses KE to describe tasks in Semantic Web applications.

Motivation and Challenges ahead. Hybrid Intelligence is an emerg-

ing field and initial efforts have been made in characterizing the

type of intelligence involved in these scenarios (complementary,

collaborative, adaptive etc.). What is missing is a clear analysis of

the knowledge and tasks that the mixed teams need to exchange, in

order to support the design of HI systems. Knowledge Engineering

methods such as CommonKADS have been used to support the en-

gineers in clarifying the structure of knowledge-intensive systems

in the past. CommonKADS’ Knowledge Model in particular has

helped specifying the data and knowledge structures required for

the application. We therefore hypothesize that KE can help us
in the task of describing Hybrid Intelligence scenarios, i.e.
understanding the different knowledge types, engineer the system

design and support reusability across applications. The advantage

of this method over classical ontology engineering is that it allows

us to capture in parallel multiple aspects involved in a HI scenario,

namely knowledge about the organization, the agents, their in-

teraction, and tasks they need to perform. Assuming this, three

challenges arise: (i) CommonKADS was used mostly for single-user

applications, while we deal with complex scenarios with multiple

actors and complementary expertise; (ii) CommonKADS has been
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successful with applications using small-scale domain ontologies,

but have not been applied in applications relying on large reposito-

ries of less structured knowledge (i.e. modern Knowledge Graphs);

(iii) CommonKADS dealt with a closed number of well-defined

tasks, that might not be easily applied in HI scenarios that involve

symbolic, subsymbolic and human-in-the-loop components. Under-

standing whether Hybrid Intelligence applications can rely on such

tasks or different ones is crucial. In order to tackle these challenges,

in the next sections we will first adapt the CommonKADS method-

ology to HI, particularly extending its Knowledge Model with an

ontology of knowledge roles for HI applications, and then use it

to characterize several HI projects, to ultimately identify a set of

common, reusable HI-specific tasks.

3 METHODOLOGY: COMMONKADS FOR HI
3.1 Background on CommonKADS
TheKnowledgeAcquisition andDocumentation Structuringmethod

(KADS) and its successor CommonKADS arewell-known approaches

in Knowledge Engineering to develop knowledge-based systems [19].

The idea is that developing an intelligent system involves engi-

neering “templates” to describe both the system behavior in the

application domain, and the concrete organization behind it. The

knowledge engineer would therefore model the domain expert

knowledge as well as how this is used within the organization [20].

(a)

(b)

Figure 1: (a) CommonKADS models and (b) a Knowledge
Model of a medical application [19].

To represent knowledge at different levels, CommonKADS offers

several models serving as requirement specification for a KB-system

to be developed (cf. Figure 1a). The Organization Model describes
the structural and administrative features of the organization un-

der observation. The Task Model represents the tasks that must be

performed inside the organization in a structured, hierarchical way.

The Agent Model describes the (human or artificial) actors partici-

pating in the task execution, along with their main attributes. The

Communication Model specifies the relation between the various

agents and what type of data they share. The Knowledge Model
represents the types and structures of the knowledge that is used

for the different tasks. The role of different knowledge components

in decision-making is also provided in a human-readable way. The

Design Model provides the technical specifications, i.e. software

architecture and implementation tools.

Let us imagine the case of a HI system for robotic surgery, where

a robotic microscope and a surgeon complement each other’s skills

on the level of micrometer surgery. The robotic agent has to learn

how best to align its angle and zoom of vision with the activities

of the human surgeon. This requires a mutual understanding of

each upcoming surgical procedure, which is to be acquired during

practice sessions. In this scenario, the Organization Model would
allow for analysis of the hospital setting where the two agents

operate, i.e. discovering problems and opportunities for the appli-

cation of an HI system, establishing its feasibility, and assessing

the impact on the hospital if succeeding. The Task Model would
describe the global layout of the micrometer surgery task, includ-

ing inputs/preconditions (e.g. patient history, experience gained

through the practice sessions), outputs/postconditions (e.g. perfor-

mance criteria) and necessary resources (e.g. surgery or monitoring

tools). The Agent Model would describe the characteristics of the

robot and the human surgeon, namely their competences (zooming,

manipulating, communicating, etc.), authority and legibility. These

3 models together would allow to first analyze the hospital setting

and the success factors for the surgeon HI system. The Knowledge

and Communication models would then allow to obtain a concep-

tual description of the functions and data handled and delivered by

the HI system. The Knowledge Model would include the types of

knowledge used in performing the surgery (e.g. knowledge of the

human body, diagnosis of the patient, status of the surgery tools, es-

tablished procedure) including their role in the specific steps of the

surgery (e.g. a patient’s history is needed before inducing a given

anaesthesia). The Communication Model would represent the

communicative transactions between the robot microscope and the

surgeon, including e.g. human-robot dialogues, communication of

the sharedmental models or planning solutions. TheDesignModel
would ultimately convert all the data, functions and communication

links into a technical specification (architecture, implementation

platform, software modules) for an HI system to be implemented.

While all of these models are relevant to HI applications, the goal of

this paper is to identify HI recurrent knowledge roles and tasks. The
current work is therefore focused on CommonKADS’ Knowledge
Model, as this helps clarifying the role that different knowledge

components play in the HI processes in human-understandable way.

A structured analysis of Hybrid Intelligence scenarios following

the full CommonKADS methodology is left for future work.

The Knowledge Model specifies the vocabulary used, i.e. the

main classes of the domain (e.g. patients, diseases, tools) and the

reasoning task(s) that need to be performed (e.g. assessment, con-

figuration, diagnosis). This knowledge is divided in 3 layers (cf.

Figure 1b with an example of a medical diagnosis application):
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Figure 2: Knowledge roles for Hybrid Intelligence scenarios. Italic terms are examples of instances.
1. the task layer describes what problem-solving subtasks need to

be carried out, and how (namely, specification of input, output

and goal of every subtask);

2. the inference layer includes the set of primitive reasoning steps,

that are combined in subtasks. It is the lowest level of decompo-

sition of the task layer subtasks;

3. the domain knowledge layer provides the domain knowledge

required to execute the inference steps (classes and relationships).

The Knowledge Model is built in a spiral way: first, a domain on-

tology with an initial terminology is created (identification). The
terms should be functional, as they serve as inputs and outputs of

the primitive inference steps. These inputs can be variant (dynamic)

or invariant (static). Next, the tasks and primitive inference steps

are defined graphically (specification). The inference steps should
belong to a standard set as much as possible. One can either choose

a task template and decompose the application according to the

inference steps, ultimately linking them to the domain ontology

(middle-in strategy), or first define the inference steps based on the

domain ontology, then identifying a generic task method (middle-
out strategy). Ultimately, the model is tested with instances from

the ontology (refinement).

3.2 A Knowledge Model for Hybrid Intelligence
Following the steps just described, we first define a high-level on-

tology to represent roles in an HI application, then establish a set

of HI tasks, subtasks and primitive inference steps.

Domain Knowledge Layer. This layer describes the knowledge in-
volved in a HI scenario in the forms of concepts, relations and facts

needed for reasoning. This knowledge will vary from application

to application (e.g. a personalized health assistant will need knowl-

edge about nutrition, personal values and sport activities, while a

trash-picking robot will need knowledge about objects, affordances

and bin locations), so defining a specific terminology is not useful

here. However, a set of abstract classes and relationships can be de-

fined, that indicate their knowledge role in the reasoning process

and can be reused across scenarios.

The high-level ontology of HI knowledge roles is presented in

Figure 2. An OWL version is available in the online repository.

In every HI application, 3 main components are considered: (1)

the participating actors, described in terms of characteristics,

capabilities they have and information they are able to process; (2)

the interaction between them, including the performed task and

interaction modality; (3) the scenario and characteristics such as

its domain, context, end goal and potential ethical considerations.

In a practical example, a simple HI scenario (class Scenario) could
be aiming at supporting scholars (class Endgoal) in the Digital

Humanities (Domain) using a transparent (EthicalConsideration)
assistant for analyzing historical biographies (Context). Two in-

stances of the class Actor are here involved, i.e. a human practi-

tioner called Matthias and the MyQASystem Q&A system, which

is able to answer, explain and communicate (class Capability) using
Argumentation Theory and Pattern Matching (ProcessingMethod)
to reason over the data (ProcessingTask). The actors interact collab-
oratively (InteractionMethod) to build explanations for the human

(InteractionTask). An additional domain-specific ontology would

then describe biographies from a digital humanities perspective.

Note that this high-level ontology serves as a foundation to align

and compare design components across Hybrid Intelligence sce-

narios, but is non-exhaustive, nor extensively validated through

competency questions. Developing a complete HI ontology is out-

side the scope of this paper, but planned future work, along with

alignments to existing ontologies and vocabularies.

Task Layer. CommonKADS tasks and subtasks are described in a

hierarchical fashion. Top-level tasks are decomposed into smaller

subtasks, which in turn split into even smaller units (the task decom-
position process). The leaves at the lowest level of the task structure
are inference steps that are linked in the inference layer.

Similar to the domain knowledge layer, a natural question to ask

is whether a set of generic tasks and inferences specific to HI scenar-

ios are needed. The original CommonKADS tasks (e.g. analytic tasks

such as diagnosis, monitoring, classification or synthetic tasks such

as scheduling, planning, designing) were thought for rule-based
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Table 1: Non-exhaustive HI task and subtask decomposition.

.Recognition Training, Classification

Prediction Regression Training, Predicting

Reasoning Inference Induction, Abduction, Deduction

Action

Cognitive

Attention Monitor, Orienting, Sustained

Memory Recollect, Short-term, Sensory

Perception

Vestibular, Olfaction, Audition,

Touch, Vision

Decision Making Individual, Societal, Debiasing

Knowledge-aid

Mental Models, Team Role Al-

location, Creativity

Physical Movement Body Part Mvt., Translation

systems and single-agents, which might be limiting for complex

applications relying on different techniques and actors (symbolic

and subsymbolic reasoning, human-in-the-loop, communication,

team coordination). Using notions from the literature [3, 14, 22],

we instead create a non-exhaustive hierarchy of tasks and subtasks

achievable by both humans and machines (cf. Table 1), resulting in

4 top-level tasks: (i) Recognition: i.e. recognizing instances of a class,
e.g. autonomous driving or smart assistants tasks; (ii) Prediction:
i.e. predicting future events based on past data, e.g. stock prices or

weather forecast; (iii) Reasoning: i.e. understanding data to derive

complex rules deductively, inductively or abductively; (iv) Action:
i.e. conducting a certain action, be it a cognitive or a physical one.

While not complete, this structure offers a primitive set of top-level

processes that can be used to formally describe HI scenarios.

Inference Layer. In the inference layer, the lowest units of the task

decomposition are connected to each other using knowledge roles

as inputs and outputs. These units are either inferences carrying
out a primitive reasoning step (e.g. a “predict” inference step takes

a hypothesis as input and uses a manifestation model to output

an expected outcome), or transfer functions in charge of commu-

nicating with other agents. While a few abstract inferences steps

for HI scenarios can be defined, we can also keep the standard

CommonKADS transfer functions (obtain, receive, present, provide
a given input) as they allow to describe the communication within

the HI teams. We also maintain the distinction between static inputs
(e.g. a knowledge graph, a trained model, a societal values scheme)

and dynamic inputs (e.g. explanations, actions, recommendations).

4 VALIDATION
We validate the HI Knowledge Model to answer our research ques-

tions, namely to understand if KE can help characterize HI applica-

tions (Section 4.1) and identify HI-specific tasks (Section 4.2).

4.1 Characterizing HI Scenarios
To answer our first research question, we use the HI Knowledge

Model of Section 3.2 to characterize different HI scenarios: 2 PhD

projects of the Dutch Hybrid Intelligence consortium (S1, S2), 2

research projects of the European Humane-AI network (S3, S4),

and 3 applications presented at the Hybrid Human-Artificial Intelli-

gence conferences (S5, S6, S7). For each of them, we describe their

scenario and mark the terms that are mapped to the knowledge

roles in the ontology of Figure 2. We then provide their task decom-

position (terminology, inference steps and performed tasks) in both

semi-structure text and a flowchart. Due to space restrictions, we

only graphically report on 4 of these scenarios in this paper, while

the complete material can be found online
8
. As mentioned, the

repository serves as a basis to store newly-designed applications,

fostering reuse, quality control and evaluation of HI scenarios.

Following CommonKADS, we use a UML-based notation with

semi-formal semantics: the subtask leaves are represented as ovals

(inferences) or rounded rectangles (transfer functions); rectangles

are input/output knowledge roles, which can be either dynamic

(full squares) or static (horizontal lines); arrows starting with a dot

mean the input/output is a list; dashed boxes merge inference steps

into more general subtasks.

(S1) Detecting conflicting, non-cooperative Smart Assistants.
S1 involves smart assistants (class Scenario) for improving personal

health (Endgoal). An artificial agent (Actor) provides recommenda-

tions to users (Actor) based on their daily diet and exercise schedule.

The aim is to detect and explain (Capability) deceptive behaviors
such as lies about one’s own activity from data errors due to ex-

ternal conditions (e.g. available resources, varying environmental

conditions). Argumentation Theory (ProcessingMethod) is used to

detect errors and conflicts through reasoning (ProcessingTask) over
the users’ prior knowledge in the form of a knowledge graph.

Terminology: (dynamic) user questions, behaviors, errors, causes, historical user

data. (static) societal health values, external background knowledge.

Inference Steps:

1. receive question from a user;

2. classify a user behavior based on questions, historical data, and societal values;

3. assess the user behaviors;
4. classify a deceptive behavior as an error using Argumentation Theory;

5. induce the causes for an error;

6. rank the classified behaviors ;

7. provide the recommended behavior based on the detected cause.

Tasks: Recognition (1-2), Monitoring (3), Explaining (5), Recommendation (4-7).

(S2) Learning Explainable Sequential Behaviors. An embod-

ied mobile agent and a human collaborator (both Actor instances)
perform manipulation tasks involving a complex sequence of steps

(Scenario), e.g. unlocking and opening a cabinet before retrieving a

tool. Actions such as lifting a heavy object can be performed only

by the robot, while others such as inserting a key into a small lock

only by humans. Using Reinforcement Learning (ProcessingMethod),
the agent learns the optimal sequential behavior without the exact

problem description as in classical planning. Knowledge Graphs

are used as prior knowledge to learn low-level policies (EndGoal)
in the abstract transition graph, in order to track the agent’s state

and explain (Capability) dangerous states to the collaborator [10].

Terminology: (dynamic) object, capabilities, actions, causes, explanations, states.

(static) background knowledge (Knowledge Graph).

Inference Steps:

1. train a model based on the background and some historical action data;

2. assess the agent’s actions to identify the optimal one;

3. classify the agent’s state as dangerous or not;

4. induce the dangerous states and
5. provide them to the users;

6. obtain the other agents’ capabilities;

7. assess the other agent’s capabilities;
8. move body part to perform the grasping action accordingly;

Tasks: Classif. (1-3), Explaining (4-5), Team Role Allocation (6-7), Manip. (8).

8
https://github.com/kmitd/HI-CommonKADS

https://github.com/kmitd/HI-CommonKADS
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(a) S2: Learning Explainable Sequential Behaviors.

(b) S3: Collective Decisions in Law and Economics.

Figure 3: Task Decomposition for Hybrid Intelligence Scenario S2 (a) and Scenario S3 (b).

(S3) Collective Decisions in Law and Economics. An artificial

agent (Actor) needs to intervene to resolve a dilemma (Scenario) in a
group decision, e.g. a jury (Actor). Bayesian logic (ProcessingMethod)
is used as a meta-analytical tool to formalize the main criteria (i.e.

individual and group accuracy in communication) for assessing

when an intervention is (ir)responsible (EthicalConsideration), and
to explain (Capability) the conditions (EndGoal) under which the

autonomous agent should take the responsibility to act.

Terminology: (dynamic) historical data, communication accuracy, action, interven-

tion, explanation, language, decided intervention. (static) Bayesian model, societal

values.

Inference Steps:

1. predict the communication accuracy using Bayesian modelling and past data;

2. classify interventions as (ir)/responsible based on an input action;

3. generate explanations for these based on known societal values;

4. rank the interventions based on societal values,

5. generate language-based interventions;

6. present the intervention to the group.

Tasks: Predict. (1), Societal Decision-Making (2-4), Explaining (3), Comm. (5-6).

(S4) EducationalRecommenderswithNarratives.An autonomous

artificial tutor (Actor) reconstructs the educational paths of indi-
vidual learners (Actor) as personalized narratives, to recommend

them educational resources based on their history. The agent uses

Bayesian theory (ProcessingMethod) to model interests, prior knowl-

edge of the learner and their semantic relatedness with the educa-

tion topics, based on which it improves the performance of the rec-

ommendations. Public KGs such asWordNet andWikiData are used

to perform high-level reasoning (ProcessingTask), ultimately fulfill-

ing the learners’ learning goals more effectively (EndGoal) [17].

Terminology: (dynamic) learning goal, historical data, personal narrative,

recommended resource, educational resource, accuracy, structured knowledge.

(static) Bayesian Theory, external structured knowledge (KGs).

Inference Steps:

1. generate personal narratives based on learning goals and historical data;

2. engineer topic models using Bayesian theories and

3. infer their accuracy;
4. rank educational resources based on personal narratives and computed accuracy;

5. filter resources based on external KGs;

6. adapt the recommendation based on the learner changing goals.

Tasks: Creation (1), Reasoning (2-3,5), Recommendation (4), Adaptation (6).

(S5) Machine Intelligence with Knowledge Graphs. A hybrid

system generates diagnoses (Scenario) based on the patient’s symp-

toms and medical history stored in a Knowledge Graph [8]. A hu-

man operator and an embeddings-based (ProcessingMethod) system
(both Actors) with complementary scientific expertise (Capability)
perform the prediction and justify their propositions to each other

(InteractionTask) in order to come upwith a final decision (EndGoal).

Terminology: (dynamic) symptoms, embeddings, historical medical events,

diagnoses, justifications, decisions. (static) human memory, medical KG.

Inference Steps:

1-2. (human) recollect similar events ad induce the diagnosis;
3-4. (machine) train and classify diagnoses;
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(a) S5: Machine Intelligence with Knowledge Graphs.

(b) S6: Co-learning Buildings.

Figure 4: Task Decomposition for Hybrid Intelligence Scenario S5 (a) and Scenario S6 (b).

5-6. generate a justification for the diagnosis and

7-8. present it to the other agent that can

9. obtain the information;

10. ultimately, generate a combined decision.

Tasks: Prediction (1-4), Explaining (5-6), Team Role Allocation (7-10).

(S6) Co-learning Buildings. A campus (Context) involves AI-

based buildings (Actor) negotiating on power level for the heating

system (EndGoal). They optimize their own energy consumption,

take into account the energy needs of others when moving between

different buildings, and also interact with human grid operators

accounting for the preferences of building owners. The agents learn

(ProcessingMethod) occupancy-movement patterns and building en-

ergy consumption behavior in a collaborative co-learning setting

(InteractionMethod), where the learned models are negotiated in

order to deliberate on a power distribution plan [15].

Terminology: (dynamic) data, measurements, clusters, embeddings, movement

and consumption patterns, consumption models, distribution plans.

Inference Steps:

1-2 perceive data from sensors (energy, temperature, occupancy, movement);

3–6. train&induce energy consumption and occupancy-movement patterns based

on the measurements;

7. deliberate the building consumption model to the other agents;

8. negotiate on a distribution plan;

9. distribute the power level to the campus.

Tasks: Perception (1-2), Recognition (3–6), Communication (7-8), Action (9).

(S7) KG-based Guide for Virtual Heritage Exhibitions. An
agent (Actor) with Q&A Capability offers personalized guidance

to visitors of a virtual museum (Scenario) based on their inter-

ests (EndGoal). Virtual reality (InteractionTask) is used to predict

multi-modal user inputs and reason (both ProcessingTask) over their
profiles and the interactions with the agent. A KG is used to an-

swer user questions about the exhibition and suggest related items

computed using embeddings (ProcessingMethod) [12].

Terminology: (dynamic) questions, events, actions, profiles, embeddings, museum

items. (static) museum KG, historical data.

Inference Steps:

1. recollect events;
2. perceive user actions based on the Virtual Reality action;

3. train a model to compute KG embeddings;

4. rank items to recommend to the user;

5. finally, present the item to the user.

Tasks: Recollection (1), Profiling (2), Recommendation (3-4), Communication (5).

4.2 Identifying Common HI Tasks
To answer our second research question, we use the task decom-

positions to compare HI scenarios and identify tasks that are HI-

specific. Our analysis reveals that classical CommonKADS tasks

such as Monitoring, Prediction or Classification occur among many

scenarios (S1, S2, S3, S5, S6). This was expected, as autonomous

agents based on (subsymbolic) reasoning are involved. This also

happens in more open-ended tasks such as Recommendation (S1,

S4, S7), not directly envisioned by CommonKADS but common in

modern applications relying on large knowledge graphs. Interest-

ingly, structured knowledge is often used as input for subsymbolic

learning (S1, S2, S4, S5, S7), suggesting that KGs are widely accepted

by HI to provide insightful background information and boost the

learning performance.
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Additionally, we remark the emergence of previously unseen

tasks, e.g. Explaining (S1, S2, S3, S5), Communication (S3, S6, S7)

and negotiation (S3, S6) as part of it. These tasks can be considered

as knowledge-aid subtasks involving Creation and/or Language, as

identified in Table 1. Other interesting subtasks are those involv-

ing awareness of an interaction happening in a team with certain

capabilities and/or societal values. Tasks such as Societal Decision-

Making (S3), Team Role Allocation (S2, S5), Goal/Action Adaptation

(S2, S4) indicate that the classical CommonKADS method needs to

be extended to better represent situations involving hybrid collab-

oration. We find also tasks involving multimodal knowledge and

data, e.g. capturing human actions through Virtual Reality (S6) or

sensing and grasping actions performed by artificial agents (S2,

S6), also suggesting that the task design has to be extended from

classical KE ones. These tasks not only show that more Hybrid

Intelligence-specific tasks exist, but also conveniently reflect the

core HI concepts of adaptability, collaborativeness, explainability

and responsibility identified by [1, 4]. The task decompositions are

examples serving to design new HI scenarios, e.g. S5 can help when

designing a collaborative and explainable HI application, S2 can

guide the creation of adaptive and explainable scenarios, S3 and S6

are exemplary for collaborative and responsible scenarios, etc.
While the tasks we identify are not complete, our results show

how an adaptation of classical Knowledge Engineering methods

helps identifying common design components for HI scenarios.

This is also demonstrated by the high-level ontology of HI knowl-

edge roles that we built for the domain knowledge layer. All in-

puts/outputs of the inferences are instances in the ontology, allow-

ing us to derive a HI structure composed of mixed actors, capa-

bilities, interactions and processing types in every scenario. The

ontology can now be further extended to function as a standard

vocabulary for Hybrid Intelligence, while the HI-specific tasks can

be integrated into reusable task templates. These steps will ulti-

mately serve as bases to formally characterize Hybrid Intelligence,

i.e. fostering reuse, comparison, system design and evaluation.

5 CONCLUSIONS
Hybrid Intelligence, where humans and machines cooperate syn-

ergistically to achieve shared goals, is an active field of research.

We used Knowledge Engineering to formally characterize HI ap-

plications, providing an ontology of HI knowledge roles, a set of

HI-specific tasks, and an open repository serving as a basis for

standardization, reuse and validation. Future work will focus on

publishing the HI ontology and on identifying HI task templates.
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