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Abstract: Depth is a very important modality in computer vision, typically used as complementary information to RGB,
provided by RGB-D cameras. In this work, we show that it is possible to obtain the same level of accuracy as
RGB-D cameras on a semantic segmentation task using infrared (IR) and depth images from a single Time-
of-Flight (ToF) camera. In order to fuse the IR and depth modalities of the ToF camera, we introduce a
method utilizing depth-specific convolutions in a multi-task learning framework. In our evaluation on an in-
car segmentation dataset, we demonstrate the competitiveness of our method against the more costly RGB-D
approaches.

1 INTRODUCTION

The research field of semantic segmentation is domi-
nated by RGB images. Only recently it shifted in the
direction of RGB-D semantic segmentation (Hazirbas
et al., 2017; Wang and Neumann, 2018; Cao et al.,
2021; Cheng et al., 2017). However, RGB images
may not always be available due to practical, logis-
tical and financial reasons. RGB-D cameras incur
higher cost and more effort to calibrate the two cam-
eras. Their larger package size often limits their place
in real-world applications. Indeed, Time-of-Flight
(ToF) depth cameras are often deployed without an
accompanying RGB camera for applications like ges-
ture control, in-car monitoring, industry automation
and building management (Schneider et al., 2022a;
Katrolia et al., 2021a). Infrared images (IR) on the
other hand are a by-product of ToF depth cameras
(no additional sensor needed), but have not been ex-
plored sufficiently, specifically in combination with
depth data (Agresti et al., 2017; Su et al., 2016).

Infrared images from ToF cameras provide the
magnitude of the modulated light reflected from the
scene and contain shape and semantic features in a
different spectral range (Hahne, 2012). Due to the
similarities between RGB and IR images, it is nat-
ural to attempt to adapt existing RGB-D fusion ap-
proaches to combine IR and depth images (Schneider
et al., 2022b; Katrolia et al., 2021b). However, in

Figure 1: Patch similarities of IR and Depth modalities of a
ToF Camera.

most RGB-D methods depth information is only an
accessory to the color information and is consumed
by the same type of neural network layers despite
their differences. Some recent works proposed depth-
specific operations like depth-aware (Wang and Neu-
mann, 2018) and shape-aware (Cao et al., 2021) con-
volutions. We observe that both IR and depth out-
puts from a ToF camera are related in many ways and
therefore these depth-specific operations can be ap-
plied to IR images as well. For example, the intensity
of light reflected from an object decreases as distance
to the object increases. Object surfaces closer to the
camera will reflect more light implying that pixel in-
tensities in an infrared image varies with the shape of
that object. We can see this by comparing the same
colored patches in Figure 1 and note how both image
patches have the same relative changes in pixel val-



ues. We use this observation to leverage the shape-
aware convolution operation for both IR and depth
images to learn more meaningful features from both
modalities.

We aim to use the available modalities from a
single ToF camera to achieve semantic segmentation
performance comparable to RGB-D methods using
an architecture that is tailored to IR-Depth (IR-D)
input. We take inspiration from (Cao et al., 2021;
Wang and Neumann, 2018) and design a depth-aware
shape convolution operation that consumes IR-D in-
put in a multi-task learning (MTL) architecture with
depth completion as an auxiliary task. Our proposed
method surpasses the baseline RGB-D based methods
using only a ToF camera. To summarize, the main
contributions of our paper are:

• We show that recently introduced depth-aware
and shape convolution operations are suitable for
IR images and can achieve same performance on
IR-D images as compared to RGB-D data. We
propose a new convolution operation combining
the two and show that it is better than using either
of them alone for IR-D data.

• We show that multi-task learning with depth com-
pletion as an auxiliary task can be beneficial for
the depth and IR segmentation task.

• In our experimental evaluation on the TICaM
dataset, we show that with our proposed approach
it is possible to surpass RGB-D segmentation per-
formance using only depth and infrared (IR-D)
images from a single ToF camera.

2 RELATED WORK

RGB-D Semantic Segmentation: A wide range of
approaches have been proposed for incorporating the
depth information in RGB-D semantic segmentation
and can be broadly classified into three categories
as outlined by (Barchid et al., 2021): (1) Using the
depth channel as an additional input and performing
fusion at different levels (early (Song et al., 2017),
feature-level (Hazirbas et al., 2017) or late (Cheng
et al., 2017) fusion); (2) Depth as supervision signal
for auxiliary tasks such as depth estimation or com-
pletion (Jiao et al., 2019) and (3) Depth-specific op-
erations. Depth-Aware CNN (Wang and Neumann,
2018) showed that object boundaries correlate with
depth gradients and created depth-aware convolution
and depth-aware pooling functions. ShapeConv (Cao
et al., 2021) used a shape convolution kernel to ensure
convolution kernels give consistent responses to ob-
ject classes at different locations in the scene. (Chen

et al., 2019) used depth information to adjust the
neighbourhood size of a 3D convolution filter.

Depth and IR for Semantic Segmentation:
Depth-only methods for semantic segmentation are
typically applied to solve very specific tasks, like ob-
ject manipulation via mechanical arm (Zhou et al.,
2018), hand segmentation or hand and object segmen-
tation (Rezaei et al., 2021; Lim et al., 2019). Even
fewer methods have explored the combination of IR
and depth. (Su et al., 2016) used IR to classify mate-
rials since the infrared response depends on the mate-
rial of the object. (Agresti et al., 2017) used IR im-
age as an additional input channel for improving the
depth predicted from a setup containing both stereo
and ToF cameras and (Lorenti et al., 2018) used semi-
supervised learning for image segmentation via re-
gion merging. (Katrolia et al., 2021b) compared seg-
mentation of depth maps using image-based methods
against the use of point clouds inputs derived from the
depth maps.

Multi-Task Learning (MTL): The survey by
(Crawshaw, 2020) describes many examples where si-
multaneous learning of two or more related tasks can
boost the performance on either task. RGB-D seg-
mentation is enhanced using auxiliary tasks like depth
and surface normal prediction (Wang et al., 2022).
MTL methods typically employ a single encoder to
learn features from the available input modalities and
two separate task-specific decoders to perform predic-
tion (Wang et al., 2022). Cross-Stitch network (Misra
et al., 2016) replace total parameter sharing with con-
trolled sharing between the two tasks using learned
sharing weights.

3 BACKGROUND AND
NOTATION

In this section, we briefly introduce our notation and
describe the depth-specific convolution operations in-
troduced by ShapeConv (Cao et al., 2021) and Depth-
Aware CNN (Wang and Neumann, 2018).

3.1 ShapeConv: Shape-aware
Convolutional Layer

In order to design convolutions that are invariant to
different depth values (base) when the underlying rel-
ative difference in depth in a local patch (shape) re-
mains same, ShapeConv (Cao et al., 2021) suggested
decomposing an image patch P ∈ RKhxKwxCin into a
shape component Ps and a base component Pb. These
two components are operated on separately by a cor-



Figure 2: MTL architecture for segmentation task and dense depth prediction using depth-aware shape convolutions.

responding shape WS and base kernel WB before be-
ing passed to the standard convolutional kernel K. In-
stead of decomposing the image patch, the convolu-
tional kernel itself can be decomposed to the respec-
tive components as shown in equation (1). Here m(K)
refers to mean of the kernel.

KB = m(K)

KS =K−m(K)
(1)

Shape convolution is then written with ShapeConv
as:

F= ShapeConv(K,WB,WS,Pi)

=Conv(WB ⋄m(K)+WS ∗ (K−m(K)),P)
=Conv(WB ⋄KB +WS ∗KS,P)
=Conv(KB +KS,P)
=Conv(KBS,P)

(2)

Here, ⋄ and ∗ represents the base and shape prod-
uct respectively. WB and WS are learnable weights
corresponding to base and shape components respec-
tively.

3.2 Depth-Aware CNN and Depth
Similarity

In depth-aware convolution DCNN (Wang and Neu-
mann, 2018), pixels with similar depth values to the
centre pixel are weighted more than other pixels. This
property is named depth similarity. The depth simi-
larity function FD(pi, p j) calculates the difference of
depth values D(pi),D(p j) between two pixels pi and
p j respectively.

FD(pi, p j) = exp(−α|D(pi)−D(p j)|) (3)

Depth-aware convolution is written with the depth
similarity function FD as:

y(p0) = ∑
pn∈R

w(pn)FD(p0, p0 + pn)x(p0 + pn) (4)

In Equation (4), the depth similarity term (FD) is in-
troduced with the convolution operation. The con-
volved features are weighted by FD . The parameter α

weighs the influence of the depth similarity function
FD on the convolution operation.

4 METHOD

We propose a depth-aware shape convolution opera-
tion applied within in a multi-task learning network.
Our primary task is semantic segmentation using con-
catenated infrared and depth images from a ToF cam-
era and our auxiliary task is depth completion for
missing pixels in raw depth images.

4.1 Depth-Aware Shape Convolution

We design a depth-aware shape convolution, where
the shape kernel in ShapeConv is supplemented
with the depth similarity measure FD as computed
in equation (3). Formally, this integration can be
written in two steps. First the kernel is decomposed
into shape and base kernel as shown in equation (2).
After the calculation of the weights KBS, the term
w(pn) in equation (4) is replaced with KBS calculated
from shape kernel. In this way, kernel weights
calculated using the shape kernel are integrated with
the depth similarity of DCNN. Equation (3) can thus
be rewritten for our Depth-aware ShapeConv as:



Table 1: Comparison of our proposed method to segmentation baselines for RGB-D and IR-D data. The best result in the IR-D
category is marked bold and second best is underlined. Our MTL-DA-ShapeConv method achieves state-of-the-art results in
the IR-D category and even outperforms RGB-D methods by a large margin on the class accuracy and mean IoU metrics.

Input Baselines Pixel
Acc.

Class
Acc.

Mean
IoU

f.w.IoU

RGB-D
ShapeConv (Cao et al., 2021) 97.86 81.25 77.39 95.92
Depth-Aware CNN (Wang and Neumann, 2018) 94.63 66.88 54.14 90.78
FuseNet (Hazirbas et al., 2017) 95.35 56.89 42.46 92.43

IR-D

ShapeConv (Cao et al., 2021) 97.75 81.31 74.61 95.76
Depth-Aware CNN (Wang and Neumann, 2018) 93.52 60.52 50.03 88.45
FuseNet (Hazirbas et al., 2017) 93.18 55.73 39.61 88.84
Ours DA-ShapeConv 97.57 85.08 78.39 95.42
Ours MTL-DA-ShapeConv 97.73 85.98 79.73 95.68

Table 2: Number of model parameters (in millions) and per image inference time (in milliseconds) for baselines and proposed
MTL architecture. (Here, ch represents channels)

Method Input Params
(million)

Time
(ms)

ShapeConv (Cao et al., 2021) 4-ch 60.55 35.04
ShapeConv (Cao et al., 2021) 2-ch 60.54 32.20

O
ur

s DA-ShapeConv 2-ch 60.54 37.12
MTL-DA-ShapeConv 2-ch 78.12 37.16

y(p0) = ∑
pn∈R

KBSnFD(p0, p0 + pn)x(p0 + pn) (5)

4.2 Infrared and Depth-Aware
Multi-Task Network

We realize a hard parameter sharing-based multi-task
network with semantic segmentation as the main task
and depth completion as the auxiliary task (Figure
2). We use ResNet-101 as the backbone feature ex-
tractor to encode features from concatenated infrared
and depth (IR-D) images. The convolution layers in
the ResNet encoder are replaced with depth-aware
shape convolutions presented in section 4.1. The ex-
tracted features are passed to two task-specific de-
coders that generate final segmentation masks and
depth values for missing pixels. For training the depth
filling branch, the ground truth is prepared as de-
scribed in section 5.1. We follow the training strat-
egy from (Mao et al., 2020) and use predicted depth
values only for missing pixels to calculate the error
between ground truth and predicted depth. The dense
depth map predicted by the network is then multiplied
with the missing pixels mask (1 for missing pixels, 0
otherwise) to keep predicted depth values only for the
pixels that are missing in raw image. The remaining
values are then replaced by the corresponding depth
values in input image.

5 Experiments

5.1 Dataset

We evaluate our approach on the in-car cabin dataset
TICaM (Katrolia et al., 2021a) that provides RGB,
depth and infrared images recorded with a single ToF
camera and corresponding ground-truth segmentation
masks. TICaM is the only dataset that fulfills our
experimental requirements. Surprisingly we could
not find any other dataset that provided segmentation
masks for all three image modalities: RGB, depth and
infrared.

We used the real image-set of TICaM with the
suggested split of 4666 training images and 2012
test images for our experiments. Following (Katro-
lia et al., 2021a) we combine different object classes
into a single ’object’ class to have 6 object classes
in total. The RGB images have different resolution
and FoV to depth and infrared images. To align the
images, the RGB images are first mapped to the pin-
hole model of the depth images. Subsequently all the
images are centre-cropped to size 230 × 418. Nor-
malization of the infrared image is implemented by
first removing the outliers by calculating the 99th per-
centile of the image and then scaling the image to the
range of 0-255. To further enrich the information, his-
togram equalization and gamma filtering are applied
to the normalized infrared image.

Ground-truth preparation. To train for the aux-
iliary task of dense depth prediction, completed depth



images are required as ground truth. As the TICaM
dataset only provides depth images with holes, filled
versions of these depth maps are artificially created
in this work using the ”Colorization using Optimiza-
tion” scheme (Levin et al., 2004). The depth im-
ages are filled by enforcing similar depth values to the
neighbouring pixels with similar intensities. The in-
formation on pixel intensities is provided by infrared
images. During training, the error is calculated for the
missing pixels following the training strategy of (Mao
et al., 2020).

5.2 State-of-the-art comparison

Table 1 provides an evaluation of segmentation ac-
curacy of our proposed method. We include re-
sults of state-of-the-art methods on RGB-D as well
as on our target modality, IR-D ToF data. We choose
three existing methods for RGB-D segmentation and
train them on both RGB-D and IR-D images to es-
tablish our baselines and better evaluate the differ-
ence between RGB-D and IR-D inputs. We choose
FuseNet (Hazirbas et al., 2017) since it is an estab-
lished and well-tested network on many benchmark
datasets for RGB-D segmentation, however it has not
been tested yet on TICaM dataset. ShapeConv (Cao
et al., 2021) and Depth-aware CNN (Wang and Neu-
mann, 2018) on the other hand are more recent
methods that use novel convolution operations un-
like FuseNet. FuseNet and Depth-aware CNN use a
VGG-16 backbone, while ShapeConv uses ResNet-
101. All networks use SGD optimizer with a momen-
tum of 0.9 and weight decay of 5×10−4 to update the
weights. By default, Deeplab v3+ and ShapeConv use
pre-trained weights while FuseNet and Depth-aware
CNN are initialized using the kaiming initialization
(He et al., 2015). For training with IR-D images
we replicate infrared images to form 3-channel im-
ages and concatenate them with single channel depth
images. We report pixel accuracy, class accuracy,
mean Intersection-over-Union (IoU) and frequency
weighted IoU (f.w.IoU) in Table 1 for all results.

We can observe that the architectures that incorpo-
rate depth in an informed manner outperform FuseNet
which simply concatenates depth with other modal-
ities. Also, the combination of infrared and depth
can be used instead of RGB-D input while achiev-
ing almost the same performance on segmentation
but the disparity between the achieved performance
is least when using depth-aware architectures with
ShapeConv outperforming the other two methods. We
can see also from Figure 3 that ShapeConv with both
3-channel and 1-channel infrared images have similar
mask predictions.

Our proposed methods applied on IR-D images
are presented in Table 1 as well. DA-ShapeConv is
the integration of depth aware convolutions into the
ShapeConv architecture as described in Section 4.2.
We can note that combining both depth-aware and
shape convolutions gives significant improvement on
class accuracy as well as mean IoU, compared to
the ShapeConv and Depth-Aware CNN baselines and
even their RGB-D versions. MTL-DA-ShapeConv
denotes our Multi-Task network, also incorporating
the proposed auxiliary task of depth completion. We
can see that the MTL architecture improves over the
best performing RGB-D ShapeConv baseline with
significant improvement in class accuracy and mean
IoU. Also, the improvement over our method without
the auxiliary task (DA-ShapeConv) validates the use
of multi-task learning with depth completion for this
task. Overall, the results prove our main hypothesis,
that by applying our method we can outperform state-
of-the-art RGB-D methods using only IR-D images
provided by a single ToF camera.

The results in Table 1 are also directly comparable
with results on the TICAM dataset using only depth
information as reported in (Katrolia et al., 2021b).
This clearly indicates the advantage of the IR-D com-
bination of modalities over the use of the D channel
only for segmentation.

Additionally, we provide qualitative results of the
segmentation output from all evaluated network vari-
ants on images from the TICAM dataset in Figure 3.
We see that our methods provide smoother masks
around the edges, especially for the smaller objects on
the passenger seat as well as better class predictions
in some cases.

Finally, a runtime comparison for the evaluated
methods is provided in Table 2. The DA-ShapeConv
method does not have an impact on the number of pa-
rameters and a limited increase in runtime per frame
compared to ShapeConv. The MTL-DA-ShapeConv
method leads to an increase in parameters for the net-
work due to the additional branch, however this does
not impact the inference runtime.

6 Conclusion

We designed a network for IR-D segmentation that
performs equally well as RGB-D segmentation so that
inconvenient and expensive RGB-D cameras can be
replaced with single Time-of-Flight (ToF) cameras.
We showed that existing fusion approaches for RGB-
D segmentation can be used with IR-D input if stan-
dard convolutions are replaced with depth-specific
convolutions. We then presented a combination of
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Figure 3: Predictions from RGB-D and proposed IR-D methods.



depth-aware and shape-aware convolutions, and de-
signed a multi-task learning (MTL) architecture with
this new convolution operation. We employ hard
parameter sharing between our main and auxiliary
tasks of segmentation and depth filling respectively.
Through progressive modifications to the input, the
convolution operation, and the network architecture
we showed that we can outperform all baseline meth-
ods. We conclude that using images from a single ToF
camera, it is possible to surpass RGB-D segmentation
performance with our designed MTL architecture.
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