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Abstract

As wireless mobile communication continues to evolve, the demand for efficient and accurate Machine Learning (ML)
models to manage different use cases has grown substantially. Distributed Collaborative Machine Learning (DCML) techniques
offer a promising solution by enabling multiple devices/entities to collaboratively train an ML model without having to
share their data with each other. Although these methods can enhance user data privacy, many researches have shown their
limitations. One way to ensure privacy in DCML techniques is to use Differential Privacy (DP). DP is a framework that offers
mathematically guaranteed privacy. This research paper presents an investigation into the integration of DP mechanisms within
DCML frameworks for wireless mobile communication environments. It evaluates the performance of DP and DCML techniques in
various aspects of wireless mobile communication, including network traffic analysis, and network slicing. Through experimental
simulations, the impact of DP on model performance, convergence rate, and computation overhead is analyzed. The results
provide insights into the trade-offs between privacy preservation and ML model effectiveness. This research contributes to the
understanding of how the combination of DP and DCML methods can be effectively integrated into wireless mobile communication.
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I. INTRODUCTION

Wireless communication has become an essential part of
our lives. It is used in a wide variety of applications, from
smartphones and laptops to smart home devices and self-
driving cars. As the number of wireless devices and applica-
tions continues to grow, the complexity of wireless networks is
also increasing. The diversity in these use cases necessitates a
flexible and adaptive network infrastructure. Machine Learning
(ML), especially Distributed Collaborative Machine Learning
(DCML), has emerged as an indispensable tool in achieving
this.

DCML techniques such as Federated Learning (FL), Split
Learning (SL), and Splitfed Learning (SFL) [1]–[3], facilitate
collaboration on ML model training without sharing raw data,
thus, preserving individual privacy while improving model
efficiency. These approaches efficiently allocate computational
resources, minimize communication overhead, and can be
scaled to handle large datasets and numerous participants.
They are particularly relevant in wireless mobile communi-
cation environments, where data is generated and processed
across many devices. However, the distributive nature of these
techniques increases the attack surface on the collaboratively
trained ML models [4]. For instance, in [5] a backdoor attack
algorithm to exploit the FL based mmWave beam selection

method is proposed. In addition, stringent data protection reg-
ulations like the General Data Protection Regulation (GDPR)
and the California Consumer Privacy Act (CCPA) are being
enforced, leading to the development and adoption of more
private and secure ML techniques.

Traditional privacy-preserving methods, like data
anonymization and data masking, have been valuable
tools in protecting individual privacy, particularly in situations
where data sharing is necessary. However, these methods
have revealed vulnerabilities over time, especially when faced
with adversaries with advanced data re-identification and de-
anonymization capabilities [6]. Thus, while these approaches
offer practical solutions, their effectiveness diminishes as
data complexity and the potential for information leakage
increases, prompting the development of more advanced
approaches like Differential Privacy (DP) to address evolving
privacy challenges.

DP offers a mathematically rigorous approach to privacy
protection [7]. It provides a strong foundation for quantifying
and controlling the privacy risk associated with data releases
and queries. It ensures that the presence or absence of any
individual’s data has a negligible impact on the outcome of
data analyses. DP accomplishes this by introducing carefully
calibrated noise or randomness into data queries, effectively



obscuring the contributions of individual data points. This
approach not only offers robust privacy guarantees but also al-
lows for meaningful data analysis and statistical inference. DP
has gained prominence as a leading-edge privacy-preserving
methodology in real-world applications [8]–[11].

In this study, the integration of DP mechanisms into DCML
frameworks for wireless mobile communication environments
is explored. Various DP-based distributed ML techniques are
comprehensively evaluated, with a specific focus on appli-
cations like network traffic analysis, and network slicing.
Experimental simulations are employed to quantitatively assess
the impact of DP on key performance metrics such as model
accuracy, convergence rate, and computation overhead. These
will be particularly important in upcoming wireless mobile
communication systems such as Beyond 5G (B5G) and Sixth
Generation (6G). In summary, the main contributions of this
study are as follows:

• Addressing privacy concerns in DCML: The privacy
concerns associated with the utilization of DCML tech-
niques in wireless mobile communication are discussed.

• Integration of DP into DCML: The application of
DP within various DCML techniques in the domain of
wireless mobile communication are explored.

• Identifying the most effective DP-enhanced DCML
approaches: The most effective DCML techniques for
implementing DP in wireless mobile communication are
identified, with a focus on their ability to preserve privacy
and improve accuracy.

The rest of the work is organised as follows: Section II
presents the related works. Section III gives an overview and
description of DP as well as the use of DP in machine learning
in general. It also gives a background of the various DCML
techniques considered in this work. In Section IV, the appli-
cation of DP and DCML in wireless mobile communication is
discussed and a threat model is presented. Section V presents
the performance evaluation for major tasks in wireless mobile
communication. Section VI concludes the paper and presents
discussions for future work.

II. RELATED WORK

DP, developed by Dwork et al. has gained significant
attention since its introduction in 2006 [7]. Events like the
Netflix Prize competition [6] and other privacy breaches have
demonstrated the inefficiency of data anonymization and high-
lighted the need for a more robust technique for privacy like
DP. It has been adopted by many companies including Google
[8], Apple [11], Uber [9], and also by US Census Bureau for
the 2020 Census [10].

DP has been combined with DCML techniques, such as
FL [2], SL [12] and the combination of both [3], [13], in
many studies. The addition of DP to these techniques provides
a more robust privacy-preserving framework by protecting
against some known vulnerabilities in FL and SL [4].

In wireless mobile communication applications, FL has
gained significant traction. Sanon et al. proposed an FL
framework that ensures accurate and efficient prediction while
preserving data privacy [14]. Also a combination of FL and
Homomorphic Encryption (HE) in wireless mobile communi-
cation has been studied in [15]. SL has been used in [16] in a
wireless Multiple Input Multiple Output (MIMO) communica-
tion network, utilizing MIMO-based over-the-air computation
(OAC) to reduce communication costs. Also, [17] developed
HiveMind, an SL system tailored for Fifth Generation (5G)
Mobile Edge Computing (MEC). Other researches in this
direction include [18]–[20]. The application of DP in wireless
communication has been proposed in [21], [22].

With upcoming wireless mobile communication systems,
B5G and 6G, expected to be more complex with security
and privacy paramount, more focus needs to be placed on
DCML as well as privacy-preserving techniques. Previous
studies have investigated DCML approaches in various aspects
of wireless mobile communication. However, there is still a
lack of comprehensive comparative studies on the integration
of DCML with DP. This work aims to contribute to the
advancement of this research area by investigating the potential
of DP in various DCML techniques for different aspects of
wireless mobile communication. It presents a practical study
on network traffic analysis and network slicing, thus providing
valuable support to communications service providers (CSPs)
in implementing robust and privacy-preserving methodologies
within their operational frameworks.

III. PRELIMINARIES

ML models can sometimes memorize details about the data
they are trained on. This information could be leaked later on,
which could have negative consequences for individuals. DP
is a framework for measuring this leakage and reducing the
risk of it happening.

A. Differential Privacy and its Variants

ε-DP [23], (ε, δ)-DP [24], Rényi Differential Privacy (RDP)
[25] and Gaussian DP [26] are different formulations of the DP
concept, each providing varying levels of privacy protection
and flexibility.

1) ε-Differential Privacy: ε-DP is the most common vari-
ant of DP. A mechanism/algorithm (any computation that can
be performed on the data) A is ε-DP if, for any two neighbor-
ing datasets (datasets that differ in only one individual’s data),
the probability of the algorithm outputting any particular result
is at most eε times greater for one dataset than for the other.
Formally, for two neighboring datasets D and D′ and a set S

P [A(D) ∈ S] ≤ eε × P [A(D′) ∈ S]. (1)

Here, ε is a privacy parameter that controls the level of
privacy protection, with smaller values of ε providing stronger
privacy guarantees. A smaller ε implies that the presence or
absence of any individual’s data has a limited impact on the



final query result. An algorithm A that is not ε-DP can achieve
it by applying the Laplace mechanism [23] or exponential
mechanism [27].

2) (ε, δ)−Differential Privacy: (ε, δ)-DP is a more general
and flexible variant of ε-DP. An algorithm is (ε, δ)-DP if, for
any two neighboring datasets D,D′:

P [A(D) ∈ S] ≤ eε × P [A(D′) ∈ S] + δ. (2)

The main advantage of (ε, δ)-DP is that it can be used in
applications where there is a small probability of failure,
quantified by δ. Gaussian mechanism is used to achieve (ε, δ)-
DP [24]. For this work, (ε, δ)-DP variant is considered. More
information on other variants can be found in [25], [26].

B. Global, Local Differential Privacy and Applications
DP can be classified into two types, Local Differential

Privacy (LDP) [28] and Global Differential Privacy (GDP)
[29]. LDP is a model of DP with the added requirement that
even if an adversary has access to the personal responses
of an individual in the database, that adversary will still be
unable to learn too much about the user’s personal data. This
is contrasted with GDP, a model of DP that incorporates a
central aggregator with access to the raw data.

1) Local Differential Privacy: In LDP the data curator
or central aggregator does not know the actual value, and
thus privacy is protected. The user does not have to trust
the data curator or the database owner to use his/her data
responsibly. However, since each user must add noise to their
own data, the total noise is much larger and typically would
need many more users to get useful results. LDP finds practical
use in various applications. Google’s RAPPOR gathers data
on users’ activities and website visits, enhancing products
without privacy issues [8]. Apple’s Private Count Mean Sketch
improves predictive models using emoji and word data from
iPhone users [11]. LDP safeguards personal health data in
aggregating streams for research, maintaining user privacy.

2) Global Differential Privacy: GDP involves adding noise
to the query outputs of a database, specifically at the end of the
process before sharing the results with a third party. The noise
addition is carried out by a trustworthy data curator who has
access to the original raw data in the database. This protective
measure safeguards user privacy from individuals querying the
database. An interesting use case of GDP is the Census Bureau
Adopts Cutting Edge Privacy Protections for 2020 Census,
that is, the US Census use DP to anonymize the data before
publication [10].

As observed above, DP can be used in many tasks including
data anonymization, and secure queries. One important appli-
cation of DP is in ML, especially Deep Learning (DL).

C. Differential Privacy in Machine Learning
In DL, there are techniques for achieving DP. The main ones

include Differential Privacy Stochastic Gradient Descent (DP-
SGD) and Private Aggregation of Teacher Ensembles (PATE).
In this work, DP-SGD is used.

DP-SGD is a powerful technique that combines the princi-
ples of DP with the popular optimization algorithm, Stochastic
Gradient Descent (SGD) [30]. It aims to enable privacy-
preserving DL by injecting carefully calibrated noise into the
gradient updates during the training process. This addition of
noise ensures that the updates to the model’s parameters are
sufficiently random, protecting the privacy of individual data
points while still allowing effective model training.

The privacy guarantee in DP-SGD ensures that an individual
data point’s presence in the training dataset will not signifi-
cantly impact the model’s output or final decision. DP-SGD
is (ε, δ)-DP.

D. Federated Learning

Initially introduced by Google [2], FL is a collaborative
distributed learning framework developed to facilitate the
training of machine learning models on distributed devices
that generate privacy-sensitive training data locally. In the
initial round of FL, the central server initializes a global
model and sends it to a selected group of participating clients.
After receiving this initial model, each client commences
its training process using its locally available training data.
Following training, each client sends back its updated model
to the server. The server then aggregates all the received
models to generate an updated version of the global model.
This process of computation and communication continues
iteratively until the global model converges. There are many
aggregation techniques, with the most commonly used being
Federated Averaging (FedAvg) [31]. In this work, FedAvg is
used.

E. Split Learning

SL, also called SplitNN, introduced by Vepakomma et al.
[1], is a DCML technique which works by splitting an ML
model’s architecture into two main parts - a client side and
a server side. At the client side, individual clients engage in
the training of their models up to a designated cut layer and
solely exchange activations and gradients originating from this
cut layer to the server side. The server side then performs
the remaining training steps and subsequently propagates the
gradients back to the clients. By keeping the server and client
side separate, SL allows the server-side to handle the most
computationally expensive tasks during the training. Also, this
partitioning diminishes data breach risks and unauthorized ac-
cess. Furthermore, SL decreases communication overhead by
transmitting only feature representations of cut layer outputs,
making it suitable for resource-constrained environments and
large-scale distributed systems.

F. Combining Federated and Split Learning

Combinations of FL and SL have emerged to create hybrid
approaches that leverage the strengths of both techniques.
One such architecture is Splitfed Learning (SFL) [3], which
combines FedAvg and SplitNN. In addition to combining both



SL and FL, SFL offers a refined architectural configuration
incorporating DP. Other hybrid approaches include Federated
Split Learning (FedSL) [13] and Parallel Split Learning (PSL)
[32]. In this work, SFL is used.

IV. DP AND DCML IN WIRELESS MOBILE
COMMUNICATION

Wireless mobile networks are facing increasing challenges
in managing resources efficiently to accommodate expanding
user sets. Artificial Intelligence (AI) and ML are emerging
as powerful tools to address these challenges. AI/ML can be
used to improve a variety of functions in wireless networks,
such as channel estimation, optimization of massive MIMO
configurations, beam management, network slicing, dynamic
spectrum allocation, resource and traffic management, Quality
of Service (QoS) governance, security reinforcement, and
anomaly detection. DCML can improve the accuracy of ML
models by enabling learning from a wider range of data.
The distributive and collaborative nature of these techniques
can enhance the privacy and scalability of ML models by
allowing private parallel learning as well as handling large-
scale and geographically diverse datasets. Combined with
DP, DCML can lead to more trustworthy and safe use of
AI and can overcome many vulnerabilities that come with
distributed techniques and ML in general, such as back door
attacks, reverse engineering, and linking attacks. Also, CSPs
can comply with privacy protection laws while still providing
the best QoS to their customers.
Threat Model on DCML in Wireless Mobile Networks:
In DCML, honest but curious entities can potentially launch
attacks, including inference attacks, label leakage, and model
inversion as shown in recent research [33]–[35]. These risks
can be mitigated through the application of LDP. Adversaries
may seek to infer private information which can compromise
CSPs. For instance, with carefully crafted inputs related to
traffic flow data and by analyzing the model’s responses, a
curious server can infer sensitive information about specific
traffic patterns, potentially compromising traffic management
strategies. Also, DP can limit model inversion and label
leakage attacks which particularly affect SL models [35]. The
aim of this work is to prevent such vulnerabilities which
can lead to financial and credibility loss in CSPs and even
compromise their users’ privacy including disclosing highly
sensitive personal information. In the next section, the feasibil-
ity of combining DP with network traffic analysis and network
slicing in collaborative environments is evaluated in order to
assess the potential benefits and challenges.

V. PERFORMANCE EVALUATION

The performance evaluation is done for two major tasks in
wireless mobile communication, network traffic analysis, and
network slicing.

• Network Traffic Analysis is crucial for various domains,
including network management, security, and QoS provi-
sioning. Accurate traffic forecasting enables effective re-
source allocation, optimization of network capacity plan-
ning, and improved overall network performance. Addi-
tionally, it aids in load balancing, routing optimization,
and the detection of anomalous behaviors and security
threats, enhancing network security and resilience. DP
and DCML can greatly enhance the privacy, security and
efficiency of network traffic analysis.

• Network Slicing has emerged as a promising model for
5G and beyond networks to support services with diverse
and demanding requirements. These requirements can be
broadly categorized into at least three groups: Enhanced
Mobile Broadband (eMBB), Ultra-Reliable and Low-
Latency Communications (URLCC), and Massive Ma-
chine Type Communication (mMTC) applications [36].
The automation of network operations is necessary to
manage the complexity of network slicing, and ML
techniques are being positioned as very promising so-
lutions in this regard. From a business standpoint, it is
projected that a $200 billion opportunity for CSPs will
be generated from network slicing [37], and private and
DCML techniques will play a significant role.

A. Experiments

In the experiment, network traffic data is generated using
the Free5GC, a 5G open-source project [38]. The data and
model architecture used for the analysis are provided in
[39]. In total, there are 20 clients and the performance of
the trained models is evaluated through the Mean Squared
Error (MSE) (regression). For network slicing, the data and
model architecture are from the recent work [40], showing the
best Deep Neural Network (DNN) for network slicing. The
performance is evaluated through accuracy (classification) and
in total, there are 10 clients.

In all the experiments, the number of global
epochs/communication rounds is set to 100. FL, SL,
SFL, and centralized learning are considered with
different levels of privacy. The privacy budgets, ε, are
0.1, 0.3, 0.5, 0.7, 1, 3, 5, 7, 9, 10, and training with no DP is
also considered. The privacy is applied by the participants
(LDP) to tackle the threat model through DP-SGD which is
(ε, δ)-DP [30]. The choice of the privacy budget follows the
recommendation in [41, Section 5.2], with ε ≤ 1 considered
strong formal privacy guarantees, 1 < ε ≤ 10, reasonable
privacy guarantees, and ε > 10, weak to no formal privacy
guarantees. Hence, ε is taken between 0.1 and 10. For all the
experiments, δ = 10−6.

B. Results and Discussion

Figure 1 and Figure 2 show the accuracy and MSE values
corresponding to each DP-DCML technique and privacy level
in the context of network slicing and network traffic analysis



respectively. The centralized learning is used as a baseline for
comparison. For network slicing, higher ε values lead to better
accuracy eventually matching No DP. Lower ε values result
in a drop of about 25% (75% accuracy), indicating a good
trade-off between accuracy and that high level of privacy. In
network prediction analysis, MSE of the No DP converges
to about 2.27. Lower privacy budgets, ε = 0.1, 0.3 yield the
highest MSE of 3.06, which is not significantly different from
the smallest MSE, 2.27. All these indicate the feasibility of
DP in centralized learning.

In FL, for network slicing, all models with DP have similar
performance after 20 communication rounds and converge to
approximately 75% accuracy level. However, with No DP, the
model converges to 100% as in the case of centralized learning.
Here again, a high level of privacy can be achieved without the
total degradation of the models’ performance. This is also the
case for network traffic analysis with the introduction of DP
showing good performance. In SL, for both network slicing
and network traffic analysis, DP makes the models less stable.
Although there is an increasing trend in the performance, there
are a lot of fluctuations but with the same level of privacy, they
even perform better than FL and SFL in general. It is possible
that increasing the communication rounds can lead to a stable
convergence. This will be investigated in future work. For SFL
network traffic analysis, the models achieve comparable results
as those of FL, however, those in SFL, converge faster. For
network slicing, SFL shows the most promising performance
among the DCML approaches, with the models converging to
over 80% for even the highest privacy levels.

Among, the three DCML techniques considered, SFL seems
to be the most promising. In applications requiring FL, it can
still be used as its performance was also good. However, more
investigation is needed for SL. Small privacy budgets can be
used as larger budgets do not perform significantly better.
Overall, it’s feasible to combine DP with DCML for robust
privacy in collaborative learning. The goal was to investigate
how the three DCML approaches react to DP. In the end, FL
and SFL are recommended for use. However, it is suggested
that more investigations should be done for SL. With respect to
computation overhead, no significant difference was observed
with the introduction of DP.

VI. CONCLUSION AND OUTLOOK

This work investigated the combination of Differential Pri-
vacy (DP) and Distributed Collaborative Machine Learning
(DCML) techniques within the context of wireless mobile
communication, specifically focusing on network traffic analy-
sis and network slicing. The study aimed to assess the potential
of this approach for enhancing both privacy and performance
in wireless networks. Federated Learning (FL) and Splitfed
Learning (SFL) approaches demonstrated positive outcomes in
terms of maintaining data privacy and delivering satisfactory
utility. However, it’s worth noting that Split Learning (SL)
did not exhibit the same level of performance as FL and

SFL, suggesting that additional research and refinement are
necessary to validate its effectiveness in this specific context.
In conclusion, DP combined with DCML, particularly FL and
SFL, holds significant potential for advancing network traffic
analysis, network slicing, and wireless mobile communication
as a whole. These ongoing efforts promise to reshape the future
of wireless network security and performance and will be the
subject of future studies.
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