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Figure 1: Overview of the envisioned user-centered neuro-symbolic human-in-the-loop learning system. The novice user and
the learning agent (e.g., robot or autonomous vehicle) are in a continuous feedback loop, starting with user demonstrations,
then judging the agent output and providing support through feedback.

ABSTRACT
Recent advances in deep learning and data-driven approaches have
facilitated the perception of objects and their environments in a
perceptual subsymbolic manner. Thus, these autonomous systems
can now perform object detection, sensor data fusion, and language
understanding tasks. However, there is an increasing demand to
further enhance these systems to attain a more conceptual and sym-
bolic understanding of objects to acquire the underlying reasoning
behind the learned tasks. Achieving this level of powerful artificial
intelligence necessitates considering both explicit teachings pro-
vided by humans (e.g., explaining how to act) and implicit teaching
obtained through observing human behavior (e.g., through sys-
tem sensors). Hence, it is imperative to incorporate symbolic and
subsymbolic learning approaches to support implicit and explicit
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interaction models. This integration enables the system to achieve
multimodal input and output capabilities. In this Blue Sky paper,
we argue for considering these input types, along with human-in-
the-loop and incremental learning techniques, to advance the field
of artificial intelligence and enable autonomous systems to emu-
late human learning. We propose several hypotheses and design
guidelines aimed at achieving this objective.
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1 INTRODUCTION
Human-centered artificial intelligence (HCAI) is an exciting new
area of research that is attracting increasing attention from re-
searchers of both artificial intelligence (AI) and human-computer
interaction (HCI) [7, 40, 51, 55]. Despite the significant progress that
has been made in developing autonomous systems, these systems
still rely heavily on human operators, whether local or remote, to
step in and assist or take control in situations where the system is
unable to proceed. This highlights the need for HCAI techniques
to promote trust, control, and reliability between users and ma-
chines [51]. However, developing and implementing these concepts
remains a challenging and complex task [40]. As a result, there
is still much room for improvement and further research in this
field [7]. When it comes to multimodal interaction, a variety of
approaches have been explored using early and late data fusion
techniques [12, 29]. For example, researchers have studied hand
and gaze fusion techniques for interacting with screen-based in-
door systems [31, 56]. In the automotive domain, there has been
a focus on controlling the vehicle and the infotainment system
using touch-based approaches and multimodal combinations of
hand gestures, gaze, and speech [14, 38, 45, 46, 49]. Furthermore, it
is crucial to consider the impact of cognitive load on driver ability
to perform when using these interfaces and how it affects driving
performance [5, 6, 15, 24, 52], which emphasizes the significance
of personalization. Thus, we suggest that future work should focus
on building autonomous systems that can learn and adapt to new
situations, such as new classes, domains, or tasks [53, 54]. This
will require shifting the focus from data-driven learning to inter-
active learning or human-in-the-loop learning, where the human
plays a crucial role in supporting the system’s learning process.
The proposed research concept focuses on developing adaptive and
personalized approaches for human-in-the-loop learning that will
enhance system performance and promote trust toward a reliable
and controllable HCAI, as highlighted in Figure 1. More specifically,
we highlight multiple methods and techniques for learning-based
adapted models utilizing transfer-of-learning and propose some
new aspects for continual learning for future work. Although these
approaches apply to different domains, we focus on the automotive
domain as an example of the rich work on driver personalization.
More specifically, we demonstrate our suggestion on some of our
previous work in the field of adaptive user interaction for the auto-
motive domain [13, 18–21, 36]; however, the underlying learning
techniques are valid for other domains as well.

2 BACKGROUND AND RELATEDWORK
Adaptive multimodal interaction combining speech, hand gestures,
and gaze has been a topic of interest for the research community
for the last 20 years in multiple domains, including robotics and
automotive applications [17, 23, 25, 35, 39, 43, 56]. Despite the pre-
viously discussed significant advances in the adaptation of multi-
modal interaction, a personalized user-centered approach is still

lacking. Thus, an important goal and factor in the proposed re-
search work is user-specific personalization through incremental
learning techniques [16, 53]. As an example, in the automotive
domain, researchers attempted multimodal fusion approaches for
in-vehicle object selection in multiple works [2, 44, 49]. However,
in-vehicle object referencing approaches do not generalize directly
to outside-the-vehicle referencing, as the object’s environment is
static, limited, and in close proximity. Consequently, Moniri et
al. [37] studied the single task of outside-the-vehicle referencing
from the passenger seat using pointing, head pose, and eye gaze.
Similarly, Aftab et al. [3] combined these modalities using a late
fusion approach based on a neural network to reference objects
from a stationary vehicle. While these approaches showed great
promise, they still considered only a subsymbolic method for adap-
tation with a focus on data-driven approaches and did not consider
user-specific behavior further.

Several approaches have proposed ways to insert human knowl-
edge into neural networks as a way of initialization, to guide net-
work refinement, and to extract symbolic information from the
network [50, 54]. More recent attempts have tried to combine deep
learningwith knowledge bases in joint models (e.g., for construction
and population) [1, 42]. Some work has focused on integrating neu-
ral networks with classical planning by mapping subsymbolic input
to symbolic one, which automatic planners can use [4]. Others have
used Logic Tensor Networks to enable learning from noisy data in
the presence of logical constraints by combining low-level features
with high-level concepts [11, 48]. Other approaches include psy-
chologically inspired cognitive architectures having a goal-directed
organizational hierarchy with parallel subsymbolic algorithms run-
ning at the lower levels and symbolic ones running serially at the
higher levels [30]. While subsymbolic learning methods, such as
neural networks, have shown remarkable results in fields such as
computer vision, NLP, and NLU, one problem they suffer from is a
lack of explainability. On the other hand, while symbolic learning is
“legible” by humans, it can lead to combinatorial growth that makes
unfeasible solutions to complex problems [8]. When combining
both types of learning, it could be possible to obtain advantages
while overcoming the disadvantages. For example, a teacher might
teach a robot how to tidy up a table full of bottles in different stages.
In the first stage, the teacher might guide the robot’s arm, showing
it how to clear one bottle from the table (subsymbolic learning
by example). In the next stage, when the basic movements have
been acquired, supervised learning can continue through verbal
instructions (symbolic learning by instruction) [22].

3 RESEARCH QUESTIONS AND HYPOTHESES
In line with the previous motivation and related work, the following
research questions were developed to answer previous challenges
from an abstract point of view while focusing on three factors
Input features (i.e., Agent World View), Underlying design aspects (i.e.,
Multimodal interaction), and Learning method (i.e., Neuro-symbolic
Adaptation and Continuous Learning). We envision these research
questions as guidelines for future research on human-centered
artificial intelligence.

Agent World View (RQ1): Which features of the agent (i.e.,
autonomous system) and the context (i.e., human behavior) can be
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Figure 2: Proposed approach for model adaptation to generate personalized models through transfer and incremental learning
techniques from [18].

used to detect and classify user interaction situations, and which
devices are available to provide them efficiently (e.g., investigating
user behavior as in [20])? Given the multitude of sensors available
for an autonomous system that are dynamic and not permanently
available, a specific question will be to select the right level of
granularity and fusion at which it can be combined with symbolic
knowledge. This involves merging the available context informa-
tion, both from the sensors and world knowledge, combined with
the implicit user input [9, 32], to characterize situations in a struc-
tured way. For example, in an industry scenario, a worker’s current
task and the available robots would provide such input. In an au-
tonomous vehicle scenario, knowledge about other passengers may
help interpret the user’s goals and possible interaction.

Multimodal Interaction (RQ2):What aspects of the system
and interface design can be utilized of the given modalities in terms
of fusion techniques, temporal dependencies, and learning models
to achieve optimal performance (e.g., reference detection as in [21]
and estimation of mental workload in [19, 36])? To achieve an end-
to-end multimodal fusion framework, it is vital to exhaustively
investigate the interaction between the given modalities in terms
of performance, timing, user behavior, and fusion techniques. Al-
though well-established and widely used data fusion approaches,
such as late- and early-fusion approaches, are utilized here, more
novel and empirical hybrid approaches should also be considered
that combine heuristics with learning-based data fusion to achieve
optimum performance. Additionally, there exists a timing depen-
dency (e.g., modalities’ relative onset) between the modalities that
the system can exploit. Thus, the time frames can be analyzed sepa-
rately with no connection, or a pattern could be learned from intra-
(within the modality) and inter- (across modalities) dependencies.

Neuro-symbolicAdaptation andContinual Learning (RQ3):
How can the system adapt to the performance of user-specific
tasks [21, 36]? How can the system be designed to continuously
collect feedback from the user (both implicitly and explicitly) to
guarantee constant development and enhancement of the underly-
ing algorithms? How would that affect the system’s reliability and
user trust? Adaptation can be achieved at the architecture level us-
ing incremental learning [16]. Transfer learning (i.e., naive fine tun-
ing) faces several challenges such as forgetting previously learned
information (i.e., catastrophic forgetting), ever-changing features

(i.e., concept shift), and how fast a model should be adapted (i.e.,
stability-plasticity dilemma). Some solutions have been proposed
for each of these challenges [41, 47, 54]. For continuous learning,
there is a focus on increasing the number of classes that a neural
network can predict, expanding datasets, and exploring the influ-
ence of update intervals and batch sizes used for adaptation [28, 53].
To adapt an initial model to a different domain, we find suitable
methods in the domain of incremental learning [10, 26, 34].

4 AUTOMOTIVE USE CASE
The following methodological example illustrates a multistage ap-
proach to achieve an adaptive neuro-symbolic autonomous system
(from the automotive domain) with continuous user feedback Fig-
ure 1, according to the mentioned research questions.

The first stage is to understand the variances in driver behavior
when performing the multimodal referencing task as in [19, 20, 46].
As an example, in the automotive domain, drivers perform different
multimodal gestures to control the vehicle and query surrounding
objects. These individual differences could be exploited by the sys-
tem for personalization and adaptation through a user-centered de-
sign approach. Drivers could be clustered based on single-modality
performance, and a switching mechanism could be applied within
the overall system [20] to maximize overall performance (i.e., turn
gaze detection off for user accompanied by wandering behavior of
the eye, thus low accuracy of gaze detection). Furthermore, under-
standing the mental workload patterns of users could be exploited
by the system and also to enhance its performance through model
adaptation and personalization [19]. The second stage would be cre-
ating an end-to-end learning-based multimodal fusion framework
through constant and exhaustive monitoring of the users through
system sensors. This is an initial step to automate the previously
mentioned heuristics by the system [21] using hybrid learning
where a pattern could be learned from intra- (within the modality)
and inter- (among the modalities) dependencies. However, adapta-
tion is an inherently continuous paradigm; thus, it is considered an
ongoing process along the user observations and the multimodal
fusion stages in drivers’ categorization (i.e., clustering) and hybrid
fusion approaches, respectively. Although model adaptation, in
the previous context, is one alternative to the one-model-fits-all
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approach, it still groups users in a particular model (i.e., cluster),
constituting a many-models-fits-all approach. However, a more
personalized approach would utilize transfer-of-learning and in-
cremental learning techniques to eventually reach a single model
or continuously adapting model per user. Figure 2 shows an ap-
proach to achieving these personalized models through incremental
learning techniques. The data set is initially divided into training,
validation, and test sets as in traditional learning approaches. The
model is trained on X participants’ data while the hyperparame-
ters are chosen and validated on Z participants’ data, and the final
model is tested on Y participants’ data. On the other hand, for the
adaptation approach, each participant’s data from the Y test set
are further split (e.g., equally) into subtrain and subtest sets where
the model is retrained and fine-tuned on the user-specific training
data to produce personalized model weights that are optimized for
this user. To assess the effect of this approach, the personalized
model is tested on the same participant sub-test data and compared
against other participants’ sub-test data. Although previous ap-
proaches optimize system performance based on current individual
behavior, this behavior could change over time due to situational,
emotional, or mental load variations and learning effects. Thus, a
continuous learning approach is considered where the user can give
feedback to the system implicitly (e.g., through dissatisfied looks
or grunting as visual or auditory cues) or explicitly (e.g., repeating
the given voice command). To achieve this goal, the study and data
collection phase should include different variations in the situa-
tional and mental state for internal and external validity. Finally,
situation-adapting learning techniques could be further utilized in
this context, such as graph classification and node selection (e.g.,
Relational Graph Neural Networks [27]), learning from the driver’s
behavior (e.g., Efficient Learning from Demonstrations [33]), and
learning from the driver’s feedback (e.g., Implicit Human Feedback
Learner [9]). Since the main focus of this work is on adaptation
and user-specific personalization, Figure 3a and Figure 3b show
examples of related work results focusing on the adaptation aspect
of [20]. Specifically, Figure 3a shows how driver reference actions
could be clustered based on pointing and gaze modality perfor-
mance separately; then, each cluster is trained independently. Thus,
each cluster model weight would be adapted to the pointing- and
gaze-specific accuracy clusters. This resembles the hybrid-fusion ap-
proach discussed earlier. Similarly, Figure 3b highlights the results
of the incremental learning personalization approach previously
discussed in [21]. It compares the personalized model subtest data
against the average of the other non-personalized subtest data us-
ing the Root Mean Square Error (RMSE) metric. The figure also
highlights further enhancement of this personalization approach;
it was noticed that adding the subtrain data of the personalized
participant to the existing generalized model (also called Universal
Background Model (UBM)) data with a 1:1 ratio is not the optimum
solution due to its insignificant contribution size. Therefore, per-
sonalized participant subtrain data was emphasized (e.g., repeating
the data multiple times), and its ratio increased for the training
data X with a ratio of 1:2, 1:5, etc. until the optimum sample weight
could be determined. While we focus precisely on these results for
the referencing task, the methodology applies to any regression
problem with a similar setup. Thus, it can be generalized to multiple
sensors and multimodal platforms.

(a) Clustering drivers’ pointing and gaze behavior based on the sys-
tem’s perceived performance (i.e., referencing accuracy).
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Figure 3: Some examples of different adaptation and person-
alization approaches from [20, 21] that are aligned with the
suggested neuro-symbolic adaptation.

5 CONCLUSION
Although designing user-specific interfaces is a complex and mul-
tifaceted process involving various considerations that this work
cannot entirely describe, our position paper examines several essen-
tial aspects to facilitate this design process. Specifically, we discuss
adapting learning models, including incremental and transfer learn-
ing, to enable personalized interaction with the system. This work
also emphasizes the importance of system engineering considera-
tions, such as real-time processing and system robustness, to ensure
that user-specific interfaces are reliable and trustworthy. This pa-
per highlights important considerations for future studies focused
on human-centered artificial intelligence and trustworthy inter-
faces. In particular, we emphasize the importance of continuous
learning and hybrid learning approaches to enable user-centered
design that enhances the user experience. By following these guide-
lines, researchers can develop personalized and adaptive interfaces
that respond to individual users’ needs and behaviors, ultimately
improving their satisfaction and engagement with the system. Fur-
thermore, future research in this area should focus on developing
frameworks and methodologies to assess the effectiveness of user-
specific interfaces and explore the ethical and societal implications
of these technologies.
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