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ABSTRACT Recent advances in machine learning and computer vision promoted a surge in the development
of AI-based approaches aimed at improving various agricultural tasks. In this work, we focus on grapevine
pruning, which is one of the labor-intensive tasks in viticulture that requires experienced workers and
has a huge impact on grapevine health, future yields and grape quality. Our objective is to develop an
AI-based application that provides pruning suggestions according to the ‘‘gentle pruning’’ strategy enabling
non-experts in the field to easily engage in the process. To achieve that, we have to deal with multiple
challenges such as a large number of grapevine varieties, complicated outdoor conditions characterized by
varied light, weather and complex grapevine structures with multiple occlusions. In this work, we present
a framework, which allows the generation of pruning suggestions using a video recorded by a smartphone
and visualize them in a mobile AR application. Thus, our contributions are the following: 1) we present the
collection of a large image segmentation dataset of dormant grapevines; 2) we propose a novel distributed
approach to generate pruning suggestions via a semantic 3D grapevine model generated from a smartphone
video; 3) we propose a mobile AR application to visualize the pruning suggestions. Results show the
robustness of our approach to outdoor conditions as well as reasonable pruning suggestions according to
evaluation by domain experts in 71% of cases. We demonstrate the main challenges that must be addressed
for such an application and propose a distributed solution to handle them.

INDEX TERMS 3D reconstruction, augmented reality, computer vision, deep learning, grapevine pruning,
semantic segmentation.

I. INTRODUCTION
Winter pruning of grapevines is a complicated and time-
consuming task. Therefore, many skilled workers are needed
to prevent mistakes that may have long-lasting effects on
the plants. Since large amounts of skilled workers are hard
to find, we seek to provide assistance during the pruning
process, opening it up to a larger section of the workforce.

The goal of pruning is to shape the future growth of
the plant. This is done by removing unwanted one-year-old
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branches as well as the spurs and fruiting canes from the
previous year. Winemakers can choose between different
pruning techniques that optimize for yield, grape quality,
resilience to infections or simplicity. In this paper, we build
an augmented reality (AR) assistant that enables untrained
workers to carry out the method of gentle pruning [1] in
particular. The aim of this technique is to reduce the size of
the cut wounds, making the plants more resilient to fungal
infections.

Computer vision in outdoor environments like vineyards
is difficult due to varying lighting conditions, the unique
shape of each plant and the similarity between plants in the
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foreground and background. Despite growing in 2D trellises,
grapevine canopies exhibit 3D structure and occlusions
between branches. We thus construct a 3D model of the
plant to which we apply the pruning rules necessary to
perform gentle pruning. The 3D information is further
used to aid with tracking in the AR application and to
correctly position the pruning marks that tell the user where
to cut.

Our system is designed to be used by people in the field
and aid the pruning process without obstructing it. Therefore,
the hardware needs to be small and light-weight which in
turn limits computational resources. In order to simplify our
current prototypes, we decided to offload the execution of
our pipeline to an external desktop computer while the AR
application can run on a smartphone.

Our pipeline consists of several consecutive steps. First,
a set of diverse keyframes is selected from the monocular
RGB input video. Then, semantic segmentation is used to
find the constituent parts of the plant and separate them from
the background. A point cloud is generated from the same
keyframes by a photogrammetry framework and fused with
the semantic information in an abstract graph model of the
plant. The final pruning suggestions are then determined on
this model using a set of rules specific for the gentle pruning
method.

We ensure ethical and responsible employment of artificial
intelligence in digital agriculture. While AI systems are
designed to assist farmers in enhancing production and
productivity, they increase risks and the potential for
harmful outcomes. Therefore, it is crucial to refer to ethical
considerations in our system in order to prevent undesirable
consequences. We follow the guidelines provided by [2],
which cover a range of ethical considerations essential for
developing reliable AI systems for digital farming.

In order to guarantee fairness and eliminate biases,
we enhance the diversity of our dataset by collecting a
wide range of grapevines with distinct structures from
various locations, complemented by employing diverse data
augmentation techniques. We implemented a transparent AI
system that implies a constant collaboration with farmers
and domain experts during the development process, aligning
our system closely with their needs and requirements.
We provide farmers with comprehensive instructions and
detailed descriptions of our system. Moreover, farmers
actively participated in the testing and evaluation of our
system, which contributed to its improvement. Sustainability
is another ethical concept that we consider in our system.
In response to feedback from domain experts, we improved
our pipeline including the user interface in order to build
a user-friendly and trustworthy AI system beneficial to
farmers. We ensure the robustness of our AI model, ensuring
it performs well across varied environmental conditions.
Furthermore, we provide safety by evaluating potential risks
and give users the opportunity to decide whether they trust the
result based on a confidence metric, which we provide along
with the pruning suggestions.

Our contributions can be summarized as follows.
We present:
• the collection of a large image segmentation dataset of
dormant grapevines,

• a pipeline that extracts 3D and semantic information
from a video of a grapevine plant and outputs pruning
suggestions using both traditional as well as deep-
learning–based methods

• and a mobile AR application to display the results to the
user.

After giving an overview about related works in Section II,
we describe recording and labeling of the dataset in
Sections III-A and III-B, respectively. Our pipeline starts
with the extraction of individual frames as explained in
Section IV-A. Sections IV-B and IV-C detail the extraction
of semantic and 3D information, respectively. These are then
combined in a graph as explained in Section IV-D. The
process of finding pruning suggestions using this graph is
addressed in Section IV-E. Lastly, the AR application and its
components are presented throughout Section V.

II. RELATED WORK
Recent years saw a surge in the development of AI-based
approaches aimed at improving various agricultural tasks [3].
Machine learning and computer vision algorithms have been
widely employed for tasks including yield forecasting [4], [5],
fruit detection [6], [7], fruit quality inspection [8], [9], fruit
maturity estimation [10], [11], fruit disease diagnosis [12],
[13] and tree pruning [14], [15], [16], [17]. In this work,
we focus on grapevine pruning.

A. PRUNING SYSTEMS
Grapevine pruning is one of the labor-intensive tasks in
viticulture that requires experienced workers and has a huge
impact on grapevine health, future yields and grape quality.
Developing a fully automated pruning system is challenging
due to the complex nature of the grapevine structure, which
is associated with a three-dimensional (3D) environment.

Several studies have addressed the problem of grapevine
pruning [14], [15], [18], [19], [20], as well as pruning of
other fruit trees [21], [22], [23] such as apple trees [16], [24],
cherry trees [17], and citrus trees [25]. These studies either
focus on the entire pipeline for fully automated pruning [14],
[15], [20], [22], [26] or separate steps that are essential
for an autonomous pruning system. For instance, machine
vision systems have been developed for precise branch
detection [16], [17], [18], [24], [25], reconstruction [21], [23],
[27], [28], skeletonization [29], [30], [31] and localization of
cut positions [32], [33], [34].

You et al. [22] introduced an integrated system for the auto-
matic pruning of sweet cherry trees. The system combines
semantic segmentation and a skeletonization algorithm [29]
to describe the tree structure and estimate the 3D positions
of pruning points. The pruning process is executed by the
Universal Robot UR5e. However, human intervention is
required to prevent unintentional cuts.
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Botterill et al. [14] introduced a robotic system for
automated grapevine pruning. It utilizes a mobile platform
with stereo cameras to register a grapevine and reconstruct its
3D model. An expert system with a support vector machine
(SVM) calculates optimal cut positions, and a robotic arm
performs the pruning.While this work is a pioneering effort in
automating vine pruning, it requires a significant setup and is
time-consuming. Additionally, other plants in the background
need to be blocked using a blue blanket.

In their work, Fourie et al. [15] proposed a system that
utilizes a recurrent graph neural network (GNN) [35] to
directly generate pruning rules from grapevine structures.
This approach offers an objective method for constructing
a pruning scheme, minimizing potential discrepancies that
can occur when experts rely on their individual expertise.
However, this system has only been trained and tested on
a limited synthetic dataset, therefore, relies on multiple
assumptions and simplifications. The adaptation of the
system to real data and the testing of its robustness remain
open issues.

Gentilhomme et al. [18] developed ViNet, a deep learning
approach that accurately understands the grapevine structure.
By incorporating semantic segmentation and graph gener-
ation, ViNet detects nodes and branches from 2D images.
However, the authors used an artificial background and relied
on a dataset primarily consisting of clear grapevine structures
without occlusions or atypical branch intersections, which are
commonly encountered in natural environments.

The current state of the art as described above proves
the general feasibility of pruning suggestions systems but
does not address the problems of real-world application such
as challenging outdoor conditions, complex plant structures
with significant occlusions and unusual shapes and branch-
ing. In this work, we present a distributed system that includes
a complete pipeline for the generation of grapevine pruning
suggestions using video recordings captured by a smartphone
camera. Our system eliminates the need for complex setups
involving artificial backgrounds, simplified environments,
robots, or specialized cameras. Instead, it relies on the
segmentation of a reconstructed 3Dmodel to achieve accurate
localization of grapevine parts and calculate the optimal
pruning positions. The results are conveniently visualized
through a mobile application, enabling non-experts to easily
engage in grapevine pruning.

B. PLANT RECONSTRUCTION
In this study, we tackle the challenges presented by complex
outdoor conditions, specifically focusing on grapevines with
unclear structures and numerous occlusions. Due to the
limitations of 2D images in accurately assessing branch
connections, we adopt a 3D reconstruction approach to
effectively localize relevant parts of the grapevines.

Various research efforts have been dedicated to
addressing the reconstruction of trees and plants, which
can be broadly categorized into active and passive
approaches [36], [37], [38]. Active methods involve

specialized equipment and rely on external light sources with
known parameters and locations [38], [39], [40]. Whereas
passive methods extract depth information directly from
single or multiple images to reconstruct a 3D scene [37],
[38]. Passive approaches are more flexible and cost-
effective [41]. Several studies [37], [41] have concluded that
the passive photogrammetry approach combining Structure-
from-Motion (SfM) [42] and Multi-View Stereo (MVS) [43]
provides high flexibility and stability in outdoor conditions.
Consequently, they consider this approach to be the more
suitable method for modeling plants.

At present, there are various open-source computer
vision frameworks available for photogrammetry, such as
COLMAP [44], [45], Meshroom [46], BoofCV,1 as well as
commercial software like Metashape2 and RealityCapture.3

In line with this, we employ the photogrammetry approach
for the reconstruction of grapevines, taking advantage of its
flexibility and stability in capturing accurate plant structures
outdoors. To meet our specific requirements, we customized
Meshroom, a photogrammetry software, which demonstrated
high robustness and stability in outdoor environments (see
Section IV).

C. PLANT SEGMENTATION
Datasets and methods for leaf segmentation [47], disease
detection [48], [49] and fruit detection [50], [51], [52]
are numerous. Whereas such tasks involve the handling
of occlusions from leaves, dormant plants in winter pose
different challenges like thin structures spanning across
large parts of the image. Existing datasets for seman-
tic segmentation of dormant grapevines lack either in
size or in the variability of viewpoints and backgrounds
[18], [53], [54], [55].

Besides varying outdoor lighting conditions that most
computer vision methods in agriculture have to face, an addi-
tional difficulty in vineyard and orchard environments is the
similarity between plants in the foreground and background.
Previous methods chose artificial backgrounds [14], [18] or
depth-based background removal to alleviate this. Specifi-
cally, Majeed et al. [56] performed semantic segmentation on
young, dormant apple trees in an orchard. They trained their
network once with the original RGB images and once with
images fromwhich they removed the background using depth
information acquired using anRGB-D camera. Doing so, they
found that the foreground-only network performed better.

Borrenpohl and Karkee [57] separated foreground and
background in images of dormant sweet cherry trees using
depth information. They did this in order to swap the
background of one sample with the background of another
sample and thus increase the effective size of their dataset.
We employ a similar data augmentation technique using the
ground truth to extract the foreground. Using this dataset,

1BoofCV: http://boofcv.org/
2Agisoft Metashape: http://www.agisoft.com
3Epic Games RealityCapture: https://www.capturingreality.com/
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they trained two instance segmentation networks to find the
vertical fruiting branches of sweet cherry trees. One of the
networks was trained with naturally lit images and the other
one with artificially lit images. Borrenpohl and Karkee found
the network trained on artificially lit images to achieve better
results.

D. MOBILE AUGMENTED REALITY
The interest in usingAR to assist different agricultural tasks is
growing [58], [59], [60], [61] but applications are still limited.
An overview of use cases and methods regarding precision
farming is given in [62].

Besides those, there are several monocular 3D recon-
struction and depth estimation frameworks available which
enable realistic AR effects on the mobile phone for general
use. Yang et al. [63], for instance, generate dense geometrical
structures from a monocular smartphone camera in real time.
Furthermore, researchers in [64] use the RGB camera of a
smartphone to estimate dense depth maps allowing them to
render virtual objects in real time. Both frameworks [63],
[64] are based on either a Visual Inertial Odometry (VIO) or
a Simultaneous Localization and Mapping (SLAM) system
that tracks six degree of freedom (6DoF) poses for selected
keyframes.

There is an increasing number of vision-based monoc-
ular SLAM and odometry systems with proven real-time
performance for mobile applications, either using a single
camera or fusing RGB data and data from inertial sensors.
ORB-SLAM [65] and VINS-Mono [66] are examples for
feature-based methods whereas LSD-SLAM [67] is based on
direct image alignment.

AR applications for agricultural environment are still
limited while other existing mobile AR applications are
commonly applied on indoor scenes where they reconstruct
large surfaces with little detail. However, visualizing virtual
content on grapevines involves the handling of challenging
weather conditions, including severe illumination changes,
as well as complex grapevine structures that contain over-
lapping and thin branches. We therefore opted to develop a
customized mobile tracking solution which addresses these
challenges.

III. DATASET
We collected a large image segmentation dataset of dormant
grapevines for winter pruning. The dataset contains over 11k
labeled images from 2.5k videos of the plants as they appear
in the field with realistic background. Each sample includes
two semantic masks. The first mask contains the stem, two-
year-old branches, one-year-old branches, nodes and trellis
wires. The second one highlights special areas of the plant:
cut wounds, dried-up branch segments and buds.

A. IMAGE ACQUISITION
Data was collected over three consecutive winters starting in
2020/2021 in six vineyards located in wine-growing regions
at the river Moselle and in Rhine Hesse in Germany. The

dataset covers multiple grape varieties, locations as well as
weather conditions and was recorded using multiple cameras
and movement patterns.

Initial videos were taken with the Intel RealSense L515
and D435i cameras. In the following winter the integrated
RGB camera of the XREAL light AR glasses was used and
in the last year a switch to the camera of the Samsung Galaxy
S20 FE 5G phone was made, due to its higher image quality.
Resolutions range from 640× 480 to 1920× 1080.
Two different recording patterns were applied to cover one

side of the plant frommultiple different angles. First, we used
a clockwise motion starting in the top left, while always
keeping the camera pointed towards the top of the stem. Later,
a zigzag pattern described in Section IV-A was adopted as it
allowed for more diverse view points.

B. LABELING TOOL
The input to our labeling tool are videos. We use the selection
process described in Section IV-A to extract up to ten frames
from different viewpoints for each video. Those are then
labeled for instance segmentation. An example of our tool
can be seen in Fig. 1.
We built a labeling tool that reduces the effort of annotating

the types of images contained in our dataset. The relevant
structures in images of grapevine plants are often long and
thin (e.g., wires, branches) which is not ideal for hand-drawn
regions. Therefore, our tool supports three ways of defining
regions:

1) wire region: a line strip of constant width,
2) smart region: defined as a line strip with variable width

but with its final shape determined via GrabCut [68],
3) region: drawn by the user using a circular brush of

variable diameter.
The trellis wires are marked using line strips, since a single
line cannot account for bends that appear near attachment
posts or in places where it supports last year’s fruiting cane.
We use what we call smart regions for one year and two year
old wood. They are based on the idea that the branches of a
plant are line strips of variable thickness. The user creates a
line strip by clicking along the branch with a rough estimate
of the local thickness. As seen in Fig. 2, once n > 1 points
are clicked, a region is estimated using the GrabCut [68]
algorithm and added to the region of the current instance.
pn−1 and pn define the foreground and possibly foreground
masks needed by GrabCut. Everything else is considered
background. This can produce detailed masks requiring only
a low number of clicks by the user. However, in situa-
tions of low contrast between foreground and background
(e.g., brown dirt) or high contrast on the branch (e.g., from
hard shadows) the quality of the region suffers. The masks
for the stem, nodes, buds and health factors are painted with
a circular brush of variable size.

For each instance we store its mask, its class as well as
its underlying line strip if available. Since we want to train a
network for semantic segmentation, we convert the collected
information into the two class masks described at the start
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FIGURE 1. Primary and secondary masks for one frame viewed in our labeling tool. The primary mask covers the entire foreground plant and splits it
based on wood age. It also contains nodes and buds. The second mask focuses on cut wounds and dry spots.

FIGURE 2. Two clicks by the user define points pn−1 and pn which in turn
define the foreground (red outline) and possibly foreground (blue
outline) regions as lines of different thickness. The green outline is the
resulting foreground region after GrabCut [68] is run.

of Section III. As we store the user-generated line strips for
the two branch classes, as well as the order in which the
object instances were labeled, we can later infer additional
information. This includes regions of occlusions, 2D growth
directions of branches, and a relative depth-wise ordering of
the branches.

IV. FRAMEWORK OVERVIEW
In this section we describe the framework, which allows
generating pruning suggestions for grapevine pruning using
a video from a smartphone as input. The pipeline, illustrated
in Fig. 3, includes the following stages.
1. Video Capture & Keyframe Selection: A grapevine is

recorded by a smartphone camera, ensuring that the captured
video contains all necessary details about the plant. Then, the
optimal keyframes are selected such that they allow focusing
on significant information and enable reconstructing the point
cloud as accurately as possible (Section IV-A).
2. Semantic Segmentation: Semantic segmentation of

keyframes identifies the constituent parts of a grapevine
and extracts information, which is essential for pruning.
Moreover, background estimation is applied such that only
foreground information is used for the reconstruction stage
(Section IV-B).

3. Point Cloud Generation: The selected keyframes are
used for the generation of a dense point cloud of grapevines
employing Meshroom [46]. The 2D semantic information
extracted earlier is combined with the generated point
cloud to construct a 3D segmented model of the grapevine
(Section IV-C).
4. 3D Graph Generation: A 3D graph is constructed based

on the segmented grapevine model generated in the previous
stage (Section IV-D).
5. Pruning Suggestions: Pruning suggestions are computed

by evaluating the properties of the reconstructed grapevine
using the 3D graph (Section IV-E).
6. Mobile AR Application: Finally, the results are visual-

ized in the mobile AR application, which includes tracking
grapevine parts (Section V-A) and visualization of pruning
suggestions (Section V-B).

In the following, we provide detailed information about
each stage of the pipeline.

A. KEYFRAME SELECTION
The primary objective of this work is to precisely estimate
cutting positions for grapevines using a monocular video
sequence and generate suggestions for gentle pruning.
To achieve high localization accuracy, we employ a 3D
reconstruction technique to model individual plants and
obtain spatial semantic information.

The first challenge that needs to be solved is the
proper selection of the most representative keyframes from
the video sequence. This crucial step involves striking a
balance between performance and quality. The number of
selected keyframes significantly impacts the overall system
performance, while the quality of these keyframes directly
influences the accuracy and reliability of the resulting 3D
model, thereby affecting the overall outcome.

The selected keyframes should satisfy the following
properties:

1) Sufficient Feature Sharing: They should share a
reasonable number of features that are suitable for the
subsequent 3D reconstruction process.
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FIGURE 3. The pipeline of the distributed approach for generating grapevine pruning suggestions.
It consists of several consecutive stages described in the following sections. 1. Video capture (a client) and
keyframe selection (the server) (Section IV-A). 2. Semantic segmentation (Section IV-B). 3. Point cloud
generation (Section IV-C). 4. 3D graph generation (Section IV-D). 5. Pruning suggestions (Section IV-E).
6. Mobile AR application for tracking (Section V-A) and visualization (Section V-B). The reconstructed point
cloud with intrinsic parameters and estimated 3D poses are utilized for the generation of a 3D segmented
grapevine model, which is further employed in the mobile AR application.

FIGURE 4. An example of the zigzag pattern applied for indoor plant
recording. The pattern involves capturing videos of the grapevine by
alternating between moving from right to left and vice versa, creating a
zigzag shape. This approach ensures comprehensive coverage of the plant
from different angles and perspectives, allowing for a thorough
registration of its structure and details.

2) Diversity: They should be diverse in terms of content
and viewpoints. This diversity helps to capture different
aspects of the grapevine structure.

3) Representativity: They should represent the entire
video sequence, ensuring that the subset of frames
selected is sufficient to capture all significant
details.

4) Minimal Noise and Blur: They should exhibit minimal
noise and blur to ensure the highest possible quality of
the 3D model as well as the final results.

For property 1, we employ a zigzag pattern during the
recording process illustrated in Fig. 4. The pattern involves
capturing videos of the grapevine by alternating between left-
to-right and right-to-left motion, creating a zigzag pattern.
This approach allows to capture the most crucial parts of
the plant from various viewing angles, while ensuring an

adequate amount of matching information between frames
required for 3D reconstruction.

For property 2, we divide the video into N sectors of equal
size, where N = 4 is used in the experiments. The sector
size is determined based on the total number of video frames.
These sectors correspond to the most distinctive regions
based on the employed recording pattern. This approach
guarantees that within each sector, the keyframes selected
include a high number of shared features.

For property 3, we leverage semantic information to
identify keyframes, which contain a substantial amount of
foreground information. To ensure the representativity of the
selected keyframes, we filter out frames that are less infor-
mative and include less than 30% of foreground pixels, while
also excluding frames that do not contain any pixels classified
as stem. This filtering process is particularly relevant for the
frames in the initial and final sectors, which correspond to
the beginning and end of the recording. This step effectively
reduces the number of selected keyframes while enhancing
the significance of the most informative ones.

For property 4, we utilize the variance of the Laplacian
as a measure of image blur for frames within each sector.
The Laplacian operator, a second-order derivative commonly
used for edge detection in computer vision, provides insights
into the presence and sharpness of edges in an image [69].
By estimating the variance of the Laplacian, we can infer the
spread of edge responses. Consequently, a lower estimated
variance indicates a reduced presence of edges, suggesting
that the image is more likely to be blurred [70].

Our goal is to select keyframes with the highest variance
such that there are uniformly distributed within each sector.
To this end, we use an adaptive variance threshold with
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an initial mean value and adaptive window size per sector.
Specifically, we aim to select a varying number of frames,
denoted as Mi, within the range of min_ni ≤ Mi ≤ max_ni,
where i = {1..N }, in order to prevent the dominance of
sectors with low mean variance. Frames that do not meet
the variance threshold are filtered out during the selection
process. By employing adaptive thresholds, we ensure a
uniform distribution of frames and maintain representativity
within each sector. This allows us to capture necessary details
and preserve variations across the entire video while avoiding
an excessive concentration of frames from any specific sector.

B. SEMANTIC SEGMENTATION
Semantic segmentation is used to separate the foreground
from the often similar background before 3D reconstruction
and to find certain parts including nodes and branch types
which are important for the later steps in our pipeline. Fig. 5
shows an example of our semantic segmentation. Classes of
the primary mask are shown in solid colors: stem (yellow),
two-year-old wood (green), one-year-old wood (cyan), nodes
(red) and wires (pink). The secondary classes: cut wounds,
dry areas and buds are visualized by purple, gray and blue
borders, respectively. Note the challenges posed by the
similarity between the stem in the foreground and the soil in
the background as well as the dissimilarity along the two year
old branch in the bottom left due to the hard shadow.

1) ARCHITECTURE
We use a modified version of the Deep Dual-Resolution
Network (DDRNet) described by Pan et al. [71] to segment
a selection of frames into a hierarchy of foreground and
background classes. DDRNet consists of a low resolution
branch with a pooling module at the end to capture high-level
information across large parts of the image and a more
shallow high-resolution branch that can maintain details
of small objects like buds. We further augment this by
keeping a set of early, high resolution feature maps that are
concatenated after the fusion of the previously mentioned
branches. Fig. 6 shows the structure of our network with
feature map resolutions given relative to the input resolution.

2) TRAINING
During training we use a combination of dice loss and
automated focal loss [72]. The original focal loss [73] shifts
the influence on the loss towards hard samples to counteract
class imbalance. This can lead to diminishing gradients when
fewer samples are considered hard as the network improves.
Automated focal loss seeks to remedy this, by relaxing
the focus as the training progresses. Like [71] we calculate
the loss for the final output as well as an auxiliary
output. The latter is derived from intermediate features
captured after the first fusion of the high and low resolution
branches (after the the leftmost green block in Fig. 6). This
output is generated by a separate segmentation head that is
inactive during inference.

3) DATA AUGMENTATION
An outdoor system in the domain of agriculture is required
to handle a variety of lighting conditions and plant shapes.
Therefore, we employ a wide range of data augmentation
techniques such as random cropping, horizontal flipping,
rotation, adding noise and motion blur as well as shifting
brightness, color and contrast. In addition to those, we ran-
domly add artificial snow [74], glare and foreign objects
including hands from [75]. To achieve better independence
from the background, we occasionally replace it with images
from [76] or the background of other samples from our
dataset similar to [57]. The latter is done by transplanting
background patches on top of the foreground region of one
sample in order to create a background-only image which
then receives the foreground region and class labels of another
sample. An example of this can be seen in Fig. 7.

C. POINT CLOUD GENERATION
Precise localization of grapevine parts is crucial for gen-
erating accurate cutting suggestions in order to achieve
careful pruning. Relying exclusively on 2D information is not
reliable due to the inability of images to accurately represent
the complex spatial structures of real grapevines and identify
their interconnections. To overcome this limitation, we gen-
erate a dense point cloud of grapevines using Meshroom,
a photogrammetric computer vision framework developed by
AliceVision [46].

1) DENSE POINT CLOUD
Photogrammetry aims to reconstruct 3D scenes from a set
of unordered images. It addresses the challenge of regaining
depth information, which is lost when transforming the 3D
world into a 2D image. The generation of the point cloud
combines the results of two computer vision algorithms:
Structure-from-Motion (SfM) [42] and Multi-View Stereo
(MVS) [77].
The accuracy of the point cloud is heavily influenced

by the quality of the images used for reconstruction.
To enhance the point cloud quality, we performed additional
processing on the keyframes selected with the procedure
described in Section IV-A. This involved extracting essential
grapevine-related information while excluding irrelevant
data that is typically included in complex outdoor scenes,
such as background elements, nearby plants and other
extraneous objects. Tomitigate the influence of this irrelevant
information, we applied semantic segmentation to remove
the background from the selected keyframes. This approach
enables us to accelerate the generation process and obtain
a more informative point cloud by removing irrelevant
elements and focusing on essential plant-related information.

For the feature extraction step, we apply a combination
of DSP-SIFT [78] as well as AKAZE [79] features. Our
approach involves utilizing a set of 2000 features to achieve a
trade-off between system performance and the quality of the
generated point cloud.
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FIGURE 5. An example of our semantic segmentation (best viewed in color). The main classes are stem (yellow), two-year-old wood (green),
one-year-old wood (cyan), nodes (red) and wires (pink). Cut wounds (purple outline), dry areas (gray outline) as well as many buds (blue outline) were
not detected in this case.

FIGURE 6. The structure of DDRNet [71] with our modifications shown in
blue. A stack of early features has its channel dimension reduced (top)
before being concatenated to the sum of the high and low resolution
branches (right). The two sets of class probabilities are estimated via two
separate soft-max activations.

We apply Semi-Global Matching [80] to estimate the
disparity between image pairs, which provides pixel-wise
depth information. The computed depth maps are then used
to build an optimal dense point cloud [81], [82].

2) SEGMENTED POINT CLOUD
In order to obtain a segmented 3D model of a grapevine,
we combine the previously extracted 2D semantic informa-
tion with the generated point cloud. This process utilizes
the necessary camera parameters and poses retrieved during
the point cloud generation stage. The following procedure is
employed:

1) First, we apply the algorithm introduced by
Katz et al. [83] to identify the visible points in the point
cloud for each viewpoint. These points represent the
grapevine parts that are observable from that particular
perspective.

2) Given intrinsic and extrinsic camera parameters,
we compute projections of 3D coordinates X to their
corresponding 2D views and establish correspondences
between the 3D coordinates and the projected 2D
pixels, denoted by x. The projection is given by:

x = K[R|t]X, t = −Rc, (1)

where K ∈ R3×3 is the intrinsic matrix, R ∈ R3×3 is
the rotation, t ∈ R3 is the translation, c ∈ R3 is the
camera center in world coordinates.

3) Next, we extract the semantic class for each projected
pixel. This allows us to assign a semantic label to each
point in the point cloud.

4) By collecting the semantic classes from all keyframes,
we determine the most commonly predicted class for
each 3D point.

Fig. 8 shows the dense point cloud generated from a set
of keyframes, along with the corresponding segmented point
cloud that incorporates the classes described in Section IV-B.

D. 3D GRAPH GENERATION
We collect all the information needed to decide which
branches to keep and where to cut in 3D space in a tree graph
representing the plant. The vertices of the graph correspond
to 3D points on the grapevine, while edges represent the
branch segments between two neighboring points. As each
vertex has a 3D position, the resulting graph is a skeleton of
the plant. Fig. 8b shows an example of a 3D graph with its
corresponding segmented point cloud.

1) SCALE
Multiple steps of the graph generation depend on distances.
Therefore, we need a sense of scale which SfM cannot
recover. Thus, we measure the distance between the lower
two wires and compare it to a user-supplied value for the
respective vineyard. This is done by first separating the wire
point cloud into clusters and then fitting a 3D line into each
cluster. The clusters are created by projecting the wire points
into a frame where both wires are visible and then assigning
each point to the closest of the two. Any remaining outliers
due to issues in the generation or segmentation of the point
cloud are discarded by RANSAC [84] which is used to fit 3D
lines into the clusters.

2) PLANT STRUCTURE
Once a scale is established, graph vertices are uniformly
distributed across the point clouds in a way that all of the
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FIGURE 7. Image (a) has its foreground replaced by background patches, giving image (b). This is then used to replace the background of another
image (d). The result is shown in (c).

FIGURE 8. An example of a segmented dense point cloud. (a): a dense point cloud built with Meshroom [46]. (b): the
corresponding segmented point cloud with the classes described in Section IV-B and the resulting 3D graph.

plant’s nodes are included. The lowest vertex on the stem
will later become the root of the directed tree. Additional
information like thickness, cut wounds and the position of
buds relative to their respective nodes are attached to nearby
vertices. Positions for nodes, buds and cut wounds are given
by clustering their respective segmented point cloud and
recording the cluster centers. The thickness is estimated
by measuring the diameter of the point cloud at multiple
positions along a branch.

Next, the vertices within a class are connected to each
other (e.g., only those on one-year-old wood) using distance
thresholds. Further, an angle-based criterion is used to prevent
triangles along the branches in places of higher vertex density,
as shown in Fig. 9a. This is done by only allowing vertices a
and b to connect if neither of them has any previous edges
within a cylinder around their connecting vector b−a. These
initial edges result in a set of connected components in the
graph. Each connected component can either be a part of
a branch, a complete branch or contain parts of multiple
branches.

In order to keep branch ages consistent, we can bridge
a connected component either to one of the same age or
to an older one that is closer to the stem. Both cases have
different connection criteria: connections between branch
segments of the same age need stricter angle thresholds than
those between segments of different ages, since a branch
keeps growing in approximately the same direction, while an
offshoot grows laterally. As shown in Fig. 9b, when trying
to connect branch segments A and B at vertices a and b
the local direction of a branch segment is defined as the
vector between the vertex that takes part in the connection

FIGURE 9. Close-ups of different scenarios observed during graph
generation. (a): the result of purely distance based connections between
vertices. (b): vectors needed to calculate the distance and angles between
branch segments.

and one of its neighbors. Angles are then calculated between
va and vconn as well as va and vb using the dot product.
Two vertices a and b are connected if the distance between
them, the aforementioned angles and a set of weights for the
different combinations of wood types are within acceptable
ranges. These weights and thresholds were determined
experimentally. We found dynamic angle thresholds based on
the distance between a and b to work well.

3) POSTPROCESSING
After connections between branch segments are made, the
minimum spanning tree of the largest connected component
in the graph is calculated. Its edges are oriented such that
they point away from the root vertex located at the bottom
of the stem. Further filtering is done to split cases of
crossing branches whose point clouds have merged leading
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Algorithm 1 Split Crossing Branches
Require: connected component with ≥ 4 degree-1 vertices
hsearch_dist ← 3
ysearch_dist ← 7
v← first degree-4 vertex
if v exists then ▷ X-type crossing

find best-aligned pair of incident edges
remove all other edges of v
connect former neighbors of v to each-other

else
v1← first vertex with degree-3
α1, α2, α3← pairwise angles between incident edges
if αi ≈ π ∧ αj̸=i ≈

π
2 then ▷ H-type crossing

look along the edge corresponding to αj̸=i for
another degree-3 vertex v2 at most hsearch_dist steps away

if found then
remove all edges between v1 and v2

end if
else

if one αi < π
2 then ▷ Y-type crossing

look along the edge corresponding to αj̸=i for
another degree-3 vertex v2 at most ysearch_dist steps away

if found then
find the edge incident to v2 that aligns best

with the edge corresponding to αi at v1
remove those edges and connect their

former incident nodes directly
end if

end if
end if

end if

FIGURE 10. Three different types of crossing branches that have merged
in the point cloud and graph. Arrows are edges of the graph in the
direction that they are traversed in algorithm 1. Removed and added
edges are shown as red arrows and green dashed lines respectively.

to unwanted edges. This step is detailed in algorithm 1
and Fig. 10.
Finally, the graph is simplified by removing most vertices

that do not represent nodes, cut wounds, junctions or end
points of branches. Some non-essential vertices are kept such
that the edges of the graph adhere more closely to the actual
shape of the plant.

E. PRUNING SUGGESTIONS
The objective of this study is to provide rule-based pruning
suggestions according to the ‘‘gentle pruning’’ strategy.
It refers to a pruning technique used to maintain grapevine
health and productivity while minimizing potential damage
to the plant [1].
For the generation of pruning suggestions, we leverage

both 2D and 3D information obtained from the preceding
stages in a ranking-based recommendation system that we
created. This system assesses the characteristics of grapevine
branches to identify the optimal candidates for fruiting canes,
which will yield the highest fruit production in the present
year, as well as new spurs for future harvests. The entire
process of generating these suggestions involves three key
steps: 1) evaluation of grapevine properties and ranking of
branches, 2) grapevine traversal and decision making and
3) generation of cutting suggestions.

Fig. 11 illustrates a keyframe of the grapevine and the cor-
responding segmented 3D graph with the generated pruning
suggestions. The example depicts the optimal scenario where
two future spurs and two fruiting canes (one for each side of
the plant) can be identified.

1) STEP 1: GRAPEVINE PROPERTIES EVALUATION &
RANKING
In order to assess the suitability for pruning decisions,
we introduce a ranking system that takes into account the
characteristics of branches essential for pruning. This system
incorporates both rewards and penalties for branches.

In terms of rewards, higher scores are assigned to branches
that possess desirable characteristics such as being one year
old, having sufficient length and a number of nodes with
appropriate directions of detected buds and an adequate
thickness. Additionally, the ranking score takes into account
the origin type, branch position relative to the root node, the
estimated up direction and the existing wires. These attributes
significantly contribute to determining the optimal pruning
strategies for grapevines.

Conversely, branches with unfavorable traits, including
being two years old or a stem, broken or dry, excessively
short or too distant from the stem, are assigned lower scores
as part of the punitive side of the ranking system. In the
decision-making process these branches are considered to be
less suitable.

In the ideal scenario, our objective is to identify two
fruiting canes and two future spurs, i.e. the essential branches.
To achieve this, we divide the plant into two sides (A and B)
and conduct ranking separately for each side.

2) STEP 2: GRAPEVINE TRAVERSAL & DECISION MAKING
The objective of this step is to analyze the evaluated branches
and identify the most suitable candidates for fruiting canes
and future spurs. During this process, we consider various
potential scenarios, including the following cases.
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FIGURE 11. An example of the segmented 3D graph and the generated pruning suggestion. (a): a keyframe with the original
grapevine. (b): the corresponding processed segmented point cloud. The red branches represent potential candidates for future spurs.
The blue and dark blue branches indicate the top two candidates for a fruiting cane, i.e. priority 1 and priority 2, respectively. The gray
planes mark the designated cut positions. This example demonstrates an optimal scenario where two future spurs and two fruiting
canes (one for each side of the plant) can be identified.

Scenario 1: Two Fruiting Canes & Two Future Spurs: In
the best-case scenario, where healthy grapevines have been
consistently pruned using gentle pruning in previous years,
it is possible to identify a fruiting cane and a future spur
for both plant sides. However, our system is designed to
be applicable to various grapevine types, including those
previously pruned using different techniques. Therefore,
we also consider more challenging scenarios.
Scenario 2: One vs Two Fruiting Cane(s): In this

particular scenario, we encounter situations where there is
an inadequate number of branches available for one or both
sides of the plant. This poses a challenge in determining the
essential branches, and the system must decide in favor of
one or two fruiting canes. If candidates for fruiting canes
are found for side A and not found for side B, we assess
the feasibility of selecting the top two candidates on side A.
If achieving this becomes unfeasible, e.g. few branches on
side A, we keep the option of having only one fruiting cane
as the final solution.
Scenario 3: One Fruiting Cane & One Future Spur: In

the scenario of one-sided plants, where there are no branches
available on one side, we have two possibilities. If there is
a sufficient number of candidates, we aim to identify two
future spurs and one fruiting cane and follow Scenario 2.
Alternatively, if the number of suitable candidates is limited,
we select one fruiting cane and one future spur as the optimal
choice.
Scenario 4: Fruiting Cane vs Future SpurL In certain

scenarios, the same branch might receive the highest rank
as both a fruiting cane and a future spur. To address
this, we conduct a final verification by scoring the branch
using subsets of properties that are utilized in the ranking
process during Step 1 (Section IV-E1) and specifically refer
to either a fruiting cane or a future spur. This additional
evaluation helps to ensure that the selected branches for
fruiting canes and future spurs are distinct and fulfill the
necessary requirements.

Through this decision-making process, we identify the
branches that have the highest potential to serve as future
spurs and fruiting canes. Subsequently, we utilize this
information to generate pruning suggestions that are tailored
to the specific needs of grapevines.

3) STEP 3: CUTTING SUGGESTIONS GENERATION
As a final step, we leverage the decision-making outcomes
from the previous stage and generate the pruning suggestions
using the cutting rules summarized in Table 1.

a: FUTURE SPURS
To determine the cutting position for a future spur, we assess
the orientation of the identified buds. Our objective is to
detect the edge where the source node exhibits a visible bud
pointing towards the ground or sideways, while the target
node displays a visible bud pointing towards the sky or
sideways. The subsequent edge following the second suitable
node is designated as the cutting edge, with a cutting distance
equivalent to half of the edge length.

b: OTHER BRANCHES
To address the remaining branches, we generate cutting
positions for the edges where the source node corresponds to
a basal node of the current branch. We define the following
cutting rules:
• Other one-year-old branches. Cut with a minimum
possible distance equal to a small predefined epsilon
value.

• Two-year-old branches. Cut with a distance equal to the
average between the minimum and maximum possible
distances. The minimum distance is determined by the
thickness of the branch, while the maximum distance is
defined as below the next node.

• Dry branches. Cut without any distance specified.
Furthermore, we perform an additional check to prevent

conflicting cut positions, aiming to visualize the earliest

5824 VOLUME 12, 2024



S. Häring et al.: Vid2Cuts: A Framework for Enabling AI-Guided Grapevine Pruning

TABLE 1. Cutting rules based on the ‘‘gentle pruning’’ methodology. Firstly, we determine the optimal cutting edge, considering the target and branch
type. For future spurs, we identify an edge following the second suitable node, where the source node has a visible bud pointing downwards or sideways
(↓ / →), and the target node has a visible bud pointing upwards or sideways (↑ / →). For other branches requiring cutting, the edge after the first suitable
node with a basal bud is given priority. Secondly, once the suitable edge is identified, we generate the precise cutting position for this particular edge.

FIGURE 12. Mobile AR app running on a smartphone.

feasible position for each branch while minimizing the
number of cuts.

V. MOBILE AR APPLICATION
We build a mobile augmented reality application to visualize
cut positions in the field after processing a single video or
multiple videos with the framework described in Section IV.
On the mobile phone the user can choose from a set of
preprocessed grapevines to visualize the cut positions and
further instructions overlaid on the camera feed as can be
seen in Fig. 12. As the user is moving, it is necessary to
track the camera position of the mobile phone to ensure
that the visualization is always placed at the correct position
with respect to the selected grapevine. The six degree of
freedom camera pose tracking consists of two parts. In the
initialization stage a keyframe with known camera pose is
matched to the current video frame. In subsequent video
frames, the camera position is updated via frame-to-frame
tracking. The application does not only require a convenient
keyframe for initialization but also a selected set of 3D
points from the point cloud of the grapevine. For each
grapevine, the corresponding tracking data and additional
files for visualization, e.g. graph model and cut positions, are
collected and pushed to the phone.

The application is built for Android and has been
developed and tested with the Samsung Galaxy S20 FE
5G, which is equipped with the Qualcomm Snapdragon
865 processor. Using the Snapdragon Neural Processing
Engine (SNPE) SDK4 allows us to access the digital signal

4SNPE: https://developer.qualcomm.com/sites/default/files/docs/snpe/
index.html

processor (DSP) and efficiently run neural networks on the
mobile phone. In addition, we use the OpenCV for Android
SDK for all image-processing–related tasks on the phone
and Unity to access the camera of the mobile device and
to implement a User Interface (UI) and add visualizations.
Finally, the Android Debug Bridge (ADB) is used to transfer
data between computer and mobile phone.

The application is facing several challenges. The compute
resources on the mobile phone are limited and, at the same
time, augmentations are supposed to be rendered in real-time.
Furthermore, the app has to work outdoors under varying
weather conditions. Because video processing and tracking
are independent and do not run on the same platform, the
weather and illumination can significantly differ between
initial video recording and the time the user is actually going
to the field to cut the grapevine. Hence, we have to consider
that days or weeks may pass between video recording and
tracking.

In order to face these challenges, we use a node tracking
pipeline based on a light-weight node detection network
optimized to run on the DSP of the mobile phone. Finally,
3D to 2D node correspondences are used to estimate the
camera position in each frame (Section V-A). Given the
camera position of the current video frame, the cut position
and further relevant information can be correctly visualized
(Section V-B). For computational efficiency, we use a
reduced image resolution at each processing step during
tracking and only retain high resolution data for visualization.

A. GRAPEVINE TRACKING
In this section, we present our solution for grapevine tracking.
The main objective is the ability to accurately track a
grapevine in a computationally efficient manner on a mobile
phone. In particular, we face the problem of 6DoF camera
pose tracking which can be stated as follows. Given 3D points
X ∈ R3 in the object coordinate system and corresponding
2D image projections x ∈ R2 in the camera coordinate
system, we compute the camera pose consisting of rotation
matrix R ∈ R3×3 and translation vector t ∈ R3 such that it
describes the best fit of (1).

1) SYSTEM OVERVIEW
As can be derived from (1), the key component to estimate
the camera pose is a set of reliable 3D to 2D correspondences
C = {Xi ↔ xi}. In our tracking algorithm they are
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FIGURE 13. Flow diagram of the grapevine tracking algorithm.

based on the grapevine nodes. For one, nodes are the most
distinctive points of the grapevine which simplifies matching
them between different views. Furthermore, they are well
distributed on the grapevine increasing the accuracy of pose
estimation and resulting in a precise overlay of virtual content
over the whole grapevine structure.

In a preprocessing step, a set of representative 3D node
coordinates are extracted from the point cloud. Furthermore,
a keyframe with known camera pose is selected for the
initialization stage of the tracking. Given a start frame for
initialization and a set of 3D node coordinates, our tracking
approach follows the process flow outlined in Fig. 13.
As a first step during tracking we apply our node detection

network to each new frame arriving from the live feed of
the RGB camera. In order to establish relations between
nodes of nearby frames, optical flow is used to translate
node detections from the previous into the current frame
(Section V-A2). Afterwards, the algorithm consists of two
parts.

The first part is the initialization stage that is running at
the beginning of the tracking based on the start frame and
whenever tracking is lost, e.g. due to fast motion. Note that
after the first successful initialization and from time to time
throughout the tracking, a virtual keyframe is stored. Hence,
the virtual keyframe represents the last successfully tracked
view and simplifies reinitialization whenever tracking is lost.
The initialization stage is further described in Section V-A3.

The second part assumes that tracking has already been
successfully initialized. Accordingly, we exploit the infor-
mation about correspondences between 2D node positions
of subsequent frames from optical flow matching to solve a
Perspective-n-Point problem and get a pose estimate of the
current frame (Section V-A4).

2) NODE DETECTION AND TRACKING
Because classical feature descriptors do not result in robust
correspondences in the present of extreme illumination

variations, we match correspondences based on grapevine
nodes. To predict reliable node positions in any outdoor
scenario, we use a neural network for object detection and
train it on our dataset that covers a variety of weather
conditions. In particular, we use YOLOv5 [85] as base
architecture for our use case. YOLOv5 is a single-stage
object detection algorithm and known for its fast operating
speed that can meet real-time performance requirements
while providing a level of accuracy which is comparable to
two-stage detection models.

We modify YOLOv5 to focus on small-target detection
only and to reduce inference time on the mobile phone.
First of all, we choose the nano configuration of YOLOv5.
Based on the given YOLOv5n structure, we modify the
model in the following ways. In the original architecture
the Sigmoid Linear Unit (SiLU) activation function is used
after each convolution. However, SiLU is not optimized for
the execution with SNPE SDK. Therefore, we replace each
SiLU activation function with the more commonly used
LeakyRectified Linear Unit (LeakyReLU). Although a slight
performance drop is expected, exchanging the activation
functions will optimize execution of the network on the
mobile device. Furthermore, the original YOLOv5 model has
three detection heads for small, medium and large objects.
We prune the detection heads for medium and large objects
to focus on small targets only. The final architecture can be
seen in Figure 21 in the Appendix.

Regarding the input data, we chose an image size of
resolution 480 × 480 pixels. This is a trade-off between
inference time and the accuracy of node detections. On the
one hand, the input image size heavily impacts inference
time, on the other hand, dealing with small objects requires a
minimum image size to obtain reliable detections.

Due to the previously mentioned network modifications,
we train our node detection network from scratch without
loading pretrained weights. Once the network is trained,
we export and quantize the model for efficient inference on
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the mobile phone. In particular, the network is exported to the
deep learning container (DLC) format which can be loaded by
the SNPE SDK. At runtime, we set an appropriate confidence
threshold and use non-maximum suppression (NMS) to get
final predictions.

In order to establish node correspondences between
subsequent frames, we do not only predict node positions
on every frame, but also track the detected nodes using
optical flow. Specifically, we use KLT tracking [86] which
exploits local optical flow techniques and, thus, significantly
improves runtime performance with respect to other optical
flow methods, however, restricting matching to small dis-
placements between nearby frames.

3) INITIALIZATION
Initialization is required at the beginning of tracking and
whenever tracking is lost. Tracking can be lost, for example,
if the user is moving too fast and the displacement between
subsequent frames is too large for optical flow matching.

There is always a reference frame necessary to initialize or
reinitialize tracking. Specifically, we use template matching
between image patches extracted at 2D node positions of the
reference frame and node positions of the current live frame.
Considering challenging lighting conditions and occlusions,
template matching only succeeds if the perspective of the
user is close to the one of the reference frame. If a sufficient
number of matches are obtained, we can solve a Perspective-
n-Point problem within a RANSAC scheme [84] for outlier
rejection to estimate the current camera pose.

The initial reference frame is picked from the set of
keyframes from the video recording and is selected such that
the user can start tracking in a convenient position. After the
first successful initialization, the reference frame is directly
renewed in order to capture a reference frame that maps
current weather conditions. During tracking, the reference
frame is constantly renewed at a high rate to always ensure
that a perspective close to the last perspective of the user is
available for reinitialization.

4) FRAME-TO-FRAME TRACKER
Frame-to-frame tracking is applied as long as the pose
from the previous frame is valid. Given our node tracking
scheme as described in Section V-A2, we can forward 3D to
2D node correspondences from the previous to the current
frame and update the pose accordingly. In order to replenish
correspondences at each iteration, we project the complete
set of 3D node coordinates into the current frame given the
estimated pose and match the projections with current 2D
node positions. Finally, we store the resulting assignments for
the next iteration. If the pose cannot be estimated because
of inaccurate or insufficient matches, we directly try to
reinitialize the tracking with the last reference frame.

B. VISUALIZATION
The tracking application is running on a mobile device.
Corresponding UI and visualizations can be seen in Fig. 14.

The example images are extracted from a screen recording
of the mobile phone. In Fig. 14a, the reference frame is
shown in the top left corner of the screen in order to
simplify initialization. Assuming tracking is initialized and
we have a camera pose estimate of the current frame,
we can superimpose different augmentations on the grapevine
structure. The final visualization covers three categories,
either showing graph model and cut positions (14b), fruiting
canes and future spurs (14c) or cut positions only (14d).

VI. EVALUATION AND RESULTS
In this section, we provide the evaluation results of our
prototype, which includes the assessment of the segmentation
network performance as well as the evaluation of pruning
suggestions and tracking in both outdoor and indoor settings.
These evaluations were conducted by domain experts in the
field.

A. EVALUATION OF THE SEMANTIC SEGMENTATION
Image segmentation of dormant grapevines requires handling
long and thin branches spanning across large parts of an
image as well as small objects (e.g., buds). This, coupled with
varying outdoor environments and challenging backgrounds,
makes for a difficult computer vision task.

1) QUANTITATIVE EVALUATION
To evaluate our semantic segmentation network, we use mean
intersection over union

mIoU =
1
C

C∑
i

IoUi =
1
C

C∑
i

S∑
j

TPij
TPij + FPij + FNij

, (2)

as it is a standard image segmentation metric. It is the mean
across all C classes and within each class i across all S
samples. TPij, FPij and FNij are the number of true positive,
false positive and false negative pixels for class i in sample j.
Table 2 shows the results of DDRNet on our test dataset.
Classes like stem, one-year-old and two-year-old wood that
cover a larger area in the image are detected well. The
performance on classes that are rare or have small regions
such as those in the secondary mask, is lacking. Small objects
like buds can also disappear entirely in the low-resolution
high-level layers of the network. As can be seen in Table 3,
the

precisioni =

∑S
j TPij∑S

j TPij +
∑S

j FPij
(3)

of the secondary classes is comparable to that of the primary
ones. However, they often remain undetected, as indicated by
their low recall, defined as

recalli =

∑S
j TPij∑S

j TPij +
∑S

j FNij
. (4)
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FIGURE 14. Different example images showing UI and visualizations of the mobile AR app. After successful initialization, the user can choose between
three types of visualization.

TABLE 2. IoU scores per class and mIoU per mask (bold). Classes in the
secondary mask achieve far lower scores than those in the primary mask.
This is likely due to the large imbalance in area between them.

TABLE 3. Comparison of precision and recall for individual secondary
classes and averaged across primary classes (bold).

2) QUALITATIVE EVALUATION
We have identified some typical failure cases. Fig. 15a shows
a sample where a neighboring plant and the wooden trellis
pole next to it are segmented. This can lead to issues in the
graph generation if branches from neighboring plants reach
across the plant that is currently being processed as they may
get added to the graph. Further, in the top center of this image
there is a branch that was misclassified as a wire (purple).

This likely happens because wires, similar to thin one-year-
old branches, exhibit few texture features.

In Fig. 15b, we can see an example of two-year-old wood
and stem being confused by the network. This is indicated by
alternating spots of green and yellow. In line with the results
from Table 3, buds, cut wounds and dry segments are rarely
found in either sample.

B. OUTDOOR EVALUATION
The prototype was tested and evaluated by winemakers
in their vineyards in the past pruning season (February -
March 2023). In this section, we present the evaluation results
for pruning suggestions and tracking.

We considered the pruning suggestions for a total of
148 grapevines from 9 different vineyards under diverse
outdoor conditions. A subset of these grapevines, namely
106 plants, was also evaluated regarding tracking. It is crucial
to note that variations in results among different vineyards
could arise from the distinct weather and lighting conditions
prevalent in various locations. Furthermore, the appearance of
grapevines can vary due to factors such as previous pruning
techniques, plant age, or grape variety.

1) RESULTS: PRUNING SUGGESTIONS
We asked winemakers to evaluate pruning suggestions based
on the correctness of the detected essential branches, such
as fruiting canes and future spurs, for each plant. Overall,
we assess 4 suggestions per plant for 148 plants. The
assessments were graded as
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FIGURE 15. Examples of common shortcomings of the semantic segmentation. The colors are those shown in Fig. 5.

TABLE 4. The outdoor evaluation results for pruning suggestions. The
winemakers were asked to assess the correctness of detected essential
branches, such as fruiting canes and future spurs, for each plant, i.e.
4 suggestions per plant. The suggestions were graded as good, neutral,
poor, or fatal. Overall, the evaluation includes the grades for 4 × 148
suggestions. Note that a few plants could not be evaluated due to
various local conditions, i.e. poor visualization caused by lighting
conditions or occlusions.

• good: a pruning suggestion is correct;
• neutral: a pruning suggestion is correct, but not optimal,
i.e. a better branch exists;

• poor: a wrong suggestion, but not harmful for the
grapevine;

• fatal: a wrong suggestion, which has the potential to
hinder the grapevine growth.

Table 4 shows the results of the expert evaluation. Slightly
less than half of the pruning suggestions were graded as
good, indicating correct cutting suggestions for future spurs
or accurate identification of fruiting canes which should not
be cut this year. 15.88% of the suggestions received a grade of
neutral, representing non-optimal but still acceptable choices.
This was often observed in the case of complex plants where
multiple decisions are possible. Additionally, around 16.39%
of the suggestionswere classified as poor, indicating incorrect
choices that may impact grapevine growth, but not in a severe
way.

However, 20.1% of all evaluated suggestions were
considered as fatal, signifying solutions that are harm-
ful to the plant growth and could negatively impact
future yields. The presence of fatal suggestions can be
attributed to several reasons, some of which have been
identified and addressed in the subsequent version of our
prototype.

TABLE 5. The evaluation results for tracking. The winemakers were asked
to assess precision of the virtual overlay, tracking speed and visibility of
augmentations. Each category was graded as good, neutral, poor or fatal.
Overall, the evaluation includes the 3 grades for 106 plants. Note that a
few grapevines could not be evaluated with respect to speed and
visibility.

2) RESULTS: TRACKING
The prototype can only be evaluated during pruning season,
therefore, the last outdoor evaluation of the system took place
in winter 2023. At that time, the mobile app development
was still ongoing. Hence, an intermediate version of the
mobile AR app as described in Section V-A was used
for this evaluation. Nonetheless, the main aspects of the
algorithm such as node detection and tracking had already
been implemented. Table 5 summarizes the evaluation results
of 106 plants.

Overall, the winemakers were able to run the tracking
for 77.04% of the examples. For 19.18% of the plants, the
tracking was either rated as bad or did not work and there
were 3.77% without a result. Missing results might have
been caused by unstable tracking that got lost too fast and
users were not able to judge all categories. Furthermore,
tracking for some grapevines likely did not work because of
an unsuccessful initialization.

The evaluation is split into three categories. Precision,
visibility and speed. Precision describes how good the overlay
of virtual content fits the grapevine and is important for
the user to correctly identify at which position a branch
has to be cut. The second category is visibility. Especially
in outdoor environments, augmentations may be hard to
recognize because of challenging lighting conditions. For the
last category, the users evaluated the speed of the application.
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Regarding the location of virtual content and its visibility,
more than half of the examples were classified as good.
Therefore, we conclude that the precision of node positions
that further determine the position of virtual content is
sufficient for most cases. Tracking speed however, was rated
as good in less than 25% of cases. The most time-consuming
part of each tracking cycle is network execution. Having
significant latency does not only affect usability, but also
makes initialization and frame-to-frame tracking more diffi-
cult. If incoming frames cannot be processed in real-time, the
displacement of nodes between subsequent frames increases
and it is more likely that optical flow matching fails. Because
of these results, we heavily focused on network optimization
as described in Section V-A2 to improve inference time
and the overall speed of the final prototype. With regard to
visibility, we adjusted the representation of the 3D grapevine
model and the choice of colors as can be seen in Fig. 14.
Besides these quantitative results, winemakers provided

us with general feedback on the usability of the mobile
app. Particularly, they pointed out that the initialization has
two drawbacks. Initialization is very difficult for the user
if either an inconvenient start position was chosen or if the
weather conditions are challenging, e.g. bright sun resulting
in reflections or shadow on the grapevine. An example for
difficult initialization conditions can be seen in Fig. 16. In the
given example, the camera pose could not be determined.
Although reference and live frame show a similar view of the
grapevine, template matching yielded only two stable node
correspondences.

C. LAB EVALUATION
Due to the limited availability of outdoor evaluations,
we requested experts to evaluate an updated version of our
prototype using recorded videos, following the procedure
described in Section VI-B1. Because of the use of recorded
videos, we refer to this as a lab evaluation. A total of
79 grapevines, selected randomly and comprising 4 ×
79 suggestions, were evaluated for the updated version of
our prototype. For this, we enhanced the graph generation
and improved the cutting suggestions by considering more
difficult scenarios. However, no changes to the reconstruction
stage were made. The evaluation results are shown in Table 6.
In general, we observed an improvement in the evalua-

tion results. Despite the advancements, we still encounter
challenges when dealing with difficult cases that arise from
complex grapevine appearances or unsatisfactory recordings.
It is important to note that these cases were not excluded
during the random selection of the evaluation samples.
Consequently, these challenging scenarios contribute to the
occurrence of poor and fatal results.

VII. DISCUSSION
Based on the findings from the initial testing phase of our
prototype, a noticeable proportion of the outcomes observed
were fatal. We identified several reasons and addressed some
of them in the improved version of our prototype.

TABLE 6. The lab evaluation results for pruning suggestions. The
correctness of detected essential branches, such as fruiting canes and
future spurs, i.e. 4 suggestions per plant, was evaluated. The suggestions
were graded as good, neutral, poor, or fatal. Overall, the evaluation
includes the grades for 4 × 79 suggestions.

A. FIRST OUTDOOR EVALUATION
At this stage the first prototype which included the entire
pipeline was evaluated outdoors. During this testing phase,
our primary focus was to assess the functionality, robustness
and stability of the system under challenging conditions,
rather than solely evaluating the final stage, which is
the pruning suggestions. The relatively low percentage of
suggestions that could not be evaluated (2.03%) indicates the
overall stability of the initial prototype.

B. USABILITY-FOCUSED EVALUATION
Testing and evaluation were carried out by winemakers, who
are not AI specialists. Therefore, their main focus was on the
visualization aspect, the convenience of the user interface in
the mobile app and other usability factors. It is possible that
some incorrect suggestions may have arisen due to imprecise
localization and visualization, especially under challenging
lighting conditions.

C. GRAPEVINE VARIETIES
The vineyards, where the prototype was tested, exhibited
significant variations in terms of grape variety, grapevine
age, previously applied pruning techniques, distance between
plants, etc. These factors can also impact the performance
of the system. Several vineyards included grapevines that
differ considerably from the ones in our dataset. Although
we applied proper data augmentation techniques to enhance
the robustness of the system, noticeable differences were
observed. This variation might have affected the performance
of the system, consequently impacting the accuracy of the
final results.

An example for results rated as fatal is given in Fig. 17.
In this particular case, the grapevine is characterized by a
remarkably thin stem and branches, which pose challenges
for accurate reconstruction. Consequently, the resulting dense
point cloud lacks these crucial structures. As a result,
the calculation of cutting suggestions cannot be executed
properly. Fig. 17c illustrates the resulting pruning suggestion
for a single two-year-old branch. Candidates for fruiting
canes and future spurs were not reconstructed and thus remain
unidentified.

D. POINT CLOUD ISSUES
The point cloud plays a crucial role in our pipeline, and its
quality is essential for obtaining accurate results. Incomplete
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FIGURE 16. An example of difficult weather conditions during initialization. The left image shows the start frame for tracking selected from the
keyframes of the initial video recording. The right image shows a sample frame from the live camera feed on the day of pruning. The 2D nodes of the
start frame are visualized in blue and nodes that are matched between both frames are visualized in red.

FIGURE 17. An example of a fatal result. (a): the keyframe depicts a grapevine with a complex appearance, featuring a thin stem and branches that pose
challenges for reconstruction. (b): thin branches are absent from the corresponding dense point cloud. (c): the resulting output shows only partially
reconstructed branches. Cutting suggestions for a single two-year-old branch are calculated.

FIGURE 18. An example of an incomplete point cloud caused by a very close view to the plant. (a): an example of the selected keyframes. (b): the
reconstructed point cloud. (c): the corresponding graph with pruning suggestions. Here, only the lower part of the grapevine was recorded. As a result,
we obtained a point cloud that is unsuitable for the generation of correct pruning suggestions.

and sparse point clouds can have a significant impact on the
final output. During the reconstruction stage, various issues
can arise that negatively affect the point cloud. For example,
inadequate recording with limited perspectives and improper
distances can lead to sub-optimal results.

Fig. 18 illustrates a scenario where the grapevine is
captured from a very close distance, resulting in only partial
registration of the plant. As a result, the generated point
cloud does not provide sufficient information about the
grapevine structure, making it unsuitable for generating
accurate pruning suggestions.

E. TWO-STAGE RANKING
In the initial version of our prototype, we employed
a one-stage ranking system for branches. However,
we observed that this approach was insufficient in preventing
the mixing of candidates for future spurs and fruiting canes.
To address this issue, we introduced an additional verification
step in the improved version of our prototype. This step
helps to avoid such problematic cases. Fig. 19 presents an
example where a branch that is suitable for a fruiting cane
is mistakenly selected as a future spur that is supposed to be
cut. The pruning suggestions from the improved version of
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FIGURE 19. A comparison of the initial and final prototypes. (a): an example of the selected keyframes. (b): the pruning suggestions from the
initial prototype, evaluated outdoors, indicate a future spur (red branch) on the left side of the plant, while a fruiting cane is a more suitable
option for this branch. (c): the pruning suggestions from the improved version of the prototype correctly select a more suitable branch for the
future spur while also identifying a different branch as the fruiting cane.

FIGURE 20. Examples with optimal pruning suggestions. Left: keyframes. Middle: dense point clouds. Right: corresponding segmented
point clouds with pruning suggestions denoted by gray planes.
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FIGURE 21. The modified architecture of YOLOv5 [85] used in the node detection process during tracking.

the prototype correctly select a more suitable branch for the
future spur while also identifying a different branch as the
fruiting cane.

VIII. CONCLUSION AND FUTURE WORK
In this work, we presented the collection of a large image
segmentation dataset of dormant grapevine plants in the
vineyard, a complete pipeline to extract pruning suggestions
from a hand-held monocular video of a single plant and a
mobile AR application to visualize the cut positions. Our
approach uses a dense 3D reconstruction as well as semantic
segmentation of multiple images of the same plant. This
information is collected in a graph to which we apply a set
of pruning rules.

We showed that our system can generate sensible pruning
suggestions in over 72% of cases and fails completely in 15%
of cases. Further limitations lie in the initialization of the
tracking in the AR app as well as the segmentation of small
or rare objects like buds.

During testing we identified the 3D reconstruction and
the semantic segmentation as the largest contributors to
computational cost. Up to this point, our prototypes require
an external computer for processing. This limitation creates

opportunities for advanced research in the field of high-
quality 3D reconstruction as well as semantic segmentation
of thin structures, which are optimized for mobile devices.
Shifting the focus to a more efficient 3D representation and
segmentation network could make a fully mobile prototype
feasible.

APPENDIX A EXAMPLES
In the appendix, we present more examples from the final
prototype. Fig. 20 shows generated pruning suggestions along
with the corresponding keyframes and reconstructed point
clouds. The red branches represent potential candidates for
future spurs. The blue and dark blue branches indicate the
top two candidates for a fruiting cane, i.e. priority 1 and
priority 2, respectively. The gray planes mark the designated
cut positions.

APPENDIX B DETECTION PROCESS
Figure 21 illustrates the architecture of the modified
YOLOv5 [85] used in the node detection process during
tracking. We utilized the nano configuration and replaced the
Sigmoid Linear Unit (SiLU) activation function by Leaky
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Rectified Linear Unit (Leaky ReLU) and used only one
detection head focusing on small targets.

DEFINITION OF TERMS
The following terms are used in this work:

basal bud A bud located at the base of a cane [87].
branch Or cane, a sequence of connected edges

with a unique ending vertex. Each branch
is identified by the ID corresponding to the
ID of its ending vertex.

bud A compact node growth that develops into
a leaf, or shoot [87].

edge A segment of a real branch between two
vertices.

fruiting cane Or fruit rod, a one-year-old cane with three
or more nodes (in the best case: more than
five). It will produce the current season’s
crop. [87].

future spur Or future/new cone, a cane pruned to two
to four nodes to develop healthy and strong
wood that will become fruiting canes after
the following winter [87].

node A node of the grapevine plant, character-
ized by its unique ID. root the lowest vertex
on a stem in the modeled 3D graph.

source A starting vertex of an edge.
target An ending vertex of an edge.
vertex Any vertex of a graph that does not

necessarily correspond to a feature on the
grapevine plant.
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