The Power of Training: How Different Neural Network Setups Influence the
Energy Demand

Daniel GeiBler, Bo Zhou, Mengxi Liu, Sungho Suh, Paul Lukowicz

German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
RPTU, Kaiserslautern, Germany

Abstract

This work examines the effects of variations in machine
learning training regimes and learning paradigms on the cor-
responding energy consumption. While increasing data avail-
ability and innovation in high-performance hardware fuels
the training of sophisticated models, it also supports the fad-
ing perception of energy consumption and carbon emission.
Therefore, the goal of this work is to create awareness about
the energy impact of general training parameters and pro-
cesses, from learning rate over batch size to knowledge trans-
fer. Multiple setups with different hyperparameter initializa-
tions are evaluated on two different hardware configurations
to obtain meaningful results. Experiments on pretraining and
multitask training are conducted on top of the baseline re-
sults to determine their potential towards sustainable machine
learning.

Introduction

The connection between the complexity of a task being
solved by a deep neural network and the accompanying en-
ergy requirement from powerful hardware to train and de-
ploy such models is a well-known issue of machine learning
algorithms. Improving availability and access to more data,
which forms the basis for training complex models, supports
the trend towards enhanced hardware power and energy con-
sumption further. Next to the increase in computational de-
mands, there is a growing awareness of a less visible but in-
creasingly significant aspect: the carbon footprint for train-
ing machine learning models. (Henderson et al. 2020; Pat-
terson et al. 2022)

Multiple projects like carbontracker (Anthony, Kanding,
and Selvan 2020) or eco2Al (Budennyy et al. 2022) apply to
this problem statement, aiming to track the energy consump-
tion and the related carbon footprint for training a model by
linking into the hardware power utilization logging during
the model training. Although these tools can monitor energy
consumption, they are unable to compare the efficiency of
the training process as well as suggesting recommendations
for improvements.

In this work, we aim to create awareness about the sig-
nificance of general adjustments in the training process and
their major effects on energy consumption. Moreover, a goal

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of this work is to strive for a general analysis that can be
applied to other projects as well. Additionally, we examine
the effects of advanced learning paradigms to project our
baseline findings from standard training regimes into state-
of-the-art practices by comparing their energy consumption
on our test setups.

Even though the innovation in terms of efficiency and sus-
tainability of machine learning algorithms lags behind quan-
titative growth of hardware resources, small improvements
in the low percentage range already help to reduce the car-
bon footprint if such methods are scaled properly within the
landscape of machine learning applications. (Patterson et al.
2022)

Related Works

Carbon tracking software tools are usually designed to cap-
ture as much power information about the system as possible
by building an additional layer between the system’s hard-
ware configuration and the user’s model training process.
Generally speaking, the power consumption of the GPU is
the largest part of the training process as it performs the core
work with the parallel processing of mathematical tasks.
Following that, usually, the CPU is the second largest con-
sumer of power.

There is a growing list of software available with most
of them utilizing the same approach to gather the power
consumption data from the hardware manufacturers’ utility
logging. The energy consumption is then calculated from
the current power consumption and the polling time in-
terval set in the software. Works like Carbontracker (An-
thony, Kanding, and Selvan 2020), eco2Ai (Budennyy et al.
2022) and Green Algorithms (Lannelongue, Grealey, and In-
ouye 2021) utilize this approach to gather data from CPU,
GPU, and even the RAM if supported. Nevertheless, there
is a lack of tracking the full systems’ energy consumption.
High-performance setups may consume more power than
present tools can track, for instance, if the cooling, which
can account for a non-negligible proportion, is not taken into
account. Therefore, software like Carbontracker (Anthony,
Kanding, and Selvan 2020) multiplies its results with an ef-
ficiency constant of 1.55 to incorporate untracked secondary
power needs and efficiency losses.

With an extended focus on user experience, projects like
Cloud Carbon (cloud-carbon footprint 2023) or CodeCar-

bon (Code-Carbon 2023) extend the gathered knowledge
and present it in analytic-based dashboards. Based on the
calculated energy consumption and the user’s location, the
average local energy mix from fossil and renewable energy
sources is utilized to estimate the carbon emissions in kilo-
grams or even tons. (Lacoste et al. 2019) On top of that,
since the carbon emissions are difficult to visualize or imag-
ine, the conversion into kilometers driven by car, flights with
a plane, or the number of phones charged is a standard prac-
tice to make the user aware of the generated carbon emis-
sions amount.

Methodology
Experiment Setup

In order to provide a meaningful correlation between the
training setup of a model and its power consumption, we
chose two application scenarios that determine the struc-
ture of this work: computer vision and sensor-based activ-
ity recognition. We used two commonly used benchmark
datasets from two disciplines: for a computer vision task we
used the CelebA dataset (Liu et al. 2015) and for the sensor-
based activity recognition, we utilized the PAMAP2 dataset
(Reiss and Stricker 2012) as a basis.

We run each experiment two times on two different hard-
ware configurations to reduce hardware-specific implica-
tions from our results. The already introduced Carbontracker
(Anthony, Kanding, and Selvan 2020) is used to track the
GPU power consumption on a workstation powered by an
Nvidia RTX 6000 Ada with 4GB VRAM and AMD Ryzen
9 7950X CPU. A 16-inch Apple Macbook Pro with M1 Max
chip with 32-core GPU and 64GB unified memory was used
as a second device. The Nvidia GPU workstation runs on
CUDA 12.3 and the Apple device runs on metal perfor-
mance shader (MPS) for neural network training accelera-
tion with pytorch. We implemented a custom tracker based
on the powermetrics tool of Mac OS to generate the same
data structure as the Carbontracker. Due to Carbontracker’s
limitations on tracking CPU power consumption for Intel
CPUs only, we distinguished the gathering of GPU and CPU
power consumption on the Apple setup as well. As a result,
both systems were set up to gather the power consumption
of the utilized GPU during the training process in milliwatts
precision with a sampling rate of one second. Additionally,
the trackers stored the corresponding timestamp and the cur-
rent epoch to properly evaluate the data. The efficiency con-
stant multiplication was disabled for out testings to achieve
comparable measurements.

Since each hardware setup has deviating power capabil-
ities and the power is not representative in terms of energy
consumption, we decided to calculate the epoch-wise energy
consumption as the baseline following the equation:

>y power(k,n) . time(k)

k T Ep =
Vkel0,T] B n 3600

ey

Throughout the whole experiment and different hardware
setups, we kept the same model and training script versions.
Moreover, the changed parameters across training runs were

induced as external arguments. For training, we used early
stopping techniques based on validation loss for the encoder
and the validation accuracy for the classifier as a standard
metric.

Training regime

Our test procedure can be separated into two tasks which we
applied to the two application scenarios, the training regime
and the learning paradigm.

A common problem when training a model is the proper
initialization of hyperparameters that fit the task or prob-
lem. The two most prominent ones are the batch size and the
learning rate (He, Liu, and Tao 2019). To determine the in-
fluence of hyperparameters, we created an encoder plus clas-
sifier architecture for the CelebA to classify the attributes
and identities. The encoder is ResNetl8 from the TIMM
python package with pre-trained ImageNet weights. For the
PAMAP2, we build a similar convolutional classifier archi-
tecture inspired by (Suh, Rey, and Lukowicz 2023) to clas-
sify the activities. For the training regime, we trained the
models with variations in batch size and learning rate, re-
sulting in a total of 16 different setups as shown in table 1.

Setup Batch Size Learning Rate

1 64 0.1

2 64 0.01
3 64 0.001
4 64 0.0001
5 256 0.1

6 256 0.01
7 256 0.001
8 256 0.0001
9 1024 0.1
10 1024 0.01
11 1024 0.001
12 1024 0.0001
13 4096 0.1
14 4096 0.01
15 4096 0.001
16 4096 0.0001

Table 1: Training Regime Hyperparameter Setup List

Learning Paradigm

On top of the training regime tests, we extended the experi-
ments to explore the energy consumption of different learn-
ing paradigms focusing on knowledge sharing and reusing.
In principle, these learning paradigms can potentially reduce
the energy cost compared to the baseline of training a ran-
domly initialized, black-box model for each dataset or task.
Instead, the research community focuses on the generaliza-
tion abilities or accuracy improvements of these learning
paradigms; the actual energy consumption has not yet been
evaluated.

With the PAMAP2 dataset, we evaluate the pretraining
learning paradigm, shown in figure 1. We train an autoen-
coder and use its encoder as a pre-trained part to train a

classifier on its latent features and compare it to the train-
ing of the encoder and classifier architecture sequentially.
This practice is typically used to first force the feature en-
coder to learn information that can be used to reconstruct
the input, thus the features are unique to different character-
istics of the input data. This could reduce the likelihood of
over-fitting on the ground truth labels of the training data and
thus provide a better generalized model. We also inspect the
differences between freezing and unfreezing the pre-trained
encoder weights during the usage for generating the latent
features.

Latent Feature S Latent Feature

ejep induj
Decoder
(D)
Copy of Input data
sjaqel

o
QU
7]
@,
=
(0]
=

(often with noise)

Loss

G/G (Classification)

b

Loss(reconstruction)
a

Figure 1: Pretraining an autoencoder and utilizing the en-
coder in frozen and unfrozen mode to generate latent fea-
tures for the training of a classifier.

With the CelebA dataset, we can evaluate multi-task
learning (Yin and Liu 2017), since the datasets have differ-
ent aspects of ground truth for the same input (identity and
facial attributes). Opposed to training a complete black-box-
like neural network for each task, multi-task learning shares
the feature encoder with multiple downstream tasks (e.g. dif-
ferent classifiers). The procedure is visualized in figure 2 a
and b for the single training setup and the multitask setup in
¢ by connecting the two classifiers via the weight coefficient
o within the loss function.

° s o] Latent Feature]
2 =8 & (latent representation) | O
2l ma @ | Attributes o | Attributes
s| & = 2
g ° o J @, Loss_a
= o 2
= s s =
3 =
= R
/ a 2
2 (—
- Cost = Loss_a + a Loss_p
o
o [} b Identity
£ o Q o Q0 Loss_p
3| — o 7] ES |
S| m @, Identity)
5| og £ 2
g 4)]
N ~ L
/ b c

Figure 2: Comparing the single training setup with the mul-
titask setup (combined loss function).

Training Regime Results

For testing the training regime on the two application sce-
narios, the standard versions of their tasks are utilized by
excluding the advanced setups so far. For PAMAP2, this is
the training of an encoder and a decoder in one run without
pretraining, whereas for the CelebA scenario, a single clas-
sifier is trained to predict the identities only. Each scenario is

Learning Rate

Batch Size 0.1 0.01 0.001 0.0001
64 109.63 11042 107.50 108.37
256 4234 4020 40.19 3841

1024 30.84 3097 30.87 30.81
4096 38,57 37.13 3744 38.22

(a) PAMAP2 on CUDA (mWh)

Learning Rate
Batch Size | 0.1 0.01 0.001 0.0001
64 38.40 39.25 38.73 38.10
256 39.03 40.19 3991 39.34
1024 43.52 4398 4426 4298
4096 43.00 4397 44.01 43.09

(b) CelebA on CUDA (mWh)

Learning Rate

Batch Size | 0.1 0.01 0.001 0.0001
64 1540 15.63 1596 15.66
256 16.83 1679 16.76 25.35

1024 25.31 2535 2545 2557
4096 2733 27.17 27.11 27.24

(c) PAMAP2 on MPS (mWh)

Learning Rate

Batch Size | 0.1 0.01 0.001 0.0001
64 22.81 2278 2275 22779
256 2229 2228 2231 22.28
1024 22.37 2234 2225 2239
4096 22.39 2229 2228 2237

(d) CelebA on MPS (mWh)

Table 2: Average Energy per Epoch (mWh) across all setup
combinations.

trained with 16 different hyperparameter combinations and
run two times on the two different hardware setups.

The average energy that was demanded during the train-
ing is shown in table 2, calculated through the introduced
equation 1. As a general rule, the level of energy used can
be linked to the efficiency and utilization of the GPU. Lower
values mean less energy consumed for training one epoch,
which results in improved GPU efficiency.

For each matrix shown in table 2, the batch size choice has
the most impact on the energy consumption. There needs to
be a balance between the dataset size and the GPU capabil-
ities. On CUDA (matrix 2a and 2b), the PAMAP2 dataset
performs best for bigger batch sizes due to its slimmer data
structure size whereas the bigger image dataset CelebA per-
forms best for smaller batches. This is mainly ruled by the
GPU utilization, but influenced by the memory bandwidth
limitations as well. Similar results can be found for the
same runs on MPS (matrix 2c and 2d), keeping in mind the
less powerful system. Therefore, the best batch size choice
moves towards the smaller batch sizes for the PAMAP2 sce-

Consumption (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Setups

(a) Sensor-based activity recognition (PAMAP2) on CUDA

100

80

60

40 4

Consumption (%)

20 A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Setups

(c) Identification from images (CelebA) on CUDA

100 A

80

60

40 4

Consumption (%)

201

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Setups

(b) Sensor-based activity recognition (PAMAP2) on MPS

100

80

60

40 4

Consumption (%)

20 A

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
Setups

(d) Identification from images (CelebA) on CUDA

Figure 3: Average consumption of each setup across all epochs by using the worst performing setup as baseline.

nario and even stays constant for the bigger CelebA dataset
due to the system resource limitations.

The choice of learning rate does not have a recognizable
influence in this analysis. There is little to no change in the
energy per epoch across the four learning rate settings. The
reason for that is the independence of the training duration,
namely the number of epochs until the model converges and
stops the training process. Influences through the learning
rate change can therefore be seen in figure 3. Across the 16
setups, grouped into the 4x4 setup alignment through the
dashed lines as introduced in table 1, the energy consump-
tion in percentage is visualized, assuming the worst run to
be at 100%. We can derive a slight trend of learning rate set-
tings towards 0.01 and 0.001, mainly for the bigger batch
sizes. This can be due to the issue of learning rate 0.1 be-
ing set too large to converge properly whereas learning rate
of 0.0001 increases the number of epochs needed until con-
vergence. Additionally, the batch size seems to have a slight
influence on the total energy consumption as well. For in-
stance in figure 3b and 3c, the combination of a small batch
size of 64 and the biggest learning rate of 0.1 outperforms
the other setups using bigger batch sizes.

Overall, the range between the worst and best-performing
setup is wide, with the best model usually consuming only
around 20% of the worst model. As a guideline to achieve
this much of an improvement, the energy per epoch and the
number of epochs necessary need both to be minimized.

Pretraining Learning Paradigm Results

For the pretraining scenario of PAMAP?2, the autoencoder’s
energy consumption for training the encoder was tracked
first. On top of that, the consumption for training a classi-
fier based on the latent features was tracked as well. As a
comparison, we trained the encoder and classifier architec-
ture together without pretraining. In total, we trained each
model again for all 16 setups.

To compare the results, we generated equation 2 to calcu-
late the breakeven point on how many times the pre-trained
model needs to be recycled to compensate its footprint com-
pared to training the full architecture every time.

EEnc + x * EClass =X * EEnc+C’lass
Eg
T = nc (2)
(EEnchClass - EClass)

with x = Number of Cycles till Compensation

The results are shown in figure 4 for CUDA and MPS
training. In this case, the results are solely based on the
frozen encoder, so the optimization process does not con-
sider the encoder anymore. The consumption for the pre-
training run is shown in solid lines whereas the basic train-
ing without encoder pretraining is a dashed line. The cross-
ing of two lines of the same color indicates the break-even
point, which means with how many complete downstream-
task training cycles, the investment in the pretraining starts
to yield better energy savings in the longer perspective. The

T
140 { — Best Pretrain ,,’/
——- Best No Pretrain e
—— Average Pretrain Vi
1204 --- Average No Pretrain /,
Worst Pretrain //
100 Worst No Pretrain P/

Energy (Wh)

Cycles

(a) PAMAP2 on CUDA

50

/
—— Best Pretrain e
——=- Best No Pretrain // /'
—— Average Pretrain , /’
40 1 —-- Average No Pretrain /' "
Worst Pretrain
Worst No Pretrain
= 301
2
>
>
2
w 20 A
10 A
0 T T T T T T
0 5 10 15 20 25
Cycles
(b) PAMAP2 on MPS

Figure 4: Break-even points, highlighting the amount of cycles until the pre-taining energy investment is compensated.

ideal situation is that the break-even point appears as early as
possible. From the 16 setups utilized, we extracted the best,
worst, and average scenarios. As we can see, the blue lines
for CUDA and MPS both show a scenario where the pre-
training already outperforms the standard training after one
recycling step. On the other hand, for the worst case, visual-
ized with orange, it takes up to 43 cycles for the CUDA run
and up to 23 cycles on MPS until the spent pretraining en-
ergy is compensated. As we can derive from equation 2, the
compensation depends on the increased energy consumption
of the encoder pretraining and the ratio between training the
classifier alone or with the encoder together. On average, the
energy is compensated after around 10 to 13 recycling steps
of the pre-trained encoder.

Additionally, we investigated the average energy con-
sumption between freezing and unfreezing the encoder af-
ter its pretraining run. (Marcelino 2018) Since the optimizer
does not update the weights during the backpropagation to
finetune the encoder, there is less energy necessary to train
the classifier. As shown in figure 3, there is on average an en-
ergy saving of 61.5 % for the CUDA experiment and 46.1%
on MPS across all 16 setup combinations. Since proper pre-
training ensures the required encoders’ behavior, the freez-
ing of weights can be a helpful measure to reduce energy
consumption.

Multitask Learning Paradigm Results

For the multitask scenario trained on CelebA, we utilize the
ResNet18 architecture pre-trained on ImageNet as the en-
coder. Due to ImageNets size and required training time, we
decided to recycle an already existing, pre-trained model. As
a side note, the best option to save energy in machine learn-
ing is the usage of already existing, pre-trained models to

Hardware
Encoder | CUDA MPS
Unfreeze 4.26 1.42
Freeze 1.64 0.76
Savings | 61.5% 46.1%

Table 3: Average Energy consumption (Wh) for utilizing the
pre-trained encoder in frozen or unfrozen mode.

compensate their energy consumption further.

For our experiment, the nature of the CelebA dataset with
multiple properties labeled per image, we focus on training
a multitask classifier and measuring the energy consump-
tion including the pre-trained encoder. More specifically, we
train a classifier to classify 40 facial attributes and the 40
most represented person identities of a CelebA image.

The experiment was conducted through the same proce-
dure as the pretraining scenario, training the three models
(attribute, identity, and both together) with the 16 different
setups. The results are shown in figure 5. For all tested se-
tups, the green bar for training both classifiers in one go is
considerably lower than the cumulative energy for training
the attribute and identity separately. Even more, the mul-
titask training results in a lower energy consumption than
training one single task classifier.

In order to interpret the results, we further calculated
the average energy per epoch across the three scenarios as
shown in figure 4. Since the average energy per epoch is al-
most identical across training attributes, identity, or both, no
matter if trained on the CUDA or MPS system, we further
calculated the average length of the training in number of
epochs. As we can see, for this experiment the number of

Em attribute
identitiy

207 poth

154

10 4

v

Wh

EEE attribute
identitiy
B both

N

Wh

0 I| '| I I I| II

1 2 3 4

o

5 6 7 8 9 10 11 12 13 14 15 16

(a) CelebA on CUDA

5 6 7

(b) CelebA on MPS

1 2 3 4 8 9 10 11 12 13 14 15 16

Figure 5: Energy Consumption for training attribute and identity classifier separately and training it through the multitask

model.

epochs rules the overall energy consumption whereas the ef-
ficiency from energy per epoch is negligible. Since the loss
functions are connected during the training in the multitask
scenario, the classifiers of attribute and identity are able to
cross-regulate each other, which results in a quicker conver-
gence. The result manifests our previous findings for mini-
mizing either one or at best both, the energy per epoch and
the overall number of epochs used till convergence.

Hardware
Type | CUDA MPS
Attribute | 22.47 /368 40.87 /359
Identity | 22.46/150 41.09/ 161

Both 22447142 41.36/145
Table 4: Average Energy per Epoch (mWh) / Average num-
ber of Epochs

Conclusion

In conclusion, we investigated the energy consumption of
two application scenarios on two different hardware config-
urations. Across all experiments, we followed the approach
of training the selected architectures with variations in batch
size and learning rates. For the 16 selected setups, we first
evaluated their influence on the efficiency through energy
per epoch and further the training duration through the over-
all energy consumption until the early stopping monitor cri-
teria were met. As a result, the batch size influences the
energy efficiency whereas the learning rate determines the
training duration. The optimal configuration has to maxi-
mize the efficiency per epoch and minimize the training du-
ration by setting the optimal batch size and learning rate. If
this is the case, such optimizations can lead to energy sav-
ings of up to 80% in our tests.

For the learning paradigm testings, the calculated break-
even point is an indicator of how and at which recycling iter-
ation the initial energy investment for the pretraining is com-
pensated. A long recycling process can be necessary if too

much energy is invested into the pretraining or if the savings
are too weak for each recycling step. Lastly, for the multi-
task training, we not only showed that training two classi-
fiers in one training process is less energy-consuming, we
additionally showed that fewer epochs are necessary due to
the mutual training support of the classifiers.

References

Anthony, L. F. W.; Kanding, B.; and Selvan, R. 2020.
Carbontracker: Tracking and predicting the carbon foot-
print of training deep learning models. arXiv preprint
arXiv:2007.03051.

Budennyy, S. A.; Lazarev, V. D.; Zakharenko, N. N.; Ko-
rovin, A. N.; Plosskaya, O.; Dimitrov, D. V.; Akhripkin, V.;
Pavlov, I.; Oseledets, 1. V.; Barsola, 1. S.; et al. 2022. Eco?2ai:
carbon emissions tracking of machine learning models as the

first step towards sustainable ai. In Doklady Mathematics,
volume 106, S118-S128. Springer.

cloud-carbon footprint. 2023. Cloud Carbon Foot-
print. https://github.com/cloud-carbon-footprint/cloud-
carbon-footprint.

Code-Carbon. 2023.
mlco2/codecarbon.

He, F.; Liu, T.; and Tao, D. 2019. Control batch size and
learning rate to generalize well: Theoretical and empirical
evidence. Advances in neural information processing sys-
tems, 32.

Henderson, P.; Hu, J.; Romoff, J.; Brunskill, E.; Jurafsky, D.;
and Pineau, J. 2020. Towards the systematic reporting of the
energy and carbon footprints of machine learning. The Jour-
nal of Machine Learning Research, 21(1): 10039-10081.
Lacoste, A.; Luccioni, A.; Schmidt, V.; and Dandres, T.
2019. Quantifying the carbon emissions of machine learn-
ing. arXiv preprint arXiv:1910.09700.

Lannelongue, L.; Grealey, J.; and Inouye, M. 2021. Green

algorithms: quantifying the carbon footprint of computation.
Advanced science, 8(12): 2100707.

Code Carbon. https://github.com/

Liu, Z.; Luo, P;; Wang, X.; and Tang, X. 2015. Deep Learn-
ing Face Attributes in the Wild. In Proceedings of Interna-
tional Conference on Computer Vision (ICCV).

Marcelino, P. 2018. Transfer learning from pre-trained mod-
els. Towards data science, 10: 23.

Patterson, D.; Gonzalez, J.; Holzle, U.; Le, Q.; Liang, C.;
Munguia, L.-M.; Rothchild, D.; So, D. R.; Texier, M.; and
Dean, J. 2022. The carbon footprint of machine learning
training will plateau, then shrink. Computer, 55(7): 18-28.

Reiss, A.; and Stricker, D. 2012. Introducing a new bench-
marked dataset for activity monitoring. In 2012 16th in-
ternational symposium on wearable computers, 108—109.
IEEE.

Suh, S.; Rey, V. F; and Lukowicz, P. 2023. TASKED:
Transformer-based Adversarial learning for human activ-
ity recognition using wearable sensors via Self-KnowledgE
Distillation. Knowledge-Based Systems, 260: 110143.

Yin, X.; and Liu, X. 2017. Multi-task convolutional neural
network for pose-invariant face recognition. IEEE Transac-
tions on Image Processing, 27(2): 964-975.

