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Abstract. In this paper, we propose a CNN fine-tuning method which
enables users to give simultaneous feedback on two outputs: the classifi-
cation itself and the visual explanation for the classification. We present
the effect of this feedback strategy in a skin lesion classification task and
measure how CNNs react to the two types of user feedback. To implement
this approach, we propose a novel CNN architecture that integrates the
Grad-CAM technique for explaining the model’s decision in the training
loop. Using simulated user feedback, we found that fine-tuning our model
on both classification and explanation improves visual explanation while
preserving classification accuracy, thus potentially increasing the trust of
users in using CNN-based skin lesion classifiers.

Keywords: Skin lesion · XAI (Explainable Artificial Intelligence) · SENN
(Self Explainable NN) · XIL (Xplanatory Interactive Learning)

1 Introduction

A Convolutional Neural Network (CNN) can detect malignant skin lesions [8];
however, it cannot produce by default the explanation behind a prediction. In
image classification, there are several ways to explain a prediction [13, 18, 11].
Nonetheless, in some cases, the explanations can be misleading, and by default
the network does not provide the flexibility of learning from a given correction.
As a result, the acceptance of such algorithms in the medical domain is quite
rare. Differently, in the same situation, given the availability of correct feedback,
decision-makers can perceive the reason for the mistake and take the necessary
action to avoid the same kind of mistake in the future. These limitations of
neural networks fall under the category of lack of interactivity.

In the domain of image classification, researchers introduced visual techniques
to introduce explainability in deep learning-based image classification. They
visualize the discriminatory regions of an image based on specific class iden-
tity [13]. Highlighting class discriminative regions in an image is an example of
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Fig. 1: Method overview: a pre-trained classification model produces classifica-
tion result and visual explanation. Our interactive method allows a specialist to
provide, if needed, corrections on both of them. Corrected information is then
used to fine-tune the model on both output types.

explainability. This helps in spotting biased CNNs that wrongly identify the loca-
tion of interest used to achieve the classification result. For example, sometimes
classification performance is good, but the model classifies based on unrelated
features. How can we tell the CNN that it is looking at the wrong image region
and at the same time improve its classification accuracy?

We address this problem through the user-feedback approach is depicted in
Fig. 1. We assume to start from a model that has been trained solely on classi-
fication data. Whenever a new sample is passed for classification, the resulting
classification and visual explanation can be, independently, correct or wrong. If
the correction is applied to the classification results, the solution is rather trivial.
One simply needs to collect a batch of corrected labels and use them to perform
transfer learning, or fine-tuning, on the starting model. Technically, this is done
with the same data formats used for the original training. However, the challenge
comes when the correction is applied to the visual explanation image.

In this paper, we propose a novel fine-tuning method that accepts human-
corrected visual explanation images as part of the forward/backward propagation
loop. On the technical level, our contribution consists of: i) the implementation
a modified differentiable version of the Grad-CAM [13] explanation technique
(so that corrected explanation images can be included in the back-propagation
phase), and ii) the definition of a training procedure that takes into account
simultaneously the classification and the visual feedback. With this approach,
the difference between the original explanation image and the corrected version
can be used as additional term of a loss function that includes, together with a
classification error, also a visual explanation discrepancy.

Experiments are conducted in the domain of skin lesion classification, simu-
lating how dermatologists could possibly identify wrong classifications and ex-
planations and provide correction feedback.
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2 Related work

This section presents the researches related to explainability and interactivity in
the machine learning and the deep learning domains. At the beginning phase of
their development, machine learning and deep learning algorithms were black-
box models, except for linear and tree-based models. Black-box models only
predict, but they do not present the reason behind their prediction. There are
two ways for explanation: explaining the model itself, or explaining the reason
for a specific prediction. They are known as global and local methods. In this
research, we will only focus on the local methods because the research aims to
improve the explanation of a sample-based prediction. First, we will cover the
different explanation generation techniques of CNN-based and typical ML-based
image classifiers. After that, we will discuss existing interactive methods where
users provide feedback to NNs/AI algorithms to improve accuracy. We will also
present the limitation of these methods.

2.1 Class activation mapping

A class activation technique generally works in CNNs. In this technique, the
discriminatory classification features are extracted from the activation of any
convolutional layer. Generating class activation map (CAM) is a technique for lo-
calizing class-specific significant features used in explaining convolutional neural
networks. CAM has a remarkable localization capability. Zhou [18] describe a
procedure for generating CAM using global average pooling (GAP) on convolu-
tion layers. GAP is the weighted sum of the convolutional feature map. In some
CNN, a neural decision is made from the weighted sum of the GAP outputs.
According to the authors, we can spot important image regions by linearly com-
bining the weights of the output layer with the activation of the last convolution
layer. Selvaraju [13] propose an explanation technique known as Grad-CAM,
which is an extended version of CAM. It utilizes any target class flow gradi-
ents through the final convolution layer. Grad-CAM++ [3] is an extended ver-
sion of Grad-CAM. In "Improved Visual Explanations for Deep Convolutional
Networks", Chattopadhay [3] propose this generalized method. It can produce
improved visualization behavior of CNNs’ predictions and performs better in
visualizing multiple instances of an object during a classification. It produces an
explanation similar to how Grad-CAM produces an explanation, but the only dif-
ference is that it only considers the positive gradient of the output class. Barata
[2] proposed a hierarchical CNN-LSTM attention model that uses hierarchical
information about classes and then produces attention mapping and hierarchical
classification results. The attention map hints at how the classification algorithm
looks at the objects in an image.

In this research we leverage class activation mapping to generate post-hoc
explanation of our model while tuning. Any gradient based explanation technique
can adapted to our method.
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2.2 Interactive and explainable AI

Teso and Kersting [17] argue that interactive learning places the user into the
loop, but the learner stays as a black-box for the user. They also suggest a
novel explanatory interactive learning (XIL) framework that can overcome the
limitation of interactive learning. Moreover, it can help the user gain trust in the
learner by introducing completeness, directability, and understandability. In XIL,
a user gives feedback to the learner’s output in an active learning manner when
required. The proposed framework utilize LIME [12] as a local explainer and an
additional component. They call the framework Caipirinhas (CAIPI). They use
three functionalities, labeling the unlabeled data using user input, fitting the
model on labeled and unlabeled features, and explaining a prediction using the
local explainer. By introducing counter example, authors allow CAIPI to learn
from the user’s feedback on the label and the explanation. Counterexamples
are nothing but original input images with randomized irrelevant regions. There
are three scenarios during the interaction between the learner and the user: the
prediction and the explanation are correct, both are wrong, or only the label is
correct. CAIPI focuses mainly on the last. It trains itself from the user’s feedback.
After the evaluation, the authors see that the trust/distrust of the user increase
based on the interactions. CAIPI’s performance increases due to the feedback
explanation. However, the counterexample requires more disk space to store and
GPU performance to retrain the model. The main difference between CAIPI
and this research is how we train the network on feedback. CAIPI augments the
original training data based on user feedback and then fine-tune or train a new
model. There is no change in the objective function of the model. Also, storing
original training data is necessary for retraining. However, the approach we follow
in this research only requires post-deployment test images and feedback. Initial
training data is unnecessary.

According to Teso [16], the Explanatory Active Learning (EAL) [17] algo-
rithm depends on a post-hoc explainer, and it can generate a fragile and un-
faithful explanation. He says the self-explainable active learning model is a so-
lution to that. It is a combination of active learning and self-explainable neural
networks (SENNs) [1]. Ghai [5] introduce Explainable Active Learning (XAL) in
An Empirical Study of How Local Explanations Impacts Annotator Experience
in 2020. Stuntebeck [15] propose a human-in-loop machine learning framework.
This framework collects data from the patient using health sensors and trains
a machine learning model on that data. Sometimes, due to the inefficiency of
the sensors, the model prediction becomes wrong. To overcome this problem,
they involve the user in the learning loop. Occasionally, the model gives the
prediction, and the user gives feedback on the prediction by comparing what
they are experiencing. Based on the feedback, the model tune itself. This frame-
work is similar to this research involving humans in the learning loop. However,
the feedback in this framework is only a yes or no decision. Holzinger et al. [6]
argues that, while automatic ML suffers in performance because of insufficient
training data, it is also true that interactive ML has the flexibility to allow a
user to select suitable features heuristically from a vast search space. As a re-
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sult, it can reduce the complexity of NP-hard using outside knowledge (Human
intervention). The authors demonstrated the effectiveness of interactive machine
learning and showed how to open a black-box technique to a glass-box one, en-
abling humans to interact with an algorithm. In the Skincare project, Sonntag et
al. [14] describe the functionality and interface of an interactive decision support
system for differential diagnosis of malignant skin lesions. The methods in the
report give generic ideas and importance for interactive machine learning.

Besides lesion segmentation [7], several pieces of research are published in skin
lesion classification [9]. We see that there are several approaches for skin cancer
classification. Many of the methods have human-level accuracy. However, the
application of these methods is constantly challenged by critique for legitimate
reasons; for example, the proposed classifiers are black-box models, need training
updates on new data, and lack interactivity with humans and the environment.
So, in this research, we explore the interactive side of skin cancer classification.

3 Methods

Our method consists of a deep neural architecture that explains decisions to
users and gives them the possibility to perform corrections that improve the
model’s performance. Fig. 1 provides an overview of the system.

From the left side, we see a skin lesion fed into a convolution neural net-
work, which predicts the class of the lesion and shows the areas that mostly
contributed to the result to a dermatologist (on the right side). If the derma-
tologist is not convinced of the classification result or with its explanation, s/he
gives a feedback. Based on the feedback, we re-train the model.

The remaining of this section explains the details of the implementation
and describes how we simulated the feedback of dermatologists to validate our
approach.

3.1 Integrating the explanation with the classification results

Out method starts from a pre-trained CNN which able to perform image classifi-
cation. A classifier based on convolutional networks is typically composed of two
functional blocks: the convolutional layers (CL) block and the the fully connected
layers (FCL) block. Images (X) are fed into the CL at first, and the outputs of
CL are flattened and passed through the FCL to generate the output (y). The
output of the last convolutional layer is analyzed by explanation local techniques
like Grad-CAM to produce a saliency map. A saliency map is a grey-scale image,
with the same resolution of the convolutional layer, whose pixels with higher lu-
minance are associated to the areas of the image that mostly contributed to the
classification, while areas with dark pixels were mostly ignored.

The main idea of the method proposed in this paper, is to provide the results
of a classification in terms both of classification result and saliency map to an
expert, ask him to perform corrections, and use the corrected result (or a batch
of corrections) for further fine tuning of the model. The fine tuning will take into
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account both the class and the saliency map into a new composite loss function.
This is done by attaching to the original model a differentiable branch able to
extract the saliency map during a forward pass.

However, from a human perspective, correcting a grey-scale image might
be too difficult and time consuming. In fact, in the context of skin cancer de-
tection, many datasets available for the masking tasks provide binary masking
images. Hence, we accommodate users’ usability by converting greyscale saliency
maps into binary explanation maps, where the users corrections consists only in
switching pixels status between black and white, or viceversa. The conversion
from saliency into explanation map (yexp) can be performed by simple thresh-
olding [10].

The new loss function of the extended model has two components, classifica-
tion loss and explanation loss. The classification loss is the loss of a pre-trained
network. However, the explanation loss is a newly introduced function, and it
punishes the overall cost based on the difference between generated explanation
and user feedback on explanation. The loss function can be written as

L = (1− λ)Lcls(y, ŷ) + λLexp(yexp, ŷexp) (1)

Here Lcls and Lexp are the classification and explanation loss respectively.
The hyper-parameter λ modulates the contribution of the two terms, and can
be set during the model tuning. The two losses are defined as:

Lcls(y, ŷ) = −
∑
i

ŷi log(yi) (2)

Lexp(yexp, ŷexp) =
∑
i

J(yexpi , ŷexpi) (3)

Here, Lcls is the well-know categorical cross-entropy, while Lexp is the result
of the Jaccard index between the output explanation map and the corrected one.
An explanation map yexp:

yexp = T (Ay) (4)

is the thresholded version of the result of the Grad-CAM saliency map Ay,
which is defined as:

Ay = ReLU(
∑

ackA
k) (5)

where Ak is the activation in a convolution layer k. Given Z as the total
number of pixel in Ak (with resolution i× j), for a given class c, ack is computed
as:

ack =
1

Z

∑
i

∑
j

∆yc

∆Akij
(6)
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3.2 Implementation details

Algorithm 1 reports a formalized description of the approach. The main aspect
that is worth an explanation, is that the Grad-CAM algorithm needs an alter-
ation of the last layer in order to compute its saliency map. For this reason, each
iteration of the fine-tuning algorithm requires two forward passes. The first, for
the classification, is performed on the original model, while the second is per-
formed on a temporary copy of the model, which is modified to get the saliency
map and destroyed and the end of the batch iteration.

Algorithm 1 Training the self-explainable model
Require: e . e: number of epoch
Require: m = F (θ) . m: pre-trained model
Require: X,Y, Z . X: input sample, Y : label , Z: binary mask (i.e. explanation ground truth)
Require: N . N : total samples
Require: Lcls . Lcls: classification loss function
Require: Lexp . Lexp: explanation loss function
Require: γ . γ: learning rate
i = 1
while i ≤ e do

n = 0
while n ≤ N do

mg ← deepcopy(m)

ack ← 1
R

∑
p

∑
q

δmg(x)[c]

δAk
ij

.
δmg(x)[c]

δAk
ij

: class-specific gradient on layer k for image x

Ak, ŷ ← m(x) . Ak: receptive field of layer k, ŷ: predicted class
S ← ReLU(Ak × ack) . S: saliency map
ˆyexp ← th(S, t) . t: threshold value

L(θ)← (1− λ)Lcls(y, ŷ) + λLexp(z, ˆyexp) . λ: hyper-parameter for loss balance
θ ← θ − γ∇L(θ) . ∇L(θ): gradient with respect to loss

end while
end while

3.3 Simulation of user feedback

Getting user feedback for an experiment is very costly and time-consuming espe-
cially in the medical domain. Hence, instead of performing tests with real users,
we exploited an existing dataset of skin lesion images associated to both classes
and explanation maps, and used it to simulate users’ feedback. The ISIC 2018
[4] dataset of skin lesion attributes contains images of skin lesions and masks
of five different attributes, pigment network, negative network, streaks, milia
like cyst, and globules (Fig. 3). These attribute maps are binary masks locat-
ing the different attributes. The union of all of these attribute maps provides a
comprehensive indication of what are the pixel areas that would lead a human
practitioner towards his/her decision.

The ISIC2018 dataset (Fig. 2) is imbalanced. Preliminary experiments showed
us that such imbalance affects the results of the simulation. Hence, we equal-
ize the data per class by upsampling in the simulation set. We know that the
maximum sample belongs to the nevus class (1951 samples), but there are 437
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(a) NV (b) MEL (c) BKL

Fig. 2: Sample images from ISIC2018 task 2 dataset

examples for the MEL class and only 172 samples for the BKL class. We in-
crease the number of the MEL and BKL samples to 1951 samples by coping
them randomly.

Fig. 3: The union of the feature maps.

4 Experiments and results

This sections described the two experiments conducted with our approach: the
first aiming at understanding the contribution of the explanation loss function
on a batch of data feedback, and the second aiming to analysing the behavior of
the model when data feedback are provided in smaller batches.
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4.1 Training on different loss functions

We use three different loss functions in the experiment: classification loss, expla-
nation loss, and combined loss. The purpose of training the model on classifica-
tion loss is to see how models perform when feedback is given only to classifica-
tion data. During the training on classification, the model gets feedback only on
classification output. So, the loss function only contains the classification part.
We observe training and validation loss and average Jaccard index during the
tuning process. Differently, the objective of using explanation loss is to see how
the model performs when there is only explanation feedback. The explanation
loss is the Jaccard loss which compares the predicted and feedback explanations.
Finally, the combined loss combines both losses by a regularization parameter
λ, which balances the two losses. The purpose is to see how classification and
explanation feedback improve model performance.

We keep 10% of the data untouched to check the model performance and
to see if the model learns from feedback, another 10% for validation and the
remaining 80% for fine tuning the model through user simulation.

Table 1 presents the final result of the simulation. The baseline model per-
forms 0.71 average sensitivity on the original test set (from ISIC 2019), and 0.73
when tested on the full simulation set (ISIC 2018). When performing a test on
the 10% of the simulation set, using only the classification loss leads to 0.70
sensitivity and a Jaccard index as low as 0.10. Combining the classification and
the explanation loss keeps the 0.70 sensitivity and increases the Jaccard index to
0.127, hence increasing the explanation power of the model. When testing using
only the explanation loss, the Jaccard index boosts to 0.18, but the sensitivity
drops to 0.66.

Hence, it seems that including an explanation loss term doesn’t affect the
classification capabilities of the mdoel but it is able to improve its explanation
power.

4.2 Sliced simulation

In this section, we present how a gradual provision of tuning data improves our
explainable model’s performance. Fig. 4(a) shows how model accuracy increases
over an increasing amount of data. The x-axis represents data slices. Each slice
has 238 samples. We have a total of 20 slices, and the model is iteratively fine-
tuned on all the slices. We plotted the accuracy evolution for the three kinds of
loss functions: classification only, explanation only, and combined. For the first
two cases, we see that the accuracy has no significant improvement over the
slices, while we see more accuracy fluctuation when combining classification and
explanation loss functions. However, overall, accuracy remains stable at the end
of the slices provision.

Fig. 4(b) presents the change in the average Jaccard index over the slices.
Looking at the classification loss function’s graph, we see that the average Jac-
card index is not increasing. There is a slight improvement when we use combined
loss. However, we see notable improvement of the average Jaccard index while
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Model Train data Loss Test set λ Test
acc

Sensitivity Avg
sensi-
tivity

Avg
J-mean

MEL NV BKL
Baseline ISIC 2019 Lcls ISIC2019

2.5K test
n/a 0.71 0.61 0.74 0.65 0.71 n/a

Baseline ISIC 2019 Lcls 100% Sim Set n/a 0.73 0.53 0.77 0.88 0.73 0.10

Sim-
model

80% of Sim Set Lcls 10% Sim Set 0 0.74 0.74 0.75 0.61 0.70 0.106
(0.08)

Sim-
model

80% of Sim Set Lexp 10% Sim Set 1 0.76 0.49 0.85 0.64 0.66 0.18

(0.13)
Sim-
model

80% of Sim Set Lcls
&
Lexp

10% Sim Set 0.3 0.64 0.78 0.59 0.72 0.70 0.127
(0.10)

Table 1: Complete result of simulation on upsampled samples. We see that there
is improvement of average Jaccard index when the explanation loss is included
in the loss computation.

(a) Accuracy vs slices (b) Jaccard score vs slices

Fig. 4: An overview of performance in each epoch

using the explanation loss function. Table 2 shows the summary of the sliced
simulation. After tuning the model on the first slice, we see that the average
Jaccard index is 0.15. However, after the 20th slice, we see that the Jaccard
index increases to 0.19. On the other hand, the accuracy reduces to 0.72 from
0.77 by keeping the average sensitivity the same when using the explanation loss
function. These results conclude that model explanation performance increases
without reducing classification accuracy when the model gets correction feedback
in smaller chunks.

From those experiments, it seems that there is a slight better ending perfor-
mance in the model after training over 20 smaller feedback slices rather than
on the full 80% of the simulation set. However, the margins are small and this
observed behaviour needs to be further analysed on bigger datasets to be con-
firmed.
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5 Conclusion

We presented an approach for increasing the performances of CNN-based skin
cancer classification by including users feedback in a post-train, fine-tuning stage.
This approach transforms a black-box VGG16 model into a self-explainable neu-
ral network (SENN), which classifies (categories) and explains (saliency maps) at
the same time. The implementation consists of augmenting a pre-trained VGG16
architecture with a differentiable implementation of the Grad-CAM algorithm.

We tested this approach by simulating practitioner’s feedback using the ISIC
2018 dataset. Our experiments show that our SENN is able, thanks to users
feedback, to significantly increase its explanation power whithout compromising
its classification accuracy, thus potentially increasing the trust of practitioners
into computer-assisted diagnosis systems.

The main limitation of this approach is that it is applicable only when
saliency maps offer a resolution that is high enough to provide users with a
significantly fine-grained explanatory picture. Unfortunately, this is not the case
in very deep neural networks, where the last convolutional stage (usually the
preferred one to extract saliency maps) is composed by a high number of filters,
but very few convoluted areas. Hence, at the moment, the trade-off is to use
less classification accurate networks with higher resolution explanation maps, in
order to include humans in the correction freedback loop.

Future work will focus on testing this approach with the involvement or real
practitioners and on different datasets, to verify how well these results generalize
to other domains.

Loss function Slice # Test set Test
acc

Test avg. sen-
sitivity

Avg. Jaccad
index(sd)

Lcls 0 20% of simSet 0.74 0.70 0.11 (0.09)
Lcls 19 20% of simSet 0.72 0.69 0.12 (0.10)
Lexp 0 20% of simSet 0.77 0.66 0.15 (0.12)
Lexp 19 20% of simSet 0.72 0.67 0.19 (0.15)
0.70× Lcls + 0.3× Lexp 0 20% of simSet 0.77 0.66 0.12 (0.10)
0.70× Lcls + 0.3× Lexp 19 20% of simSet 0.76 0.70 0.14 (0.11)

Table 2: Complete result of sliced simulation. As model gets more explanation
and classification feedback, there is an improvement of average Jaccard index as
well as of classification accuracy (last line).
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