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Abstract
Ensemble methods aggregate predictions from multiple models, typically demonstrating
improved accuracy and reduced variance compared to individual classifiers. However, they
often come with significant memory usage and computational time requirements. A novel
quantum algorithm that leverages quantum superposition, entanglement, and interference
to construct an ensemble of classification models using bagging as an aggregation strategy
is introduced. Through the generation of numerous quantum trajectories in super-
position, the authors achieve B transformations of the training set with only logðBÞ
operations, allowing an exponential enlargement of the ensemble size while linearly
increasing the depth of the corresponding circuit. Moreover, when assessing the algo-
rithm's overall cost, the authors demonstrate that the training of a single weak classifier
contributes additively to the overall time complexity, as opposed to the multiplicative
impact commonly observed in classical ensemble methods. To illustrate the efficacy of the
authors’ approach, experiments on reduced real‐world datasets utilising the IBM qiskit
environment to demonstrate the functionality and performance of the proposed algo-
rithm are introduced.
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1 | INTRODUCTION

Quantum Computing (QC) can achieve performance orders of
magnitude faster than the classical counterpart, with the pos-
sibility of tremendous speed‐up of complex computational tasks
[1–3]. Thanks to the quantum mechanical principles of super-
position and entanglement, quantum computers can achieve
vast amounts of parallelism without needing the multiple rep-
licas of hardware required in a classical computer. One of the
most relevant fields in which QC promises to make an impact in
the near future is machine learning (ML). Quantum ML (QML)
is a sub‐discipline of quantum information processing devoted
to developing quantum algorithms that learn from data in order

to improve existing methods. However, being an entirely new
field, QML comes with many open challenges [4].

In the context of supervised learning, ensemble methods
stand out as a well‐established approach, involving the com-
bination of numerous simple models through averaging or
voting rules to classify new examples. Despite the absence of a
unified theory, there are various theoretical justifications for
combining multiple learners, such as reducing prediction error
by decreasing uncertainty in estimates or empirical evidence
supporting the effectiveness of this approach [5, 6].

From an application perspective, ensemble methods play a
pivotal role in addressing a wide array of real‐world prob-
lems [7], spanning diverse domains like finance, healthcare,
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cybersecurity, and manufacturing. The integration of pre-
dictions from multiple models not only enhances accuracy but
also fortifies overall robustness. The introduction of more
efficient algorithms, including quantum algorithms, holds sig-
nificant promise for further improving the performance of
these applications. Significantly, when dealing with tabular data,
ensemble methods demonstrate superiority even over
advanced deep learning models [8]. This underscores the
importance of ongoing advancements in ensemble methods, as
these refinements can have a profound impact on a wide range
of applications.

2 | BACKGROUND

When endeavouring to predict a target variable using any ML
model, the primary contributors to the discrepancy between
actual and predicted values, known as the Expected Prediction
Error (EPE) [9], are noise, bias, and variance. The noise
component, also referred to as irreducible error, represents the
variance of the target variable around its true mean. This error
arises from the inherent uncertainty within the data and re-
mains unavoidable, regardless of the model's performance. In
contrast, bias is associated with the specific learning technique
employed and gauges how well the method aligns with the
underlying problem. Finally, the variance component quan-
tifies the variability of the learning method with respect to its
expected value. Therefore, to enhance the performance of any
ML technique, it becomes imperative to mitigate one or more
of these components.

Ensemble learning aims to construct a prediction model by
leveraging the strengths of a collection of simpler base models
to reduce the EPE [10]. A crucial requirement for an ensemble
to surpass its individual members is that the constituent
models exhibit both accuracy, indicating an error rate better
than random guessing, and diversity, implying that the models
make different errors on the same data points [11].

Various approaches exist for constructing ensemble
methods, each targeting a specific component of the EPE. In
Boosting, a committee of weak learners is employed, with each
iteration training a new weak learner based on the ensemble's
error. This progressive improvement helps minimise bias by
approximating the true population values. Randomisation
methods involve estimating the individual base models using
randomly perturbed training algorithms, sacrificing accuracy
but reducing ensemble variance through the combination of
numerous randomised models. Notably, this approach is
applicable to stable learners as well, expanding its applicability
to diverse methods. Another approach, Bagging, involves
fitting the same model to different training sets, creating a
committee of independent weak learners. The ensemble pre-
diction is then obtained by averaging the individual votes. This
approach reduces the EPE by mitigating the variance
component, with larger ensembles leading to more significant
reductions.

In practice, bagging involves generating multiple pre-
dictions f̂ 1ðxÞ; f̂ 2ðxÞ;…; f̂ BðxÞ by training B different models

on distinct training sets and subsequently averaging them to
obtain a single model with reduced variance:

f̂ bagðxÞ ¼
1
B

XT

b¼1

f̂ bðxÞ: ð1Þ

While the theoretical formulation lacks practicality due to the
unavailability of multiple independent training sets, the boot-
strap procedure [12] can be employed to address this issue. By
repeatedly sampling from the available data, the bootstrap
generates B different bootstrapped training sets on which the
learning algorithm is trained to produce B distinct predictions
f̂ bðxÞ. Although the generated datasets are not independent,
being derived from the same training set, empirical findings
suggest that bagging still yields combined models that consis-
tently outperform individual learners [5].

2.1 | Related works

Recently, the concept of quantum ensembles has been explored
[13, 14] as the aggregation strategy. This approach involves three
stages: (i) state preparation routine, (ii) parallel evaluation of
quantum classifiers, and (iii) accessing the combined decision.
Bayesian Model Averaging (BMA) is employed utilising a range
of models with fixed parameters that span a significant portion
of the parameter domain. While this approach eliminates the
need to train individual classifiers, it relies on oracles with un-
specified quantum gate formulations. Furthermore, BMA is not
widely used in ML due to limited performance in real‐world
applications [6, 15].

Another QML algorithm based on ensemble methods is
Quantum Boosting [16]. This approach aims to enhance the
performance of a weak learner by simulating an adaptive
boosting procedure [17], enabling the conversion of a weak
learning algorithm into a strong one. Although quantum
boosting allows achieving a quadratic improvement over clas-
sical AdaBoost, it assumes efficiently preparing multiple copies
of quantum states that encode the training set and executing the
Quantum Phase Estimation algorithm [18–20], which requires a
fault‐tolerant quantum computer.

Lastly, a quantum ensemble based on the bagging strategy
has recently been investigated [21]. The authors propose a
quantum approach to aggregate multiple diverse functions,
mimicking the bagging prediction of classical ensemblemethods
using a quantum circuit. However, practical tests to assess the
effectiveness of this approach through specific quantum rou-
tines have not been provided.

A common limitation observed in existing works on
quantum ensembles is the absence of experiments conducted on
realistic data. Notably, all the referenced works implement the
proposed approach solely on synthetic data in just one instance,
neglecting an analysis of its performance on non‐linearly
separable, realistic datasets. Such an analysis could provide in-
sights into whether the performance of the quantum ensemble
improves with an increase in ensemble size, as expected from
the methodology of classical ensemble methods.

2 - MACALUSO ET AL.

 26328925, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/qtc2.12087 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [06/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Moreover, with the exception of Quantum Boosting, none
of the existing works address whether the proposed quantum
ensemble outperforms existing classical ensembles in any way.
Importantly, our focus is exclusively on end‐to‐end quantum
approaches that offer advantages over their classical counter-
parts. We specifically exclude hybrid quantum‐classical compu-
tation and parameterised quantum circuits from consideration.
The evaluation of these approaches in terms of time complexity
is not feasible, as they represent heuristic methods that must be
assessed on specific problems at hand.

2.2 | Contribution

This work aims to present a quantum algorithm for addressing
supervised classification problems through quantum ensem-
bles. Specifically, we extend and refine the formulation of the
quantum ensemble based on the bagging strategy [21] and
provide a detailed description of the quantum ensemble's
implementation.

The key idea is to design a quantum algorithm that prop-
agates an input state to multiple quantum trajectories in su-
perposition, yielding a sum of individual results from each
trajectory. Technically, the algorithm generates diverse trans-
formations of the training set in superposition, entangled with
a quantum state of a control register. Subsequently, a quantum
classifier F is applied to obtain numerous classifications in
superposition. Averaging these predictions allows access to the
ensemble prediction by measuring a single quantum register.

This architecture offers three major computational advan-
tages. Firstly, the ensemble size (i.e., the number of simple base
models) scales exponentially compared to classical methods,
while the depth of the corresponding quantum circuit increases
linearly. The proposed quantum ensemble requires only d steps
to generate 2d different transformations of the same training set
in superposition. Secondly, entangled states provide additive
effects from weak classifiers, contrary to the multiplicative
burden typically encountered in classical implementations.
Thus, the time cost of implementing the ensemble is not
dominated by the individual classifier's cost but rather by the
data encoding strategy. Thirdly, the number of state preparation
routines matches that of a single classifier since the classification
routine operates via interference and propagates to all quantum
trajectories in superposition with just one execution. Further-
more, the algorithm enables accessing the ensemble prediction
by measuring a single register, making the evaluation of large
ensembles feasible with relatively small circuits.

Finally, we conduct experiments on both simulated and
(reduced) real‐world data, employing a straightforward classi-
fication routine based on cosine distance as the weak learner.
However, it is important to note that the performed experi-
ments have limitations compared to what is achievable with
classical ensembles. This limitation arises due to the high
computational requirements associated with the adoption of
end‐to‐end quantum ensemble methods, particularly in terms
of the number of qubits needed.

3 | QUANTUM ALGORITHM FOR
CLASSIFICATION ENSEMBLE

In this section, we introduce the basic idea of our quantum
algorithm for ensemble classification using bagging in the
context of binary classification. The boosting and random-
isation approaches are discussed in Section 3.1.

The algorithm adopts three quantum registers: data, con-
trol, and test. The data register encodes the training set, and it
is employed together with the d‐qubits control register to
generate 2d altered copies of the training set in superposition.
The test register, instead, encodes unseen observations from
the test set. Starting from these three registers, the algorithm
involves four main steps: state preparation, sampling in su-
perposition, learning via interference and measurement.
(Step 1) State Preparation
State preparation consists of the initialisation of the con-

trol register into a uniform superposition through a Walsh–
Hadamard gate and the encoding of the training set (x, y) in
the data register:

jΦ0〉¼ W ⊗ Sðx;yÞ
� �

⊗
d

i¼1
j0〉 ⊗ j0〉

¼ H⊗d ⊗ Sðx;yÞ
� �

⊗
d

i¼1
j0〉 ⊗ j0〉¼ ⊗

d

i¼1
jci〉 ⊗ jx; y〉;

ð2Þ

where S(x,y) is the state preparation routine for the training set,
and it strictly depends on the encoding strategy, W is the
Walsh–Hadamard gate and |ci〉 is the ith qubit of the control
register initialised into a uniform superposition between |0〉
and |1〉
(Step 2) Sampling in Superposition
The second step regards the generation of 2d different

transformations of the training set in superposition, each
entangled with a state of the control register. To this end,
d steps are necessary, where each step consists in the entan-
glement of the ith control qubit with two transformations of
|x, y〉 based on two random unitaries, U(i,1) and U(i,2), for
i = 1, …, d. The most straightforward way to accomplish this
is to apply the U(i,j) gate through controlled operations, using
as control state the two basis states of the current control
qubit. In particular, the generic ith step involves the following
three transformations:

� First, the controlled‐unitary CU(i,1) is executed to entangle
the transformation U(i,1)|x, y〉 with the excited state of the
ith control qubit:

jΦi;1〉¼ CUði;1Þ
� �

jci〉 ⊗ jx; y〉

¼ CUði;1Þ
� � 1

ffiffiffi
2
p j0〉þ j1〉ð Þ⊗ jx; y〉

¼
1
ffiffiffi
2
p j0〉jx; y〉þ j1〉Uði;1Þjx; y〉
� �

ð3Þ
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� Second, the i–th control qubit is transformed based on a
Pauli–X gate:

jΦi;2〉¼ ðX ⊗ 1ÞjΦi;1〉

¼
1
ffiffiffi
2
p j1〉jx; y〉þ j0〉Uði;1Þjx; y〉
� �

ð4Þ

� Third, a second controlled‐unitary CU(i,2) is executed:

jΦi〉¼ CUði;2Þ
� �

jΦi;2〉

¼ CUði;2Þ
� � 1

ffiffiffi
2
p j1〉jx; y〉þ j0〉Uði;1Þjx; y〉
� �

¼
1
ffiffiffi
2
p j1〉Uði;2Þjx; y〉þ j0〉Uði;1Þjx; y〉
� �

:

ð5Þ

These three transformations are repeated for each qubit in the
control register and, at each iteration, two random U(i,1) and
U(i,2) are applied. After d steps, the control and data registers are
fully entangled, and 2d different quantum trajectories in super-
position are generated (more details are provided in the
Appendix A). The output of this procedure can be expressed as
follows:

jΦd〉¼
1
ffiffiffiffiffi
2d
p

X2
d

b¼1

jb〉Vbjx; y〉¼
1
ffiffiffiffiffi
2d
p

X2
d

b¼1

jb〉jxb; yb〉 ð6Þ

where Vb results from the product of d matrices U(i,j) and it
represents a single quantum trajectory that differs from the
others for at least one matrix U(i,j). In general, it is possible to
refer to the unitary Vb as a unitary that transforms the original
training set to obtain a random sub‐sample of it:

jx; y〉→
Vb
jxb; yb〉: ð7Þ

The composition of Vb strictly depends on the encoding
strategy chosen for data. In Section 4.1, we provide an example
of U(i,j) based on the qubit encoding strategy, where a single
observation is encoded into a qubit. Notice that the only
requirement to perform ensemble learning using bagging
effectively is that small changes in the product of the unitaries
U(i,j) imply significant differences in (xb, yb), since the more
independent sub‐samples are, the better the ensemble works.
(Step 3) Learning via Interference
The third step of the algorithm is Learning via Interfer-

ence. First, the test register is initialised to encode the test set,
x(test), also considering an additional register to store the final
predictions:

SxðtestÞ ⊗ 1ð Þj0〉j0〉¼ jxðtestÞ〉j0〉: ð8Þ

Then, the data and test registers interact via interference to
compute the estimates of the target variable. To this end, we
define a quantum classifier F that satisfies the necessary con-
ditions described in Section 2. In particular, F acts on three
registers to predict y(test) starting from the training set (xb, yb):

jxb; yb〉jxðtestÞ〉j0〉→F jxb; yb〉jxðtestÞ〉j f̂ b〉: ð9Þ

Thus, F represents the classification function f̂ that estimates
the value of the target variable of interest. For example, in
binary classification problems, the prediction can be encoded
into the probability amplitudes of a qubit, where the state |0〉
encodes one class and the state |1〉 the other.

The Learning via Interference step leads to

jΦf 〉¼ 1⊗d ⊗ F
� �

jΦd〉

¼ 1⊗d ⊗ F
� � 1

ffiffiffiffiffi
2d
p

X2
d

b¼1

jb〉jxb; yb〉

" #

⊗ jxðtestÞ〉j0〉

¼
1
ffiffiffiffiffi
2d
p

X2d

b¼1

jb〉jxb; yb〉jxðtestÞ〉jf̂ b〉

ð10Þ

where f̂ b represents the prediction for x(test) given the bth
training set, and it is implemented via quantum gate F. Notice
that expressing the prediction according to Equation (10) im-
plies that it is necessary to execute F only once in order to
propagate its use to all the quantum trajectories. Furthermore,
as a consequence of Steps 2 and 3, the bth state of the control
register is entangled with the bth value of f̂ .
(Step 4) Measurement
Measuring the test register allows retrieving the average of

the predictions provided by all the classifiers:

〈〈M〉〉¼ 〈Φf ∣1⊗d ⊗ 1 ⊗ 1 ⊗MjΦf 〉

¼
1
2d
X2
d

b¼1

〈∗jf̂b∣M〉f̂ b ¼
1
2d
X2
d

b¼1

〈Mb〉

¼
1
B

XB

b¼1

f̂b ¼ f̂ bag x
ðtestÞ∣x; y

� �

ð11Þ

where B = 2d and M is a measurement operator (e.g., the Pauli‐
Z gate).

The expectation value 〈M〉 computes the ensemble pre-
diction since it results from the average of the predictions of all
the weak learners. Thus, if the two classes of the target variable
are encoded in the two basis states of a qubit, it is possible to
access the ensemble prediction by a single‐qubit measurement:

4 - MACALUSO ET AL.
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f̂ bag ¼
ffiffiffiffiffi
a0
p
j0〉þ

ffiffiffiffiffi
a1
p
j1〉 ð12Þ

where a0 and a1 are the average of the probabilities for x(test) to
be classified in class 0 and 1, respectively. The quantum circuit
of the quantum ensemble is illustrated in Figure 1.

3.1 | Quantum algorithm for boosting and
randomisation

The same framework presented above can be adapted with
slight variations to allow for randomisation and boosting. The
main principle of the ensemble based on randomisation consists
of introducing casual perturbations that decorrelate the pre-
dictions of individual classifiers. In this case, it is possible to
loosen the constraints imposed on the classifier F, which can be
generalised beyond weak learners. The procedure described in
Step 2 (Sampling in Superposition), indeed, can be employed to
introduce a random component in the single learner, so as to
decrease the accuracy of each individual model. As a conse-
quence, the predictions are less correlated, and the variance of
the final prediction is reduced.

Technically, it is necessary to define a classification routine
that can be decomposed into the product of Vb and F. Here,
the different trajectories do not simulate the bootstrap pro-
cedure as for bagging, but they are part of the classification
routine and introduce randomisation in the computation of f̂ .
In practice, we define a unitary Gb that performs the following
transformation:

jx; y〉jxðtestÞ〉j0〉→
Gb
jx; y〉jxðtestÞ〉j f̂ b〉; ð13Þ

whereGb = VbF is the quantum classifier composed of F—
common to all the classifiers—and Vb, which is its random
component—different for each quantum trajectory. This
formulation allows rewriting Equation (10) asfollows:

jΦf 〉¼
1
ffiffiffiffiffi
2d
p

X2d

b¼1

jb〉Gbjx; y〉jxðtestÞ〉j0〉

¼
1
ffiffiffiffiffi
2d
p

X2
d

b¼1

jb〉jx; y〉jxðtestÞ〉jf̂ b〉:

ð14Þ

Similarly, the proposed framework can also be adapted for
boosting, where the estimates provided by the single classifiers
are weighted so that individual models do not contribute equally
to the final prediction. In practice, the only difference is that the
amplitudes of the control register need to be updated as the
computation evolves. As a result, the output of a quantum
ensemble based on boosting can be described as follows:

jΦf 〉¼
1
ffiffiffiffiffi
2d
p

X2
d

b¼1

αbjb〉j f̂ b〉; ð15Þ

where the contribution of f̂ b to the ensemble depends on
αb. However, although in principle this approach fits in the
scheme of a boosting ensemble, the difficulty in updating the
control register is non‐trivial.

To summarise, the main difference between quantum
bagging and the other approaches is the way we define the
unitaries U(i,j) and F. However, the exponential growth that
comes from the advantage of generating an ensemble of B = 2d

classifiers in only d steps still holds.

3.2 | Aggregation strategy and theoretical
performance

When considering classical implementations of ensemble al-
gorithms, it is possible to distinguish two broad families of
methods based on the strategy adopted to aggregate the pre-
dictions of the individual models. The most popular technique
used for ensemble classification is majority voting, where each

F I GURE 1 Quantum algorithm for ensemble classification. The circuit contains d pairs of unitaries U(i,1), U(i,2) and d control qubits. It produces an

ensemble of B classifiers, where B = 2d. The single evaluation of F allows propagating the classification function f̂ in all trajectories in superposition. The first
d steps allow generating B transformations of the training set (x, y) in superposition, and each transformation is entangled with a quantum state of the control
register (firsts d qubits). Thus, the test set x(test) is encoded in the test register that interferes with all samples in superposition. Finally, the ensemble prediction is
obtained as the average of individual results from each trajectory.

MACALUSO ET AL. - 5
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classifier votes for a target class, and the most frequent is then
selected. An alternative strategy is given by simple averaging.
In this case, the target probability distribution provided by
individual models is considered, and the final prediction is
computed as follows:

favgðxÞ ¼
1
B

XB

b¼1

f ðiÞb ðxÞ; ð16Þ

where B is the ensemble size, and f ðiÞb ðxÞ is the probability
for x to be classified in the ith class provided by the bth
classifier. This approach allows a reduction of the variance of
the estimate [22] and has shown good performance even for
large and complex datasets [23].

In particular, the error Eens of an ensemble obtained by
averaging B individual learners can be expressed as [24, 25]
follows:

Eens ¼
1þ ρðB − 1Þ

B
Emodel; ð17Þ

where Emodel is the expected error of the single models,
and ρ is the average correlation among their errors.

Hence, the more independent the single classifiers are, the
greater the error reduction due to averaging. A graphical
illustration of the theoretical performance of an ensemble as a
function of B, ρ, and Emodel is reported in Figure 2.

Regarding our implementation of the quantum ensemble,
the prediction of the single classifier is encoded into the prob-
ability amplitudes of a quantum state, and the final prediction is
computed by averaging the results of all quantum trajectories in
superposition. Implicitly, this means that the quantum ensemble
fits the simple averaging strategy. Thus, the possibility to
generate exponentially larger ensembles at the cost of increasing
linearly the number of control qubits d allows the quantum
ensemble to significantly improve the performance of the single
classifier (Figure 2) using a relatively small circuit (d ~ 10).

3.3 | Computational complexity

Classically, given a number B of base learners and a dataset (xi,
yi) for i = 1, …, N, where xi is a p‐dimensional vector and yi is
the target variable of interest, the overall time complexity for
training an ensemble based on randomisation or bagging scales
at least linearly with respect to B and polynomially in p and N:

O BNαpβ� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Training

þOðBpÞ
|fflffl{zfflffl}
Testing

α; β ≥ 1;

where α and β depend on the single base model, and Nαpβ is its
training cost. In boosting, instead, the model evolves over time,
and the individual classifiers are not independent. This usually
implies higher time complexity and less parallelism.

Despite this clear definition of the computational cost,
comparing the classical algorithm to its quantum counterpart is
not straightforward since they belong to different classes of
complexity. For this reason, we benchmarked the two ap-
proaches by looking at how they scale in terms of the pa-
rameters of the ensemble, that is, the ensemble size B and the
cost of each base model. In particular, this results in consid-
ering the Boolean circuit model [26] for the classical ensemble
and the depth of the corresponding quantum circuit for the
quantum algorithm.

In light of this definition, the quantum algorithm described
in Section 3 can generate an ensemble of size B = 2d in only
d steps. This means that assuming a unitary cost for each step,
we are able to increase exponentially the size of the ensemble
while increasing linearly the depth of the corresponding
quantum circuit. Furthermore, the cost of the single classifier is
additive—instead of multiplicative as in classical ensembles—
since it is necessary to execute the quantum classifier F only
once to propagate its application to all quantum trajectories in
superposition, as shown in Equation (10). In addition, the cost
of the state preparation routine is equivalent to any other
quantum algorithm for processing the same training and test
sets. However, this comparison does not take into account the
additional cost due to state preparation, which is not present in
classical ensembles. Also, the quantum ensemble comes with
an extra cost related to the implementation of the gates U(i,j),
which strictly depends on the encoding strategy chosen for the
data and needs to be evaluated for any specific implementation.

4 | EXPERIMENTS

To test how our framework for quantum ensemble works in
practice, we implemented the circuit illustrated in Figure 1
using IBM Qiskit [27]. Then, we conducted experiments on
simulated and real‐world datasets to show that (i) one execu-
tion of a quantum classifier allows retrieving the ensemble
prediction and that (ii) the ensemble outperforms the single
model. Importantly, all the experiments in this study replicate
the bagging strategies of classical ensemble methods in quan-
tum settings by adopting the methodological formulation

F I GURE 2 Theoretical performance of the quantum ensemble based
on the expected prediction error of the base classifiers (Emodel) and their
average correlation (ρ). The ensemble size depends on the number of
qubits d in the control register. Each solid line corresponds to an error
level, with coloured bands obtained by varying ρ between 0 (lower edge)
and 0.5 (upper edge).
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described in Section 3. Employing other ensemble strategies
based on the proposed quantum approach would necessitate
distinct circuit designs.

4.1 | Quantum cosine classifier

In order to implement the quantum ensemble, a classifier that
fulfils the conditions in Equation (9) is necessary. For this
purpose, we define a simple routine for classification based on
the swap test [28] that stores the cosine distance between two
vectors into the amplitudes of a quantum state. This metric
describes how similar two vectors are depending on the angle
that separates them, irrespective of their magnitude. The
smaller the angle between two objects, the higher the similarity.

Starting from this, the high‐level idea is predicting a similar
target class for similar input features. In particular, for any test
observation (x(test), y(test)) we take one training point (x(train),
y(train)) at random and we express the probability of y(test) and
y(train) being equal as a function of the similarity between x(test)

and x(train):

Pr yðtestÞ ¼ yðtrainÞ
� �

¼
1
2
þ
d xðtrainÞ; xðtestÞ
� �� �2

2
ð18Þ

where d(., .) is the cosine distance between x(train) and x(test).
Thus, the final classification rule becomes

yðtestÞ ¼
yðtrainÞ; if Pr yðtestÞ ¼ yðtrainÞ

� �
>
1
2

1 − yðtrainÞ; otherwise

8
><

>:
ð19Þ

Notice that, by definition, Pr yðtestÞ ¼ yðtrainÞ
� �

is bounded in
1
2; 1
� �

, which means that Equation (19) estimates the same class
as the training point unless x(train) and x(test) are orthogonal. As
a consequence, the cosine classifier performs well only if the
test and training observations happen to belong to the same
target class.

The quantum circuit that implements the cosine classifier is
reported in Figure 3.

It encodes data into three different registers: the training
vector x(train), the training label y(train), and the test point x(test).
An additional qubit is then used to store the prediction. The
algorithm consists of three steps. First, data are encoded into
three different quantum registers through a routine S. Second,
the swap test transforms the amplitudes of the qubit y(test) as a
function of the squared cosine distance. In particular, after the
execution of the swap test, the probability of getting the basis
state |0〉 is between 1/2 and 1; hence, the probability of class 0 is
never lower than the probability of class 1. Third, a controlled
Pauli‐X rotation is applied using the label of the training vector
as a control qubit. This implies that y(test) is left untouched if
x(train) belongs to class 0. Otherwise, the amplitudes of the y(test)

qubit are inverted, and Pr(y(test) = 1) becomes higher as the
similarity between the two vectors increases (Figure 4).

Thus, the quantum cosine classifier performs classification
via interference and allows calculating the probability of
belonging to one of the two classes by single‐qubit measure-
ment. A detailed description of the quantum cosine classifier is
provided in Appendix B. Furthermore, it is a weak method
with high variance, since it is sensitive to the random choice of
the training observation. In addition, it requires data to be
encoded using qubit encoding, where a dataset with N 2‐
dimensional observations x(train) is stored into N different
qubits. This allows the definition of U(i,j) for the quantum
ensemble in terms of random swap gates that move observa-
tions from one register to another. All these features make this
classifier a good candidate for ensemble methods.

Employing the swap test as a subroutine in the quantum
cosine classifier implies a linear scaling of the number of qubits
with the number of observations in both the training and test
sets. This limitation constrains the feasibility of conducting
experiments and comparing the proposed quantum approach
against classical methods, which can readily handle large
amounts of data. For instance, implementing an ensemble of
size 2, with a training set consisting of 2 data points and a
single data point for testing, would necessitate a total of 7

F I GURE 3 Quantum circuit of the cosine classifier using x(train) as a
training vector and x(test) as test vector. The training label y(train) is either |0〉
or |1〉 based on the binary target value. The measurement of the qubit y(test)

provides the prediction for the test observation whose features are encoded
in x(test).

F I GURE 4 Predictions of the cosine distance classifier based on 103

randomly generated datasets per class. The classifier is implemented using
the circuit in Figure 3 on a 7‐qubit quantum device (ibmq casablanca). The
implementation assuming a perfect quantum device is reported in
Appendix B, Figure B1.

MACALUSO ET AL. - 7
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qubits (refer to Figure C1). This breakdown includes 1 qubit
for the control register, 4 qubits for the training set (two for
the features of each training point and two for encoding their
respective labels), and an additional two qubits for the test
point. A graphical description of different ensembles of the
quantum cosine classifier is reported in Appendix C.

4.2 | Quantum ensemble as simple
averaging

As a proof of concept for the quantum ensemble based on
bagging, we consider different 20 random generated datasets,
each containing four training points (2‐dim features and label)
and one test example. For every simulated dataset, each
training point is used as a training observation and fed into a
quantum cosine classifier as input so to provide an estimate for
a test observation x(test). Thus, the quantum ensemble, which
requires only one execution of the quantum cosine classifier is
executed. The quantum circuit of the ensemble uses two qubits
in the control register (d = 2) and eight in the data register,
four for the training vectors xb and four for training labels yb.
Two additional qubits are then used for the test observation,
x(test) and the final prediction. Notice that the four matrices U(i,

j) need to be fixed to guarantee that each quantum trajectory Vb
described in Section 3 provides the prediction of different and
independent training points.

For each training point, the quantum cosine classifier is
implemented, and then a prediction for the test point is
calculated. This small experiment aims to prove that the
quantum ensemble prediction is exactly the average of the
values of all trajectories in superposition and it can be obtained
with just one execution of the classification routine.

Results are shown in Figure 5. The agreement between the
quantum ensemble (orange line) and the average (brown dots)
is almost perfect, which confirms the possibility of imple-
menting a quantum ensemble with the advantages described in
Section 3 in a fault‐tolerant setting. Results considering the real
device (light blue line) show slight deterioration, and this may
be due to the depth of the quantum circuit which seems to be
prohibitive considering the currently available gate‐based
quantum technology.

4.3 | Performance of the quantum ensemble
in a fault‐tolerant setting

To show that the quantum ensemble outperforms the single
classifier, we generated a simulated dataset and compared the
performance of the two models. In particular, we drew a
random sample of 200 observations (100 per class) from two
independent bivariate Gaussian distributions, with different
mean vectors and the same covariance matrix (Figure 6). Then,
we used the 90% of the data for training and the remaining
10% for testing.

Notice that the definition of the cosine classifier implies
executing the classification routine once for each test point

(See Appendix A, C for more details). We considered two
performance metrics, accuracy and Brier Score (BS). The ac-
curacy is the fraction of labels predicted correctly by the
quantum model, and it is evaluated using a set of observations
not employed for training (test set). Instead, the BS measures
the difference between the probability estimates and the true
label in terms of mean squared error:

BS ¼
1
Ntest

XNtest

i¼1
yi − f xið Þ½ �

2
; ð20Þ

where Ntest is the number of observations in the test set, yi and
f(xi) are, respectively, the true label and the probability esti-
mates provided by the quantum model for the ith observation
(for quantum ensemble see Equation (11)). Hence, a low BS

F I GURE 5 Comparison between the Quantum Ensemble and the
Classical Ensemble as a result of the classical average of four quantum
cosine classifiers executed separately. Both approaches are performed on a
simulator (orange line, brown dots) and on a real device (light blue line, blue
dots). Importantly, the Quantum Ensemble implementation on a real device
is performed using noisy simulations of the specific quantum device
(ibmq_16_montreal*). These simulations are only an approximation of the
real errors that occur on actual devices but still allow us to test the
effectiveness of the quantum ensemble on near‐term devices. The details
about the implementation in terms of quantum gates of the quantum
ensemble are reported in Appendix A.

F I GURE 6 Dataset generated by two independent bivariate Gaussian
distributions. Mean vectors for the two classes are (1, 0.3) and (0.3, 1). The
two distributions have the same diagonal covariance matrix, with a constant
value of 0.3.

8 - MACALUSO ET AL.
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score implies a good prediction. Due to the randomness
introduced by the choice of training points, we repeated the
experiments 10 times and evaluated the classifiers in terms of
the mean and standard deviation of both accuracy and BS. The
experiments of this section are all run assuming a perfect
quantum device. Results are shown in Table 1. The single
quantum cosine classifier performed only slightly better than
random guessing, with an average accuracy of 55%. Yet, the
quantum ensemble managed to achieve definitely better results,
with both metrics improving as the ensemble size grows.

4.3.1 | Variance analysis

In addition, we investigated how the quantum ensemble be-
haves as the generated distributions get closer and less sepa-
rated. To this end, we drew multiple samples from the two
distributions, each time increasing the common standard de-
viation to force reciprocal contamination. Results are reported
in Figure 7.

The accuracy showed a decreasing trend as the overlap of
the distributions increased. The opposite behaviour is
observed for the BS. Also, the shape of the boxplots is much

narrower for greater ensemble sizes (green and red boxplots)
than for smaller ones (blue and orange). Hence, this confirms
that the variability of the ensemble decreases as the number of
weak learners adopted grows as expected.

4.4 | Benchmark on real‐world datasets

In this section, we test the performance of the quantum
ensemble on real‐world datasets that are usually employed to
benchmark classical ML algorithms. Importantly, due to the
constraints of the proposed algorithm and the restrictions of
current quantum simulators in Qiskit, conducting extensive
experimental evaluations with large datasets is not feasible.
Consequently, introducing a larger dataset could yield different
results, particularly in the case of imbalanced data. Nonethe-
less, the experiments are designed to illustrate that the en-
hancements affirmed by adopting ensemble methods from
classical ML literature apply to the proposed quantum
ensemble. It is important to note that a direct comparison
with classical ensembles would necessitate larger quantum
simulations.

4.4.1 | Datasets description

The simulation of a quantum system on a classical device is a
challenging task, even for systems of moderate size. For this
reason, experiments consider only datasets with a relatively
small number of observations (100–150) that will be split in
training (90%) and test (10%) set. Furthermore, to restrict the
total number of qubits, Principal Components Analysis is
conducted to reduce the feature dimensionality to 2. Each
training feature is then normalised between 0 and 1 to be
encoded in the amplitudes of a quantum state, as mandated by
the quantum cosine classifier.

For all the datasets, a given subset of training points (N) is
encoded in the data register, and then the prediction is
retrieved by measuring the label qubit of the test register. This
is performed for each test point and finally, the test error in

TABLE 1 Performance comparison between the quantum cosine
classifier and quantum ensemble of different sizes B = 2d. The first row
indicates the performance of the single quantum cosine classifier. The
column N indicates the number of training points used to build the
ensemble, which is limited to 8 because of the restricted number of qubits
that is possible to simulate.

Accuracy Brier score

D B N Mean Std dev Mean Std dev

0 1 1 0.55 0.09 0.21 0.05

1 2 2 0.92 0.09 0.14 0.09

2 4 4 0.91 0.09 0.15 0.05

3 8 8 0.96 0.04 0.14 0.04

4 16 8 0.98 0.02 0.13 0.02

F I GURE 7 Distribution of the performance metrics as a function of the ensemble size (legend colours) and the separation between the two classes (x axis).

MACALUSO ET AL. - 9
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terms of Accuracy and BS is considered to evaluate the
generalisation error of the quantum model.

MNIST
It is a large dataset of handwritten digits that is commonly used
to benchmark various image processing systems. In particular,
it is usually employed for training and testing different algo-
rithms in the field of ML. The original dataset contains 60.000
black and white images, each represented by 28 � 28 pixels.
Thus, the single image can be described as a vector of binary
784 features (0 if the pixel is white and 1 if it is black). Also,
each image belongs to a class of 10 possible that represents the
digit depicted in the image. The current implementation of the
cosine classifier is arranged to solve a binary classification
problem. Hence, only two different classes will be considered,
the digits 0 and 9.

Iris
The Iris flower data set collects the data to quantify the
morphologic variation of Iris flowers of three related species
[29]. The data set consists of 50 examples from each of three
species of Iris (Iris setosa, Iris virginica and Iris versicolor).
Four features describe each observation: the length and the
width of the sepals and petals in centimetres. The dataset is
often used in statistical learning theory as classification and
clustering examples to test algorithms. Since the current
implementation of the quantum ensemble solves a binary
classification problem, only two species in the dataset will be
considered (three different datasets in total).

4.4.2 | Results

The results of the quantum ensemble on the real‐world data-
sets are reported in Table 2. For each dataset, the quantum
ensemble is implemented simulating a perfect quantum device.

Comparing the results in terms of the ensemble size
(B = 2d), it is possible to observe a decreasing trend of the BS
and an increasing trend for accuracy. This confirms the ability
of the quantum ensemble to improve the performance of the
single quantum classifier. However, the quantum ensemble
does not achieve good performance in the case of the dataset
Iris (1 vs. 2). Importantly, all the experiments have been con-
ducted by considering perfectly balanced datasets since the
goal was to show that building a quantum ensemble improves

the performance in terms of the accuracy of a given weak
classifier (as it happens for a classical ensemble). However, to
make the proposed quantum algorithm effective for real‐world
problems, it is necessary to design a better quantum routine for
classification that behaves as a weak classifier and is not
dependent on the training set at hand.

5 | CONCLUSION AND OUTLOOK

In this paper, we propose a quantum framework for binary
classification using ensemble learning. The correspondent al-
gorithm allows generating a large number of trajectories in
superposition, performing just one state preparation routine.
Each trajectory is entangled with a quantum state of the
control register and represents a single classifier. This conve-
nient design allows scaling exponentially the number of base
models with respect to the available qubits in the control
register (B = 2d). As a consequence, we can obtain an expo-
nentially large number of classifications while increasing only
linearly the depth of the correspondent quantum circuit with
respect to the size of the control register. Furthermore, when
considering the overall time complexity of the algorithm, the
cost of the weak classifier is additive, instead of multiplicative
as it usually happens.

In addition, we present a practical implementation of the
quantum ensemble using bagging where the quantum cosine
classifier is adopted as a base model. In particular, we show
experimentally that the ensemble prediction corresponds to the
average of all the probabilities estimated by the single classi-
fiers. Moreover, we test our algorithm on synthetic and real‐
world (reduced) datasets and demonstrate that the quantum
ensemble systematically outperforms the single classifier. Also,
the variability of the predictions decreases as we add more base
models to the ensemble.

However, the current proposed implementation requires
the execution of the classifier for just one test point at the time,
which is a big limitation for real‐world applications. In this
respect, the main challenge to tackle in order to make the
framework effective in the near future is the design of a
quantum classifier based on interference that guarantees a
more efficient data encoding strategy (e.g., amplitude encoding)
and that is able to process larger datasets. Nevertheless, these
upgrades would imply a different definition of U(i,j) for the
generation of multiple and diverse training sets in

TABLE 2 Performance of the quantum
ensemble on real‐world datasets.

Iris (0 vs. 1) Iris (0 vs. 2) Iris (1 vs. 2) MNIST

D B/No Accuracy BS Accuracy BS Accuracy BS Accuracy BS

0 1 0.49 0.284 0.49 0.284 0.49 0.445 0.50 0.337

1 2 1.0 0.137 1.0 0.276 0.51 0.240 0.79 0.209

2 4 1.0 0.138 1.0 0.139 0.52 0.240 0.78 0.208

3 8 1.0 0.136 1.0 0.138 0.61 0.241 0.84 0.197
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superposition. Further, the design of a more accurate base
quantum model is necessary.

Another natural follow‐up is the implementation of quan-
tum algorithms for randomisation and boosting. In this work, we
only referred to an ensemble based on the bagging because the
learning step was performed independently in each quantum
trajectory and theweak classifierswere assumed to be sensitive to
perturbations of the training set. However, with appropriate
amendments and the loosening of these constraints, we believe
that it is possible to design other types of ensemble techniques.

Finally, it is important to notice that the idea of model
aggregation has already been adopted in the context of varia-
tional quantum algorithms to build the quantum Single Layer
Perceptron [30, 31]. Thus, it is natural to consider the provided
quantum architecture for the quantum ensemble as a natural
extension of it if adopted adequately in hybrid quantum‐
classical computation. Although some challenges still remain,
we believe this work is a good practical example of how ML, in
particular ensemble classification, could benefit from QC.
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Appendix A

QUANTUM ENSEMBLE AS SIMPLE
AVERAGING
Here, we describe the quantum circuit to obtain four inde-
pendent quantum trajectories in superposition considering a
quantum ensemble of cosine classifiers (Section 4.2).
(Step 1) State Preparation
For a 2‐qubit control register (d = 2), we can build an

ensemble of B = 4 classifiers. The data encodes a single
observation using a single qubit. In particular, given a dataset
made up of N observations xi; yif gi¼1;…;N, where xi = (xi,1,
xi,2) is a 2‐dimensional vector and yi ∈ {0, 1} is the binary
target variable, the data register encodes N training points
2 � N qubits:

⊗
4

i¼1
jxi〉

� �

f eatures

⊗ ⊗
4

i¼1
jyi〉

� �

labels

ðA1Þ

where the values xi,1 and xi,2 are encoded into the amplitudes
of a single qubit:

jxi〉¼ xi;1j0〉þ xi;2j1〉; ðA2Þ

and the two classes of the target variable are represented by the
two basis states of a single qubit. Thus, if |yi〉 = |0〉 the ith
observation belongs to the class 0. Otherwise, if |yi〉 = |0〉 the
ith observation belongs to the class 1.
Qubit encoding strategy allows to store a training set of 4

observations using an 8‐qubit data register. In formulas, the
state preparation step leads to

jΦ0〉¼ H⊗2 ⊗ Sðx;yÞ
� �

j0〉 ⊗ j0〉 ⊗ j0〉
¼ jc1〉 ⊗ jc2〉 ⊗ jx〉jy〉
¼ j þ 〉 ⊗ j þ 〉 ⊗ jx0; x1; x2; x3〉jy0; y1; y2; y3〉;

ðA3Þ

where Sx is the routine which encodes in the amplitudes of
a qubit of a real vector x and H is the Hadamard trans-
formation matrix.
(Step 2) Sampling in Superposition
The second step regards the generation of 2d different

transformations of the training set in superposition, each
entangled with a state of the control register. To this end, d steps
are necessary, where each step consists of the entanglement of
the ith control qubit with two transformations of |x, y〉 based on
two random unitaries,U(i,1) andU(i,2), for i= 1, 2. The sampling
in superposition step leads to the following quantum state:

jΦ1〉 ¼
1
2
j00〉Uð2;1ÞUð1;1Þjx0; x1; x2; x3〉jy0; y1; y2; y3〉
�

þj01〉Uð2;1ÞUð1;2Þjx0; x1; x2; x3〉jy0; y1; y2; y3〉

þj10〉Uð2;2ÞUð1;1Þjx0; x1; x2; x3〉jy0; y1; y2; y3〉

þ 11〉Uð2;2ÞUð1;2Þjx0; x1; x2; x3〉jy0; y1; y2; y3〉
�
�

�
:

¼
1
ffiffiffi
4
p
X4

b¼1

jb〉Vbjx0; x1; x2; x3; y0; y1; y2; y3〉

ðA4Þ

In order to obtain independent quantum trajectories, we
provide the following definition for U(i,j):

Uð1;1Þ ¼ SWAP x0; x2ð Þ � SWAP y0; y2ð Þ; ðA5Þ

Uð1;2Þ ¼ SWAP x1; x3ð Þ � SWAP y1; y3ð Þ; ðA6Þ

Uð2;1Þ ¼ I ; ðA7Þ

Uð2;2Þ ¼ SWAP x2; x3ð Þ � SWAP y2; y3ð Þ; ðA8Þ

where 1 is the identity matrix. Thus, we get

jΦ2〉¼
1
2
j11〉jx0; x3; x1; x2〉jy0; y3; y1; y2〉½

þ j10〉jx2; x1; x3; x0〉jy2; y1; y3; y0〉

þj01〉jx0; x3; x2; x1〉jy0; y3; y2; y1〉

þ 00〉jx2; x1; x0; x3〉jy2; y1; y0; y3〉j �:

ðA9Þ

We can see that the swap operation allows to entangle a
different observation stored in the data register to a different
state of the control register. In particular, when considering the
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last qubit of the features and labels (sub‐)registers, the above
choices for U(i,j) guarantee that each quantum state of the
control register is entangled with a different training observa-
tion when considering the last qubit of the data register. Using
a compact representation

jΦ20〉¼
1
2
j11〉j…〉jx2〉jy2〉þ j10〉j…〉jx0〉jy0〉½

þ j10〉j…〉jx1〉jy1〉þ j10〉j…〉jx3〉jy3〉�

¼
1
ffiffiffi
4
p

X3

i¼0

ji〉j…〉jxi; yi〉:

ðA10Þ

Note that in this case, the ith basis state does not corre-
spond to the integer representation of the binary state.

Importantly, when considering random swap operations as
unitaries U(i,j) instead of the fixed ones (Equations A5–A8)),
we have no guarantees that the four quantum trajectories will
be independent, but this randomness is necessary to generate
the typical scenario of ensemble methods where the different
training sets are randomly sampled from the original one.
(Step 3) Learning via interference
The test register is initialised to encode the test set, ~x,

considering also an additional qubit to store the final prediction.

S
~x ⊗ 1

� �
j0〉j0〉¼ jxðtestÞ〉 ⊗ j0〉

¼ xtest;1j0〉þ xtest;2j1〉
� �

⊗ j0〉:
ðA11Þ

Then, the data and test registers interact via interference
using the quantum version of the cosine classifier (gate F) to
compute the estimates of the target variable:

jΦf 〉¼ 1⊗2 ⊗ F
� �

jΦd〉

¼
1
ffiffiffi
4
p

X4

b¼1

jb〉jxb; yb〉jxðtestÞ〉jf̂ b〉:
ðA12Þ

Since the 4 points of the training set are in superposition, the
application of the quantum cosine classifier allows computing 4
different predictions for the test point, f f̂ bgb¼1;…4, executing
the classifier only once.
(Step 4) Measurement
Due to the entanglement between the predictions for ~x and

the control register, the expectation measurement allows
retrieving the average of all the predictions, which correspond
to the ensemble prediction that uses bagging strategy
aggregation:

〈M〉¼ 〈∗j f̂ b〉M∣ f̂ b ¼
1
4

X4

b¼1

f̂b ¼ f̂bag ~x∣x; yð Þ ðA13Þ

The implementations of the quantum ensemble to perform
simple averaging are depicted in Figure A1.

F I GURE A 1 Qiskit implementation of the quantum ensemble for four independent quantum trajectories.
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Appendix B

QUANTUM COSINE CLASSIFIER
Classically, cosine classifier is defined as follows:

Pr yðtestÞ ¼ yðtrainÞ
� �

¼
1
2
þ
d xðtrainÞ; xðtestÞ
� �� �2

2
ðB1Þ

where (x(train), y(train)) is a random training example, x(test) the
test point and d(⋅, ⋅) the cosine distance between x(train) and
x(test). Since the probability of belonging to a class depends on
the squared cosine distance between the two vectors, the
maximum dissimilarity occurs when training and test obser-
vations are orthogonal. In this case, the cosine classifier assigns
a uniform probability distribution in the two classes for y(test).
This means that the cosine classifier performs well only if the
test point belongs to the same class of the training point.

The quantum circuit that implements the cosine classifier
(Figure 3) encodes data into three different registers: the
training vector x(train), the training label y(train) and the test
point x(test). One last qubit is used to store the prediction. The
algorithm is made of the following three steps.
Step 1: State Preparation
The state preparation routine can be performed indepen-

dently for each qubit:

jΦ1〉¼ SxðtrainÞ ⊗ SxðtestÞ ⊗ SyðtrainÞ ⊗ 1
� �

j0〉⊗4

¼ jxðtrainÞ〉jxðtestÞ〉jyðtrainÞ〉j0〉;
ðB2Þ

where Sx is the routine which encodes in the amplitudes of
a qubit a 2‐dimensional, normalised real vector x.

Step 2: Execution of the swap test
In the second step, the swap test [28] transforms the am-

plitudes of the qubit y(test) as a function of the squared cosine
distance. After the execution of the swap test, the probability
to readout the basis state |0〉, that is, the probability for the
test observation to be classified in class 0 is

P yðtestÞ ¼ j0〉
� �

¼
1
2
þ

∣〈xðtrainÞjxðtestÞ〉∣2

2
: ðB3Þ

Step 3: Controlled Pauli‐X gate
The third step consists of applying a controlled‐Pauli‐X

gate using as control qubit the label of the training vector. This
implies that y(test) is left untouched if x(train) belongs to the
class 0. Otherwise, the amplitudes of the y(test) qubit are
exchanged, and the probability P(y(test) = 1) is higher as the
similarity between the two vectors increases. At this point, the
expectation measurement on the last qubit provides the pre-
diction of interest. The result predictions of the quantum
cosine classifier assuming a perfect quantum device are
depicted in Figure B1.

Appendix C

QUANTUM ENSEMBLE OF COSINE
CLASSIFIER
Examples of quantum circuits for implementing a quantum
ensemble of quantum cosine classifiers for different ensemble
sizes (2, 4, 8, 16).

see Figure C2.
see Figure C3.
see Figure C4.

F I GURE B 1 Predictions of the cosine distance classifier based on 103

randomly generated datasets per class. The classifier is implemented using
the circuit in Figure 2.

F I GURE C 1 Quantum circuit for implementing a quantum ensemble
of size 2 (d = 1) of cosine classifiers. The total number of qubits is 7: four
for encoding the training set (x0, y0, x1, y1), two for the test set (x(test), y(test))
and one for control qubit.
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F I GURE C 2 Quantum circuit for
implementing a quantum ensemble of size 4
(d = 2) of cosine classifiers. The total number
of qubits is 12: eight for encoding the training
set xi; yið Þi¼0;…3, two for the test set (x(test),
y(test)) and two for control qubits.

F I GURE C 3 Quantum circuit for implementing a quantum ensemble of size 8 (d = 3) of cosine classifiers. The total number of qubits is 12: 16 for
encoding the training set xi; yið Þi¼0;…7, two for the test set (x(test), y(test)) and three control qubits.
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F I GURE C 4 Quantum circuit for implementing a quantum ensemble of size 16 (d = 4) of cosine classifiers. The total number of qubits is 22: 16 for
encoding the training set xi; yið Þi¼0;…15, two for the test set (x(test), y(test)) and four control qubits.
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