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� The introduction of a semantically annotated digital twin (semDT) that
stores information about the retail store and allows semantic queries

� A service robot that exchanges information with the semDT to increase
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relationship with the semDT in terms of obstacle detection, planning,
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Abstract

In this paper, we present the service robot MARLIN and its integration with
the K4R platform1, a cloud system for complex AI applications in retail.
At its core, this platform contains so-called semantic digital twins, a seman-
tically annotated representation of the retail store. MARLIN continuously
exchanges data with the K4R platform, improving the robot’s capabilities
in perception, autonomous navigation, and task planning. We exploit these
capabilities in a retail intralogistics scenario, specifically by assisting store
employees in stocking shelves. We demonstrate that MARLIN is able to
update the digital representation of the retail store, autonomously plan and
execute replenishment missions, adapt to unforeseen changes in the envi-
ronment, and interact with store employees. Experiments are conducted in
simulation, in a laboratory environment, and in a real store. We also de-
scribe MARLIN’s capabilities in terms of obstacle detection and navigation
in confined spaces.

Keywords: Service Robotics, Digital Twin, Retail, Task Planning,
Knowledge Processing

1K4R - Knowledge4Retail (https://knowledge4retail.org)
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1. Motivation

In order to be competitive with respect to international online sellers,
the stationary retailer has to combine its competencies in customer service
and confidence with the possibilities of digitalization and robotics. In a
future retail store, employees are providing advice to the customers, while
robotic systems are in charge of stock-taking, replenishment and collecting
scattered items. Smartphone apps direct the customer to the desired goods
and answer their queries related to the assortment. Finally, the technology
supports visually impaired or disabled people with shopping. Thus, AI and
robotics in stationary retail have the potential to increase productivity by
automating everyday tasks and improve customer experience. In order to put
this vision into practice, detailed and comprehensive models of the store, the
selling process and operation sequences need to be made available in machine
readable form and provided to the robotic systems. The robots may benefit
from this background information and improve their capabilities in terms of
execution speed, autonomy, and safety.

In this paper, we describe the mobile service robot MARLIN (Mobile
Autonomous Robot for intra-Logistics IN retail) and its integration with
the K4R platform2, an open-source cloud platform for AI and robotic ap-
plications in retail (see Figure 1a for an illustrative overview). At its core,
this platform provides so-called semantic digital twins, a generic, machine-
readable format for digital representation of retail stores. They allow the
construction of realistic digital worlds and enable a variety of novel AI and
robotics applications like data analysis, symbolic reasoning, and process plan-
ning. We exploit the potential of integrating MARLIN with the K4R plat-
form and evaluate its capabilities in terms of perception, autonomous naviga-
tion, and task planning. The overall system is evaluated in a retail intralogis-
tics scenario, namely the support of store employees in refilling shelves (see
Figure 1b). The robot autonomously transports goods to the target shelf,
assists employees with replenishment using a pointer unit, and interacts with
them via a graphical interface. At all times, it exchanges information with
the semantic digital twin, for example the position of products within the
shelves, the whereabouts of store employees, as well as the location of obsta-
cles in the corridors, which are perceived through 3D onboard sensors on the
robot. This way MARLIN can safely navigate in a retail store and adapt to

2https://github.com/knowledge4retail
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(a) System overview (b) Application: Support of store employees in retail

unforeseen changes in the environment, e.g., crowded, impassable aisles.
The robot itself consists of a commercially available MiR100 platform

with a mounted transport hook and additional equipment such as sensors
and a pointer unit. The hook can be used to attach and transport trolleys,
which are typically used in retail when stocking shelves. During transport
of trolleys the robot represents a tractor-trailer system with variable and
comparatively large footprint. To reliably navigate within the confined en-
vironment of a retail store, sophisticated navigation planning and execution
skills are required for such a system. Thus, we also develop and evaluate an
approach for autonomous navigation of articulated tractor-trailer systems,
which overcomes certain limitations of classical navigation methods in con-
fined spaces.

In summary, the main contributions of this paper are:

� We introduce MARLIN, a mobile robotic solution to support shelf in-
tralogistics in retail stores.

� We describe a semantically annotated digital twin (semDT) that stores
information about the retail store and allows semantic queries

� We demonstrate how MARLIN exchanges information with the semDT
to increase its capabilities, e.g., for autonomous navigation or 3D ob-
stacle detection.

The paper is structured as follows. In Section 2, we relate our work to the
state of the art in robotics for retail and intralogistics. In Section 3, we de-
scribe the service robot MARLIN and its capabilities in terms of perception,
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and autonomous navigation. In Section 4, we first describe the semantic dig-
ital twin and its connection to MARLIN, followed by an explanation of our
approach to autonomous task planning, as an example of the use of AI appli-
cations in the K4R platform. In Section 5, we present experimental results
on obstacle classification, autonomous navigation of tractor-trailer systems,
as well as task planning utilizing the semantic digital twin. Finally, Section 6
provides a short conclusion and outlook on future applications.

2. Related Work

This section provides a state-of-the-art overview on the different areas of
research touched by this work, namely robotics for retail and intralogistics
applications in general, the digital twin technology, autonomous navigation
for tractor-trailer systems, as well as adaptive task planning.

2.1. Robotics in Retail

When related to the field of warehouse logistics the number of commer-
cially available robotic systems for stationary retail is comparatively low.
One reason is the greater complexity of the store environment and the asso-
ciated challenges in terms of robotic perception, navigation, and manipula-
tion. For example, the store might be filled with customers, which impede
an autonomous robot from navigating efficiently and safely. Furthermore,
the products on the shelves vary greatly in terms of size, shape and weight,
which makes autonomous manipulation difficult. Finally, the stores in itself
vary widely and a one-fits-all robotic solution does not exist. Therefore, only
a few autonomous robots have been used efficiently and economically in sta-
tionary retail to date, although the growth is rapid, as mentioned by Bogue
[1].

Positive examples of economically viable robotic applications in station-
ary retail exist in the area of inventory and out-of-stock detection, for exam-
ple the Tally robot by simbe robotics [2], or the AdvanRobot system proposed
by Morenza-Cinos et al. [3]. In the area of inventory and out-of-stock detec-
tion, the visual perception of articles is in focus. A survey of machine vision
based retail product recognition systems is presented by Santra and Mukher-
jee [4]. The work of Kumar et al. [5] describes semi-automatic out-of-stock
detection using mobile robots and virtual reality. The approach is evalu-
ated in a mock retail store. The same application is targeted by Paolanti
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et al. [6]. The authors use deep convolutional neural networks to automat-
ically detect out-of-stock events in a real store environment during working
hours. In the REFILLS project3 a mobile autonomous robot is presented to
acquire models of retail stores, count the stocked products, and document
their arrangements in the shelves [7].

2.2. Digital Twins for Mobile Robots in Industry and Retail

Digital twins are increasingly used in industrial manufacturing and pro-
duction to represent, simulate, monitor, analyze, and optimize production
processes and product lifetime cycles [8]. However, in the area of stationary
retail, the use of digital twins is less widespread. The digitization of station-
ary retail demands for an integration of various, disparate information like
product data, article localization, customer routes and attention, as well as
sales figures.

A considerable challenge for autonomous robots in retail is the perception
and interpretation of the store environment (not the individual products in
the shelves), which is different from store to store, but might also change
within same store on a daily basis due to varying placement of articles, stock
level, or locations of stand-up displays. A digital twin of the store envi-
ronment can be used to collect, preprocess, and provide the perceived data
from multiple sources in a machine-readable format. However, establishing
a digital environment from scratch without considerable manual effort is a
complex problem. Paolanti et al. [9] describe a semantic object mapping
based on 3D point cloud data to analyze and map a store environment. The
work by Beetz et al. [7] introduces semantic store maps, which are a special
form of semantic digital twins (semDT) as described by Kümpel et al. [10].
A semDT is a semantically enhanced virtual representation of the physical
retail store, which connects symbolic knowledge with a scene graph, allow-
ing complex reasoning tasks. The work presented in this paper builds upon
the concept of the semDT and showcases a robotic application to support
store employees in shelf refilling. Specifically, we use the reasoning capabili-
ties of KnowRob [11], a knowledge processing system for robots. KnowRob
organizes the digitized store data coming from disparate sensor sources and
allows a robotic task planner to pose semantic queries on this data.

The general idea of using an internal representation of the environment

3http://www.refills-project.eu
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for robotic high-level reasoning and planning has been widely used before
in robotics. For example, the work of Blumenthal et al. [12] introduces a
representation based on scene-graphs, which represent the environment as
directed acyclic graph of geometric entities. They evaluated their approach
on a perception task using the KUKA youBot. Another approach is called
Deep State Representation (DSR) [13], which combines geometric and sym-
bolic information within the CORTEX architecture. In contrast to these
works however, our approach explicitly makes use of a cloud infrastructure,
which can be fed from various sensing sources like robots, stationary sensors,
and the retail stores’ ERP system.

The most widely spread use-case for a robot-internal representation of the
environment is planning and execution of high-level actions. Task planning
in robotics is concerned with deliberately deciding on a sequence of actions
to take in order to achieve a given set of goals [14]. AI planning meth-
ods have a long history [15] and have been applied to increasingly complex
robotic applications, for example household [16] or manufacturing [17]. De-
spite the long exploration of AI-based planning there are still open research
problems, e.g., how to efficiently represent knowledge from disparate sensor
sources, or how to bridge the gap between symbolic and numerical action
representations. Task planning for robotics is closely linked to the fields
of knowledge representation and reasoning. Planning complex tasks in real-
world environments requires a powerful representation of knowledge acquired
from disparate sources, as well as a means to reason about this information.
Both can be provided by KnowRob [11], the knowledge representation and
reasoning framework which we use in our work. We connect KnowRob to the
knowledge base of ROSPlan [18], a framework for AI planning in robotics,
which provides various planners.

In industry and retail most robotic mission or task planning approaches
are concerned with intralogistics, e.g., managing a fleet of AGVs and other
agents to optimize warehouse logistics [19, 20]. Although the primary goal
in this research is to plan autonomous transport tasks for a robot navigating
a retail store, our planning approach allows arbitrary tasks like interacting
with the store employees, manipulation of products, or updating the digital
store representation.
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Figure 2: MARLIN: A mobile service robot for the support of store employees

3. MARLIN: A Service Robot to Support Intralogistics in Retail
Stores

This section describes the service robot MARLIN and its capabilities
regarding perception, autonomous navigation and interaction with the store
employees.

3.1. System Description

The design of MARLIN as illustrated in Figure 2 has been led by the
requirements of pilot application Service Robotics to Support Store Employ-
ees in the Knowledge4Retail (K4R) project. Within this project, a mobile,
autonomous robot should be developed to support store employees in shelf
refilling. The robot should be able to navigate efficiently and safely within
a retail store. Apart from that it should (a) be integrated seamlessly with
the K4R platform, a cloud solution to enable AI applications in stationary
retail, (b) reuse existing structures of the stores, e.g., carts on wheels used
for intra-logistics, and (c) provide user interfaces to interact with the store
employees.

MARLIN consists of a commercially available MiR100 platform4 with
transport hook, equipped with an external PC, a pointer unit to guide the

4https://www.mobile-industrial-robots.com/solutions/robots/mir100/
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Figure 3: Sensor Processing Pipeline for obstacle detection on MARLIN. PC - Point Cloud.

store employee in the process of replenishment, as well as 4 RGB-D cameras,
which provide points clouds in a 360 degree view. The system is able to
autonomously pick-up, carry, and place transport carts on wheels, which are
commonly used by retailers. Interaction with the user can be performed via
an attached tablet, which is connected via the K4R platform as described in
Section 4.

3.2. Obstacle Detection and Classification

By integrating MARLIN with the K4R platform, the robot continuously
exchanges information with the retail store’s semDT. Using its built-in sen-
sors, the robot can detect obstacles, upload their position to the semDT, and
reuse this information for future task planning and navigation. To handle
static and dynamic obstacles, a pipeline was developed to detect and classify
objects in the raw point cloud data. This pipeline, which is an extension
of the multi-object tracking described by de Gea Fernández et al. [21], con-
tains three main processing steps: (1) background removal, (2) clustering and
tracking of objects, and (3) normalization & classification of tracked objects.
Figure 3 shows an overview of the sensor processing pipeline.

Background Removal. The multi-object tracking approach we use to cluster
and track obstacles in raw point cloud data has originally been developed for
stationary robots [21]. In the original approach, the stationary background
is removed from the point cloud data before clustering in order to increase
performance. While this task is trivial for a stationary system, in a mobile
robotics application the background filter must constantly adapt to the envi-
ronment and be much faster to ensure that no artifacts remain in the filtered
point cloud, even when the robot is moving fast. Thus, we use the following
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procedure for background removal. We first reduce the number of points in
the original point cloud using a voxel grid filter. Points that are too far away
or too close to the ground are also removed. Then, the point clouds from each
camera are merged into a single point cloud and irrelevant areas are removed
using a rule-based filter implemented in the Point Cloud Library [22]. This
filter removes all 3D points corresponding to shelves and walls of the retail
store using whitelist rules. The whitelist rules, defined by rectangles in the
2D map, are determined as follows: We iterate row-wise through the pixels
of the 2D map until we find a free pixel. This defines the upper left corner of
the first rectangle. Then we move in x- and then in y-direction until we hit
a occupied pixels, which provides the bottom right corner of the rectangle.
We repeat this procedure, until all the free pixels in the map are covered by
rectangles. The filter then removes all 3D points whose xy coordinates are
not covered by a whitelist rule. Figure 4 shows a subset of the rules defined
for the 2D map of a retail store. The starting points of each rule are shown in
white and the areas to be removed are shown in black. The enlarged image
shows the whitelist rules, each in a different color. By using the rule-based
filter, shelves and other permanent (known) obstacles in the store are filtered
out of the point cloud, while dynamic obstacles remain.

Clustering and Tracking. The filtered point cloud is passed to an adapted
version of the multi-object tracking described by de Gea Fernández et al.
[21]. In this approach, the filtered 3D points are clustered according to their
Euclidean distance. Small clusters are removed as they are assumed to result
from sensor noise. In the subsequent object tracking, the remaining clusters
are modeled as 3D ellipsoids, which can be used to estimate the full pose and
spatial velocity of each cluster. For tracking, a track ID is assigned to each
cluster. Given a set of new point clouds from the processing pipeline and
a set of tracks, the tracking algorithm computes an updated set of tracks
as follows. First, the states (poses and spatial velocities) of all tracks are
updated using a Kalman filter. Then, each existing track is assigned to a
cluster using an association measure based on the Euclidean distances of the
3D points in the cluster to the ellipsoid of the track. In this way, objects are
tracked over multiple time frames. The method is robust to partial occlusion
and sensor noise and allows tracking of multiple objects in cluttered scenes.

Normalization and Classification. We use obstacle classification based on 3D
point clusters provided by the multi-object tracking. The idea is that perma-
nent obstacles, e.g., display stands, can be added to the virtual environment
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Figure 4: Visualization of the whitelist rules on a map of a retail Store

(a) Pointcloud without (normal color) and with fil-
ter(green dots)

(b) Filtered Pointcloud of an environment with mul-
tiple different obstacles (unfiltered - red, clustered
points - original color)

Figure 5: Results of the Pointcloud Filter.
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in semDT to improve the autonomous navigation of the mobile service robot,
while non-permanent obstacles such as customers or shopping carts can be
ignored. The clusters are normalized to have zero mean and unit variance.
For each cluster the surface normals are computed5 and then forwarded to a
prediction node as one-dimensional feature vectors, which have a fixed size
n = 10000. If a cluster provides less features, the feature vector is artificially
augmented. The prediction node computes the probability that a given clus-
ter belongs to a given object class. We assume that when used in a store,
the system must be able to cope with few different types of obstacles outside
the shelves, so that most objects can be classified correctly. Nevertheless,
the prediction probability for an object may be low. If it is below a cer-
tain threshold, it is still included in the semDT, with the object class ID set
to ”unknown”. We compare different classification approaches such as ran-
dom forests (RF), support vector classifier (SVC), a voting classifier (VC)
consisting of a random forest and a support vector classifier, and stochas-
tic gradient descent (SGD). We chose SVC above other approaches, because
it provides good detection accuracy alongside with fast predictions on the
recorded training dataset as illustrated in Table 1. The model was trained
with a linear kernel. All implementations were from the Scikit Learn [23]
library. To reduce computation time, multiple clusters are evaluated simul-
taneously. The models of the classifiers are trained offline using a relatively
small dataset consisting of raw point clouds of each object class. Figure 6
shows initial results in a laboratory environment, including the original scene
(left), background filtering and clustering (center), and classification (right)
using the five different object classes.

3.3. Autonomous Navigation for Tractor-Trailer Systems

The proprietary navigation stack of the MiR100 platform provides nav-
igation capabilities for indoor operation through a ROS (Robot Operating
System) interface [24], both for operation with and without an attached
trailer. Autonomous navigation with an attached trailer, however, requires
enormous safety distances around the footprint of the robot (the recom-
mended minimum corridor width is the total length of the system plus 50 cm
safety distance). Therefore, the system is not able to navigate through nar-
row aisles typically found in the defined target environment, a retail store.

5https://pcl.readthedocs.io/en/latest/normal_estimation.html
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Figure 6: Clustering, tracking and classification of three different objects in a laboratory
environment.

However, physically this is quite possible, as a human operator is able to
remote control the system safely in the target environment. For this reason,
we implement and integrate a novel approach for autonomous navigation of
tractor-trailer systems, which provides improved capabilities compared to the
proprietary approach.

Vehicle Kinematics. For the differential drive tractor with the trailer joint
attached directly at the steering axis, a car-like controller with kinematic
bicycle model can be applied, as shown in Figure 7. In our model, the trailer
represents the rear axle of the model and the MiR100 represents the steering
axle. The cart is attached to the robot via a transport hook, which has a
passive rotational joint located at the rotation axis of the robot base. After
picking up the cart, it is rigidly attached to the hook.

The trailer has one axle with fixed caster wheels and one axle with swivel
caster wheels that can passively rotate around their vertical axis to follow the
motion of the trailer. We define a coordinate frame in the center of the axle
between the two fixed caster wheels, which coincides with the base frame of
the bicycle model (positioned at x(t), y(t) in Figure 7). The orientation of the
coordinate frame in map coordinates is defined by the angle Θ. The distance
between this frame and the center of rotation of the diff-drive tractor vehicle
is the wheelbase L of the model. The angle of rotation of the tractor vehicle
relative to the trailer is the effective steering angle δ.

Global Path Planning. We use the SBPL (Search-Based Planning Library [25])
Lattice Planner with a rectangular footprint tied to the fixed axis of the
trailer. This planner finds the path to the requested goal pose by chain-
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Figure 7: Model of the tractor-trailer system kinematics according to a bicycle model.

ing motion primitives with different lengths and curvatures. By limiting the
maximum curvature of the motion primitives the resulting plan is expected
to be feasible to be executed by the vehicle via the local planner. The path
stubs are generated by a search algorithm and evaluated in an occupancy
grid which covers the whole environment.

Local Path Planning. For the local path following we use the TEB (Time
Elastic Band) Local Planner [26], which supports navigation for car-like ve-
hicles. For evaluating the actual path, it tracks the obstacles around the
vehicle in a smaller, local occupancy grid. It then computes the actual con-
trol commands in terms of linear and angular velocities (ẋ and Θ̇) to be
executed by the vehicle. For representing the system in the local path plan-
ner, we use the Two Circles footprint model. According to this model, the
footprint of the vehicle is specified in terms of two circles that are defined by
radius and offset from the vehicle’s base frame, respectively (see Figure 8).

Typically, local planners (e.g., in the ROS navigation stack) provide the
output command as the longitudinal speed and angular velocities (here:
ẋ, Θ̇). To map these commands to the car-like vehicle model we need to
add another intermediate controller stage that derives the commands for
the tractor vehicle (ẋ′, Θ̇′), which correspond to the desired behavior of the
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Figure 8: Two Circles footprint model for the TEB Local Planner (highlighted circles) and
the controlled longitudinal and rotational velocities for the car-like vehicle model (ẋ, Θ̇)
and the tractor vehicle (ẋ′, Θ̇′). The lateral velocities (ẏ, ẏ′) are zero as they cannot be
actuated.

tractor-trailer system. Given the vehicle’s wheel base L, the steering angle δ
can be obtained from the target velocities via the curvature of the requested
path κ with the following formula:

κ = Θ̇/ẋ (1)

δ = arctan(Lκ) (2)

To control the steering angle, we use a P-controller, which generates the
output rotational velocity that would minimize the deviation between the
current and the target steering angle:

Θ̇′ = Kp∆δnormalized (3)

To avoid issues with angular wrap around, we use the following nor-
malization term to make sure the angle is always in the half-open interval
[−π, π):
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∆δ = δtarget − δcurrent (4)

∆δnormalized = (∆δ + π) mod 2π − π (5)

where mod is the modulo operation. The current steering angle can be
retrieved from the sensor attached to the MiR hook joint. In order to pre-
vent self-collisions, the local planner limits the maximum steering angle the
controller will command. Furthermore, we specify the maximum allowed
angular velocity to limit the controller output.

In analogy to the angular velocity, the longitudinal velocity is not directly
applied to the tractor system. To avoid drift before the desired steering
angle is regulated, we add a Gaussian activation function to limit the output
longitudinal velocity ẋ′ based on the current normalized deviation of the
steering angle ∆δnormalized:

ẋ′ = ẋ exp−∆δ2

α2 (6)

By adjusting the activation factor α we can influence the width of the
admissible band of steering angle deviations. Values of around 10 or larger
will practically allow the full longitudinal velocity regardless of the deviation.
Smaller values gradually reduce the bandwidth of the allowed range.

4. The K4R Platform for AI Applications in Retail

The K4R platform is an open-source software platform to enable AI and
robotics application for retail. At its core, it provides so called semantic
digital twins, which are illustrated in the following section.

4.1. Semantic Digital Twin

A semantic Digital Twin (semDT) is a digital representation of a retail
store, which connects a scene graph to a semantic knowledge base as is de-
scribed in [10]. The scene graph contains a 3D model of the store, which is
semantically annotated, and holds information like the relative location of
the store shelves and products. This data can be automatically generated by
a robot driving through the store and scanning all the products within the
shelves.
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In the context of this paper, it is assumed that robots specialized for the
task are employed to create such semDTs on a nightly bases as described
in [7]. This ensures that MARLIN always has updated information to work
with.

The acquired information is connected to an ontology-based semantic
knowledge base, which is based on interlinked ontologies providing further in-
formation on the products, like their ingredients and classifications, 3D mod-
els, product taxonomies, product brands or labels. This facilitates semantic
reasoning on the semDT, visualization of the 3D environment in various ap-
plications, and it allows a human user or a robot to request information using
semantic queries. These queries are processed by KnowRob [11], which is the
underlying knowledge representation and reasoning framework.
The Digital Twin itself is constructed using concepts defined in the OWL
(Web Ontology Language) format [27]. Internally, everything is represented
as a triple, which essentially describes how entities are related to each other
and which properties they posses. E.g., entities, relations and properties are
the building blocks of the triples. Queries like ”which shelves contain empty
facings” and ”where is a product of type X from the brand Y located” can
then be answered in order to help a robot transport products for restocking
to the correct locations, or to help guide a customer to a searched product.

query:

findall(Shelf ,

(has_type(Facing , ’http :// knowrob.org/kb/shop.owl#ProductFacingStanding ’),

\+ triple(Facing , ’http :// knowrob.org/kb/shop.owl#productInFacing ’, _ ),

triple(Facing , ’http :// knowrob.org/kb/shop.owl#layerOfFacing ’, Layer),

triple(Shelf , soma:hasPhysicalComponent , Layer)), Shelves ).

result:

Shelves =[http :// knowrob.org/kb/shop.owl#Shelf_ejfydt ,

http :// knowrob.org/kb/shop.owl#Shelf_jehtnm ,

http :// knowrob.org/kb/shop.owl#Shelf_egvvkt ,

...].

Listing 1: An example query which finds all shelves which contain empty standing facings.
The result is returned as a list of unique identifiers of shelf individuals.

query:

subclass_of(ProductType , ’http :// knowrob.org/kb/shop.owl#Product ’),

has_type(Item , ProductType),

triple(Facing ,’http :// knowrob.org/kb/shop.owl#productInFacing ’, Item),

triple(Facing , ’http :// knowrob.org/kb/shop.owl#layerOfFacing ’, ShelfLayer),

triple(Shelf , soma:hasPhysicalComponent , ShelfLayer ).

result:

Shelf=http :// knowrob.org/kb/shop.owl#Shelf_pothbl ,

ShelfLayer=http :// knowrob.org/kb/shop.owl#ShelfLayer_yuoqzx ,
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Facing=http :// knowrob.org/kb/shop.owl#Facing_tjeobt ,

Item=http :// knowrob.org/kb/shop.owl#Product_urmvvv.

Listing 2: A query which returns the location of a product from a certain type (which can
be substituted by a brand, for example) in terms of which shelf, layer and facing it is in.

4.2. K4R Platform Architecture and Robot Interfaces

The K4R infrastructure is developed in containers deployed as pods within
a Kubernetes cluster6. The two main pods described here are called plan-
ning and web. The planning pod uses the ROS WebSuite [28] to connect
to robots and other devices via WebSockets. The purpose of the planning
pod is to use ROSPlan [18] to create and execute high-level action plans for
robotic agents, control the agents, and exchange data with them. The ROS-
Plan knowledge base is constantly synchronized with the semDT, using the
semantic reasoning capabilities of KnowRob.
The web pod is used for human-robot interaction. It hosts a custom Ex-
press.js TypeScript application with an Angular front-end through which the

6https://kubernetes.io/
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Figure 10: Cloud architecture of Agent Management

user can retrieve information about the agents, launch missions, or directly
control one of the robots. The web pod sits behind an OAuth2 Keycloak in-
stallation to ensure secure communication over the Internet. To allow storing
each agent’s state, we use certificate-based authentication with tokens and
ROSAuth. An overview of the architecture is shown in Figure 9. The K4R
platform architecture is described in more detail in [29].

Agent Management. Robots and other agents connect to the K4R platform
using the agent manager as shown in Figure 10. It registers with the planning
system and provides information about the connected robot. The connection
also uses the ROS WebSuite, which is commonly installed on the robotic
agent. However, this requires the robot to be fully connected within the
network, which is complicated to accomplish when being connected via a
cloud platform. Instead of developing a custom server to handle data from
the different agents, we deploy the ROS WebSuite on the K4R platform itself,
which also brings benefits for robotics software developers, as they can stick
to ROS topics and services.

User Interfaces. The user interface was developed as a responsive Angular
web application that focuses on touch input for tablets, but can also be
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used with a PC. It allows the user to select a robot, configure it, display
information about the system, and start different missions, such as ”attach
trolley”, ”go to charging station”, or ”start refilling the shelves”.
Beyond the web user interface, we are developing a smartwatch application
for the task of picking. The app notifies the employee when the robot ar-
rives at a delivery point, allowing the employee to place products from the
transport cart on the shelves, and confirm when the task is complete.

Task Planning. For mission planning of MARLIN and other robots, we use
the ROSPlan planning system from Cashmore et al. [30], which builds on
the POPF (Partial Order Planning Forwards) planner from Coles et al. [31].
The planning framework runs on the K4R platform. Thus, it is possible to
plan missions with multiple agents and resources. ROSPlan maintains it own
knowledge base, which is synchronized with the semantic digital twin (and
its underlying scene graph representation) via ROS topics. The planning
domain is modeled in PDDL (Planning Domain Definition Language [32]).
The focus of mission planning here is on the replenishment of the shelves, as
well as the related autonomous transport of goods. The goal of such a mission
is that all products are autonomously delivered to their target shelves, where
they are filled into the shelves by a store employee. In the corresponding
domain definition, all robots, trolleys, waypoints for unloading the trolley,
as well as the products and their positions must be defined. However, the
desired product positions as well as the unloading points can be derived
from the store geometry provided by the semDT using KnowRob. The robot
autonomously attaches the trolley loaded with products, then moves to the
first shelf so that a store employee can replenish it and subsequently confirm
the execution on the GUI. This process is repeated until all products are
unloaded. The scenario is described as a PDDL domain in Listing 3. A
problem definition for this domain can be found in Listing 4.
The planner does not solve the scheduling and coordination problem, so
currently only one agent can be used in a plan. It also ignores the capacity
of a cart, so for this scenario we assume that all products can be loaded onto
a single cart.

Listing 3: PDDL domain definition

( d e f i n e ( domain pick=and=place=domain )

( : requirements : s t r i p s : typing : d i s j unc t i v e=pre cond i t i on s : durat ive=ac t i on s )

( : types
agent
waypoint
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product
t r o l l e y

)

( : p r ed i c a t e s
; agent reached a waypoint
( agent at ?a = agent ?wp = waypoint )
; d e f i n e s the order in which the waypoints are v i s i t e d
( t r o l l e y a t ? t = t r o l l e y ?wp = waypoint )
( docked ?a = agent ? t = t r o l l e y )
( h a s t r o l l e y ?a = agent )
( loaded on ? t = t r o l l e y ?p = product )
( product at ?p = product ?wp = waypoint )

)

( : durat ive=ac t i on do c k t r o l l e y
: parameters (? a = agent ? t = t r o l l e y ?wp = waypoint )

: durat ion (= ? durat ion 10)
: cond i t i on ( and

( at s t a r t ( agent at ?a ?wp) )
( at s t a r t ( t r o l l e y a t ? t ?wp) )

)
: e f f e c t ( and

( at end ( docked ?a ? t ) )
( at end ( h a s t r o l l e y ?a ) )

)
)

( : durat ive=ac t i on l o a d o n t r o l l e y
: parameters (? a = agent ? t = t r o l l e y ?wp = waypoint ?p = product )

: durat ion (= ? durat ion 1)
: cond i t i on ( and

( at s t a r t ( docked ?a ? t ) )
( at s t a r t ( t r o l l e y a t ? t ?wp) )
( at s t a r t ( product at ?p ?wp) )

)
: e f f e c t ( and

( at end ( loaded on ? t ?p ) )
( at end ( not ( product at ?p ?wp) ) )

)
)

; move to waypoint , without t r o l l e y
( : durat ive=ac t i on move to waypoint

: parameters (? a = agent ? from ? to = waypoint )
: durat ion ( = ? durat ion 10)
: cond i t i on ( and

( at s t a r t ( agent at ?a ? from ) )
)
: e f f e c t ( and

( at s t a r t ( not ( h a s t r o l l e y ?a ) ) )
( at s t a r t ( not ( agent at ?a ? from ) ) )
( at end ( agent at ?a ? to ) ) )

)

( : durat ive=ac t i on move to waypo in t w i th t ro l l ey
: parameters (? a = agent ? t = t r o l l e y ? from ? to = waypoint )
: durat ion (= ? durat ion 10)
: cond i t i on ( and

( at s t a r t ( agent at ?a ? from ) )
( at s t a r t ( t r o l l e y a t ? t ? from ) )
( at s t a r t ( docked ?a ? t ) )

)
: e f f e c t ( and

( at s t a r t ( not ( agent at ?a ? from ) ) )
( at end ( agent at ?a ? to ) )
( at s t a r t ( not ( t r o l l e y a t ? t ? from ) ) )
( at end ( t r o l l e y a t ? t ? to ) )

)
)

; conf irm a l l products have been placed
( : durat ive=ac t i on conf irm

: parameters (? t = t r o l l e y ?wp = waypoint ?pr = product )
: durat ion ( = ? durat ion 1)
: cond i t i on ( and

( at s t a r t ( t r o l l e y a t ? t ?wp) )
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( at s t a r t ( loaded on ? t ?pr ) )
)
: e f f e c t ( at end ( product at ?pr ?wp) )

)
) ; end de f i n e

Listing 4: PDDL problem definition

( d e f i n e ( problem pick=and=place=problem )
( : domain pick=and=place=domain )
( : ob j e c t s

marl in = agent
t r o l l e y 0 = t r o l l e y
prod0 = product
s t a r t a r e a l oad a r ea dock area = waypoint
wp0 = waypoint
)

( : i n i t
; in the beg inning a l l agents are in the s t a r t i n g area
( agent at marl in s t a r t a r e a )
; in the beg inning a l l t r o l l e y s are in the docking area
( t r o l l e y a t t r o l l e y 0 dock area )
; in the beg inning a l l products are in the load ing area
( product at prod0 l oad a r ea )
)

( : goa l
( and

( product at prod0 wp0)
)

)
)

Listing 5: Basic plan from defined PDDL

0 . 0 00 : ( move to waypoint agent0 s t a r t a r e a dock area ) [ 1 0 . 0 0 0 ]
10 . 001 : ( d o c k t r o l l e y agent0 t r o l l e y 0 dock area ) [ 1 0 . 0 0 0 ]
20 . 002 : ( move to waypo in t w i th t ro l l ey agent0 t r o l l e y 0 dock area l oad a r ea ) [ 1 0 . 0 0 0 ]
30 . 003 : ( l o a d o n t r o l l e y agent0 t r o l l e y 0 l oad a r ea prod0 ) [ 1 . 0 0 0 ]
30 . 004 : ( move to waypo in t w i th t ro l l ey agent0 t r o l l e y 0 l oad a r ea wp0) [ 1 0 . 0 0 0 ]
40 . 005 : ( conf irm t r o l l e y 0 wp0 prod0 ) [ 1 . 0 0 0 ]

5. Experimental Evaluation

In this section, we evaluate the capabilities of MARLIN in terms of obstacle
detection, autonomous navigation, and task planning. Results are provided
in simulation, in laboratory environment, and in a retail store.

5.1. Obstacle Detection and Classification

First, we compare different classifiers for obstacle classification to justify our
choice of SVC. Next, the computational effort of the obstacle detection and
classification pipeline is evaluated by measuring the computation time for
the different processing steps, as shown in Figure 3. Experimental data is
recorded as MARLIN navigates a retail store with various obstacles in the
aisles (see Figure 5b). We use two depth cameras with a resolution of 640
x 480 pixels and evaluate the pipeline on MARLIN’s onboard PC with 8 x
3.6 GHz, 32 GB RAM. Second, we evaluate the classification performance by
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Figure 11: Computation time of the individual processing steps in the obstacle detection
and classification pipeline.

measuring the prediction error rate of the classifier using training and test
data obtained in a laboratory environment. We use a single depth camera
with 640 x 480 pixels in this experiment.

5.1.1. Classifier Comparison

Accuracy Runtime [ms]

SVC 0.9127 3.8501 +/- 0.2010

RF 0.97069 45.4708 +/- 15.3428

VT 0.9610 15.6017 +/- 1.5021

SGD 0.6125 1.9475 +/- 1.8217

Table 1: Comparison of the Accuracy and the runtime (in seconds) of the different classi-
fiers. SVC - Support Vector Classifier, RF - Random Forest, VT - Voting Classifier, SGC
- Stochastic Gradient Descent

Table 1 shows the result on 4 different classifiers from the SciKit Learn ML
Library.
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5.1.2. Computational Efficiency

To evaluate computational performance of the obstacle detection and classi-
fication pipeline, we measure the average computation time of the individual
processing steps given n = 1000 sample points clouds collected when nav-
igating with the MARLIN robot in a retail store. The store environment
was filled with artificial obstacles like boxes and shopping carts. Figure 11
illustrates the results. It can be seen that background removal requires the
largest computation time, which is due to the large number of rules that is
created for the map of the retail store (see Figure 4). The poor quality of the
map, the diagonal orientation of the shelves, and the way the condition filter
works, where rules can only be created parallel to the x- and y-axis, result
in the creation of > 1700 rules in total. The second most time-consuming
process is the transformation and voxel grid filter, which depends mainly on
the size of the incoming point cloud. The computation times of the other
processing steps, namely point cloud merging, tracking, normalization, and
preparation, are low in comparison.
To decrease overall computation time, one could trade off accuracy versus
the resolution of the original depth images, manually preprocess the 2D map
to produce a lower number of rules in the background filter, or make the
clustering step in the multi-object tracking more discriminating to decrease
the number of processed clusters.

5.1.3. Classification Accuracy

To evaluate the performance of obstacle classification we record data in a
laboratory environment similar to Figure 6. We train 5 different objects
(bag, carton, hook cover, human, and thrash can) using raw point cloud
data. To evaluate the error rate of the trained SVC model, we consider
both the individual predictions of the model (Figure 13a) and the output
prediction (Figure 13b), where ten predictions are combined into one. The
validation of the trained model was performed with live data from objects
of all classes shown in Figure 12. Except for the classification of the hook
cover (which is sometimes split into two clusters due to its shape, leading to
false classifications), the precision of the classification can be improved by
considering ten classifications.

5.2. Tractor/Trailer Navigation

The capabilities of the approach for tractor-trailer navigation are first eval-
uated in simulation. In the next step, we reproduce the results on the real
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(a) Bag (b) Carton (c) Hook cover front (d) Hook cover rear (e) Trash bin

Figure 12: Objects used for validation of the obstacle classifier (without human)

(a) individual predictions (b) most probable class of a tracked cluster

Figure 13: Confusions matrices of the SVC (weighted with the probability of the predic-
tions)
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system in a similar environment and compare our approach with the capa-
bilities of the proprietary navigation stack.

5.2.1. Evaluation in Simulation

We first create a simple simulation environment in which the robot is to
navigate along a corridor. Figure 14 shows a schematic top view of the
environment, with the walls in black and the empty floor space in white.
The central square wall is resized in steps of 0.1m to create different corridor
widths between 1.4m and 2.0m. The values were selected based on the
corridor widths typically found in retail stores. The corridor length is kept
constant at 10m. The target points P0 - P3 are located in the middle of the
respective sides and are aligned so that the robot only has to move forward.

Figure 14: Schematic top view of the artificial simulation environment for evaluation of
the navigation capabilities.

Procedure. Initially, the robot is placed at position P0 and is then asked to
navigate to the positions P1, P2, P3, and P0 in order. The goal tolerance of the
navigation approach is selected to allow 0.5m of translational and 0.2 rad of
rotational deviation. We run the experiment 25 times for each configuration.
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If the robot fails to reach a position, we register this failure. In this case, the
next position is chosen nevertheless, so that all goal positions are evaluated on
each run. We justify this procedure as follows: Sometimes, despite an error
at one position, the robot still manages to reach the subsequent positions.
This happens either because the robot drives past an unreachable position,
or because it drives backwards from a corner where it was stuck before.
The entire run is aborted if the laser scanner detects an obstacle in the
circular safety zone around the towing vehicle that is slightly larger than its
actual footprint. We record the trajectories of the tractor x′(t), y′(t) and the
trailer coordinate system x(t), y(t) during the experiments, as well as the
execution time, and whether each position has been reached or not. The
goal of evaluation is to measure the success rate (in terms of the number of
positions reached successfully) and the average duration for each run as a
function of corridor width to get an idea of the expected performance on the
real system.

Results. Figure 15 shows the trajectories of the tractor and trailer positions
along the track. It can be seen that the tractor overshoots the center path at
the corners, because otherwise the trailer would collide with the inner walls.

Figure 16a illustrates the number of intermediate targets reached along the
route over the corridor widths. It can be seen that the approach works
reliably down to a corridor width of 1.6m. With a corridor width of 1.5m,
92 out of 100 intermediate targets are still reached during the 25 passes. At
a corridor width of 1.4m, the success rate drops sharply. Here, the vehicle
reaches the first intermediate target in only four of 25 passes.
In addition, we evaluate the time required to navigate around a single corner,
which naturally increases as corridor width decreases. This is evident for
corridor widths of 1.5 meters and less, while the time required to navigate
the route is relatively constant for corridor widths of 1.6 meters and more
(see Figure 16b).

5.2.2. Real-World Evaluation

For the evaluation on the real system, we create a similar track as in sim-
ulation. However, unlike the simulation, the corridor has only one corner
with critical width, while the rest of the path is wide enough to easily return
to the starting position before the next pass. Figure 17b shows a schematic
overview of the setup with the walls in black and the free area in white.
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Figure 15: Visualization of tractor and trailer trajectories.

The central wall is moved to create different corridor widths. The positions
P0 and P1 are adjusted accordingly to always be in the center of the corri-
dor. The goal of this evaluation is to reproduce the performance observed
in the simulation and compare our approach with the proprietary navigation
method of the MIR robot, which is provided by the manufacturer.

Procedure. We start with a corridor width of 1.9m and reduced it in incre-
ments of 0.1m. The goal tolerance was set to allow 0.5m translation and
0.2 rad rotation error. For each corridor width, we start the experiment with
the robot in pose P1 and send it to the target poses P0 and P1 alternately,
regardless of whether the previous target was reached or an error occurs. We
repeat the evaluation five times without manual intervention for both our
custom tractor-trailer navigation approach and the proprietary navigation
stack of the MIR robot. The run is aborted if the system hits an obstacle
and is halted by its own safety stop system or if the emergency stop has to
be pressed by the human operator. We record the timestamps at which the
target positions are reached or, in case of a target position is not reached,
we register an error.
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(a) Success rate in reaching the target positions. (b) Navigation time per target

Figure 16: Results on tractor-trailer navigation in simulation.

Results. Table 2 shows the success rate of the approaches with respect dif-
ferent corridor widths.

Corridor Width Custom Proprietary
1.9m 4 / 5 5 / 5
1.8m 5 / 5 5 / 5
1.7m 5 / 5 5 / 5
1.6m 4 / 5 5 / 5
1.5m 5 / 5 0 / 5

Table 2: Success rate for reaching the goal pose P1 in real-world evaluation for custom
and proprietary navigation approach.

We find that the proprietary navigation approach is able to reliably navigate
the course down to a corridor width of 1.6m. However, at a corridor width
of 1.5m, the planner is no longer able to find a path through the course.
The custom navigation approach, on the other hand, is able to navigate the
course up to and including a width of 1.5m.
Also, in the custom navigation approach, we observe two error cases at cor-
ridor widths of 1.9m and 1.6m. Both occur at the turn just before the
start position P1, where the vehicle gets stuck and aborts the run. It then
continues with the subsequent targets, which are again successfully reached.

5.2.3. Discussion

Using the proposed method for tractor-trailer navigation, the robot can nav-
igate reliably up to a corridor width of 1.6m in the simulated environment.
Below 1.5m, navigation time increases noticeably and the system begins to
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(a) Perspective view of the actual setup. The walls are made up of
wooden blocks that can be moved to adjust the corridor width.

(b) Schematic top view of the
evaluation environment.

Figure 17: Real-World Evaluation.

occasionally get stuck at a corner. At even lower corridor widths, the success
rate drops to near zero, which is consistent with the manufacturer’s stated
limitations for the system.
In the real-world robot application, the custom approach to tractor-trailer
navigation was able to navigate narrower corridors than the MIR robot’s
proprietary approach. However, the proprietary navigation approach tends
to deliver smoother and more robust execution, possibly due to better fine-
tuning of navigation parameters. With manual control of the robot, even
much smaller corridor widths are possible, leaving room for further opti-
mization for the autonomous navigation.

5.3. Task Planning

In this section, we evaluate the performance of the planner with respect to
the size of the store and the number of products. For this purpose, we use
the domain description shown in Listing 3 and the problem definition shown
in Listing 4. Note that the PDDL problem description is generated for our
experiments - to keep the listing short we only show a simple scenario here
with one product, one trolley and one waypoint. This definition describes
the task ”Replenish all items loaded on the cart” in PDDL. We assume here
that the robot can approach all available unloading points without excep-
tions. All computation is performed on an Intel i7-8550U CPU. We use the
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POPF planner from ROSPlan and evaluate different transportation scenar-
ios. As can be seen in Figure 18 (blue bars), the planning time increases
exponentially with the number of products and shelves. Thus, a completely
free definition, where the agent can move to any waypoint is not practical
in a realistic scenario with hundreds of products and more than one hun-
dred shelves, and narrowing the search space is required. Based on the store
layout we can pre-calculate the distances of each waypoint to each other us-
ing the Distance Matrix Service1 developed as part of the Knowledge4Retail
Platform. This service uses a simplified version of the store layout to quickly
compute shortest paths between two points in the store. We can use this
service to sort the list of waypoints for unloading.
If we give the planner the ordered list of waypoints, the planning time is
reduced considerably, as can be seen in Figure 18 (orange bars).
If an unloading point cannot be approached (e.g., because an obstacle is in
the way), and the navigation planner of the robot cannot find an alternative
route, the sequence of unloading points is adjusted. In this case, the robot
initially omits the next unloading point, adds it to the end of the list as
an additional destination, and proceeds to the next unloading point. It is
assumed that the unloading point is only temporarily blocked (e.g. due to
high customer traffic in an aisle) and will be available again after some time.
It will be very beneficial to provide additional information about the specific
store in the knowledge base of the planner. If the obstacle can not move the
robot might need to call a shop employee for help but if there is a human in
the path it could ask the human politely to move or ask a shop employee for
help. An option to improve the robots’ behavior would be to use Reinforce-
ment Learning to figure out where these areas are and optimize the order in
which the waypoints are approached accordingly. A possible implementation
for this has been investigated by [33] and shows very promising results, but
they need to be validated outside of simulation and are not integrated into
the K4R platform yet.

5.4. Use Case: Support of Shelf Refilling

We evaluate the shelf replenishment application in a drugstore. MARLIN
starts in the charging station. We load different products from the store on
the cart and manually pass the list of products to the robot. If the store

1https://github.com/knowledge4retail/k4r-distance-matrix-api

30



Figure 18: Planning time based on amount of products (p) and shelves (s). Blue bars -
No prior knowledge on the order of the unloading points, orange bars - Order between the
unloading points is pre-defined.

employee selects the replenishment mission on the graphical user interface,
MARLIN picks up the cart with the products. Using the information in the
semantic digital twin, the robot can infer the product locations, and, from
the known store geometry, calculate feasible unloading points in front of the
shelves where the products are located. Feasible means here that, firstly,
the points have to be reachable for the robot navigation system. Second, if
multiple products are located nearby in the same shelf they can be replenished
using a single unloading point. And, third, the unloading point must be
selected such that the robot does not block the target location in the shelf
for the store employee. At every unloading point, the robot contacts the
store employee, which receives a note on a smartwatch or tablet to start
replenishment. If the task is finished, the employee must confirm this on
the graphical user interface, and the robot will move to the next unloading
point. This process is repeated until all products are unloaded from the cart.
Afterwards, the robot will return to the charging station. During the entire
process, MARLIN perceives the environment through its onboard sensors,
detects and classifies obstacles, and stores permanent obstacles in the digital
twin. Figure 19 shows screenshots from a representative video demonstrating
the use case.
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(a) MARLIN navigating narrow passages in a retail store.

(b) Support replenishment by directing the store employee to the target location of the product.

(c) User interfaces, GUI (left), Smartwatch (middle), Visualization of MARLIN’s sensor data (right).

Figure 19: Screenshots from a video taken during evaluation in a retail store.
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6. Conclusion and Outlook

In this paper, we present the MARLIN service robotic system and its inte-
gration with the K4R platform, a cloud computing solution that enables AI
and robotics applications for retail. By connecting with the K4R platform,
MARLIN’s capabilities in perception, navigation, and mission planning are
enhanced. We demonstrate that MARLIN is able to detect and classify un-
known obstacles, navigate through the narrow aisles of a retail store, and
plan and execute missions that assist the store employee in replenishing the
shelves.
The potential of AI solutions and autonomous robotics in retail is huge. How-
ever, today the barriers to entry for retailers in such solutions are still quite
high. For example, setting up a robotic system to support store employees
requires a lot of expert knowledge and customized, expensive hardware. The
idea of the K4R platform is to reduce these barriers to entry by providing
retailers with the infrastructure and general-purpose AI functionalities. By
centralizing AI approaches such as planning, reasoning, or machine learning
in the K4R platform, it is possible to integrate commercially available robotic
systems such as MARLIN into complex AI applications or even orchestrate
entire fleets of AGVs. In this context, a possible extension of our work is
to simultaneously use multiple robots for store intralogistics, for example
by implementing a similar approach as in [34] or scheduling methods as de-
scribed in [35]. Moreover, integrating different sensor sources, e.g., cameras
to monitor the flow of customers, into the planning system can improve the
reliability and speed of autonomous navigation in crowded stores. Finally, we
would like to evaluate the proposed solution in a large-scale subject study
(i.e., with store employees) to obtain realistic statements on usability and
feasibility.
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tels, Know rob 2.0—a 2nd generation knowledge processing framework
for cognition-enabled robotic agents, in: 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), IEEE, 2018, pp. 512–519.

[12] S. Blumenthal, H. Bruyninckx, W. Nowak, E. Prassler, A scene graph
based shared 3D world model for robotic applications, Proceedings
- IEEE International Conference on Robotics and Automation (2013)
453–460. doi:10.1109/ICRA.2013.6630614.

[13] P. Bustos, L. J. Manso, A. J. Bandera, J. P. Bandera, I. Garćıa-Varea,
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